
Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

DOI : 10.5121/acij.2010.1102 11

Genetic Algorithms and Programming-An
Evolutionary Methodology

1
T. Venkat Narayana Rao

 Professor and Head, Computer Science and Engineering,

Hyderabad Institute of Technology and Management, Hyderabad, A P, India,
tvnrbobby@yahoo.com
2
Srikanth Madiraju

Computer Science and Engineering,

Hyderabad Institute of Technology and Management, Hyderabad, A P, India,
mdrjsrikanth@yahoo.com

Abstract:
Genetic programming (GP) is an automated method for creating a working computer program from a

high-level problem statement of a problem. Genetic programming starts from a high-level statement of

“what needs to be done” and automatically creates a computer program to solve the problem. In artificial

intelligence, genetic programming (GP) is an evolutionary algorithm-based methodology inspired by

biological evolution to find computer programs that perform a user defined task. It is a specialization of

genetic algorithms (GA) where each individual is a computer program. It is a machine learning technique

used to optimize a population of computer programs according to a fitness span determined by a program's

ability to perform a given computational task. This paper presents a idea of the various principles of

genetic programming which includes, relative effectiveness of mutation, crossover, breeding computer

programs and fitness test in genetic programming. The literature of traditional genetic algorithms contains

related studies, but through GP, it saves time by freeing the human from having to design complex

algorithms. Not only designing the algorithms but creating ones that give optimal solutions than traditional

counterparts in noteworthy ways.

Keywords: Genetic Programming, subtree, chromosomes, mutation, Evolutionary.

Introduction

Going back to the history back to 1954 where the first work on Genetic Programming has

initiated highlighting the basic functionality of all the four basic aspects (breeding, mutation,

crossover and fitness test), Genetic Programming began with the evolutionary algorithms firstly

developed by Fogel Owens and Walsh applied to evolutionary simulations as given table 1.

During 1960s and early 1970s, evolutionary algorithms became widely recognized as

optimization methods. Genetic programming addresses the problem of automatic programming,

namely, the problem of how to enable a computer to do useful things without instructing it, step

by step, on how to do it. The first statement of modern "tree-based" Genetic Programming i.e.,

procedural languages organized in tree-based structures and operated on by suitably defined GA-

operators was given by Nichael L. Cramer (1985). Koza has argued that mutation is in fact

useless in Genetic Programming because of the position-independence of GP subtrees, and

because of the large number of chromosome positions in typical Genetic Programming

populations [Koza 1992, pp. 105–107]. This paper shows the merits of the application of the basic

aspects of Genetic Programming that have proved more efficient is generating a good algorithms

and pool of programs for better delivery of results[12]. The whole discussion lies in the advantage

of utility of these major points in modern computations and algorithm writing. In the 1990s, GP

was mainly used to solve relatively simple problems because it is very computationally intensive.

Recently GP has produced many novel and outstanding results in areas such as quantum

computing, electronic design, game playing, sorting and searching due to improvements in GP

Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

12

technology and the power[6][8]. These results include the replication or development of several

post-year-2000 inventions. GP has also been applied to evolvable hardware as well as computer

programs. The history of computer programming is a history of attempts to move away from the

"craftsman" approach - structured programming, object-oriented programming, object libraries

and rapid prototyping. But each of these advances leaves the code that does the real work firmly

in the hands of the programmer. The ability to enable computers to learn to program themselves

is of the utmost importance in freeing the computer industry and the computer user from code that

is obsolete before it is released. Since the 1950s, computer scientists have tried, with varying

degrees of success, to give computers the ability to learn. The umbrella term for this field of study

is "machine learning" a phrase crafted in 1959 by the first person who made a computer perform

a serious learning task is Samuel. Originally, Samuel used "machine learning" to mean computers

programming themselves [Samuel, 1963]. That goal has, for many years, proven too difficult. So

the machine learning community has pursued more modest goals. A good contemporary

definition of machine learning is due to Mitchell’s, the study of computer algorithms that improve

automatically through experience [Mitchell, 1996]. Genetic programming, aspires to do precisely

that - to induce a population of computer programs that improve automatically as they experience

the data on which they are trained. Accordingly, GP is part of the very large body of research

called machine learning. Developing a theory for GP has been very difficult and so in the 1990s

GP was considered a sort of outcast among search techniques. But after a series of breakthroughs

in the early 2000s, the theory of GP has had a formidable and rapid development. So much so that

it has been possible to build exact probabilistic models of GP (schema theories and Markov chain

models).

Genetic Programming is an extension of the Genetic Algorithm which was invented by John

Holland (1975). Although the idea of evolving programs was first suggested by Forsyth (1981)

and Cramer (1985) among others, it was proved, promoted and developed into a practical tool by

John Koza. Genetic Programming is one technique amongst a whole range of possible

evolutionary algorithms [3].

What Machine Learning
Although genetic programming is a relative newcomer to the world of machine learning, some of

the earliest machine learning research bore a distinct resemblance to today's GP. In 1958 and

1959, Friedberg attempted to solve fairly simple problems by teaching a computer to write

computer programs [Friedberg, 1958] [Friedberg et al., 1959]. Friedberg's programs were 64

instructions long and were able to Manipulate, bitwise, a 64-bit data vector. Each instruction had

a virtual "opcode" and two operands, which could reference either the data vector or the

instructions. An instruction could jump to any other instruction or it could manipulate any bit of

the data vector. Friedberg's system learned by using what looks a lot like a modern mutation

operator - random initialization of the individual solutions and random changes in the

instructions. The process of machine learning, that is, the defining of the environment and the

techniques for letting the machine learning system experience the environment for both training

and evaluation, are surprisingly similar from system to system. In the next section of this chapter,

we shall, therefore, focus on machine learning as a high-level process. By the early 1980s,

machine learning was recognized as a distinct scientific discipline. Since then, the field has grown

tremendously. Systems now exist that can, in narrow domains, learn from experience and make

useful predictions about the world. Today, machine learning is frequently an important part of

real-world applications such as industrial process control, robotics control, time series prediction,

prediction of creditworthiness, and pattern recognition problems such as optical character

Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

13

recognition and voice recognition, to name but a few examples [White and Sofge, 1992]

[Biethahn and Nissen, 1995]. At the highest level, any machine learning system faces a similar

task - how to learn from its experience of the environment[1][4].

Table 1: Summary of evolutionary algorithms

The whole field is now called Evolutionary Computation. In common with many search

techniques, the Genetic Programming algorithm has three basic components.

• A population of candidate solutions (usually called genes or chromosomes).

• A set of operations (genetic operators) which act on members of this population to produce

new solutions[9].

• A method for evaluating how good each solution is, which involves trying it out in an

appropriate environment.

In Genetic Programming, each candidate solution is stored in the form of a tree structure. Two

examples of these trees are shown in Figure 1. The first of these might be interpreted as the

example function i.e. p = 2.107p + 0.345 and the second as the logical expression (agent-4

saidYes) OR (agent-3 DidBetterThan me). Initially, the population of candidate solutions is

generated randomly from a specification of the possible nodes and terminals which can be used to

construct a legal tree.

Figure 1. Example of Genetic Programming solution being stored in tree pattern.

Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

14

Different problems in artificial intelligence, symbolic processing, and machine learning can be

viewed as wanted discovery of a computer program that results in some desired output for

particular inputs being fed. In this new genetic programming, pool of computer programs are

genetically bred using “the Darwinian principle of survival” of the fittest and using a genetic

crossover (recombination) operator appropriate for genetically mating computer programs.

A. Breeding features:

• Attributed features:

-competes with neural nets and alike

 -needs huge populations (thousands).

• Special features :

-non-linear chromosomes: trees, graphs, Computer Programs as Trees.

- Mutation possible but not necessary (disputed!) .

Start off with a large “pool” of random computer programs. Need a way of coming up with the

best solution to the problem using the programs in the “pool”. Based on the definition of the

problem and criteria specified in the fitness test, mutations and crossovers are used to come up

with new programs which will solve the problem further.

For example: IF (NOC = 2) AND (S > 80000) THEN good ELSE bad

can be represented by the following tree

IF formula THEN good ELSE bad . Only unknown is the right formula, hence our search space

(phenotypes) is the set of formulas i.e. Natural fitness of a formula: percentage of well classified

cases of the model it stands for

Natural representation of formulas (genotypes) is: parse trees

The Trees are a universal form and can be represented for example consider:

 Tree based representation:

 (x ∧ true) → ((x ∨ y) ∨ (z ↔ (x ∧ y)))

Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

15

In GA, ES, EP chromosomes are linear structures (bit strings, integer string, real-valued vectors,

and permutations). Tree shaped chromosomes are non-linear structures. In GA, ES, EP the size of

the chromosomes is fixed. Trees in Genetic Programming may vary in depth and width.

B. The Fitness Test Function
Identifying the way of evaluating how good a given computer program is at solving the problem

at hand [11] [12]. How good can a program cope with its environment? Can be measured in many

ways, i.e. error, distance, time, complexity etc.

• Fitness Test Criteria;

• Time complexity a good criteria i.e. n
2
 vs. nlogn.

• Accuracy - Values of variables.

• Combinations of criteria may also be tested.

Fitness is the measure used by GP during simulated evolution of how well a program has learned

to predict the output(s) from the input(s) i.e. the features of the learning domain. The goal of

having a fitness evaluation is to give feedback to the learning algorithm regarding which

individuals should have a higher probability of being allowed to multiply and reproduce, which

individuals should have a higher probability of being removed from the population. The fitness

function is calculated on what we have earlier referred to as the training sets. Continuous Fitness

Function, the fitness function should be designed to give graded and continuous feedback about

how well a program performs on the training set. There are also other methods for calculating

fitness.

In co-evolution methods for fitness evaluation [Angeline and Pollack, 1993][Hillis, 1992],

individuals compete against each other without an explicit fitness value. In a game-playing

application, the winner in a game may be given a higher probability of reproduction than the

loser. In some cases, two different populations may be evolved simultaneously with conflicting

goals. For example, one population might try to evolve programs that sort lists of numbers while

the other population tries to evolve lists of numbers that are hard to sort. This method is inspired

by arms races in nature where, for example, predators and prey evolve together with conflicting

goals. In some cases, it might be advantageous to combine very different concepts in the fitness

criteria. We could add terms for the length of the evolved programs or their execution speed, etc.

Such fitness function is referred to as a multiobjective fitness function.

Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

16

Each individual in a population is allotted with a fitness value as a result of its communication

with the environment. Fitness is the driving force of Darwinian natural selection and, similarly to

genetic algorithms. The environment is a set of cases which provides a basis for evaluating the

fitness of the S expressions in the population. For example, for the exclusive-or function, the

obvious choice for the environment is the set of four combinations of possible values for the two

variable atoms D0 and D1 along with the associated value of the exclusive-or function for the

four such combinations. For most of the problems described herein, the raw fitness of any LISP

S-expression is the sum of the distances between the point in the range space returned by the S-

expression for a given set of arguments and the correct point in the range space. The S-expression

may Boolean-valued, integer-valued, real-valued, complex-valued, vector valued, multiple-

valued, or symbolic-valued. If the S-expression is integer-valued or real-valued, the sum of

distances is the sum of absolute values of the differences between the numbers involved. In

particular, the raw fitness r(i,t) of an individual LISP S-expression i in the population of size M at

any generational time step t is :

Where S (i,j) is the value returned by S-expression i for environmental case j (of Ne

environmental cases) and where C(j) is the correct value for environmental case j. If the S-

expression is Boolean-valued or symbolic-valued, the sum of distances is equivalent to the

number of mismatches. If the S-expression is complex-valued, or vector-valued, or multiple

valued, the sum of the distances is the sum of the distances separately obtained from each

component of the vector or list. The closer this sum of distances is to zero, the better is the S-

expression.

One can use the sum of the distances or the square root of the sum of the squares of the distances

in this computation. It is important that the fitness function return a range of various values that

distinguish the performance of single entities in the pool. As an example, a fitness function test

that returns only two values (say, a true for a solution and a false otherwise) provides not enough

information for helping guide to an adaptive process. Any outcome that is discovered with such a

fitness function test is, then, essentially can be an accident (a false return). A wrong choice of the

function set in relation to the number of environment cases for a given case can raise the same

situatution. For example, if the Boolean function OR is in the function set for the exclusive-or

problem, this function alone satisfies three of the four environment cases. Since the initial random

population of individuals will almost certainly be numerous S-expressions equivalent to the OR

function, we are effectively left with only two distinguishing levels of the fitness (i.e. 4 for a

solution and 3 otherwise).

The process of solving some typical problems can be reframed as a search for a most fit

individual computer program in the range of possible computer programs. In particular, the

search Space is the hyperspace of LISP symbolic expressions (called S-expressions)

encapsulating functions and terminals appropriate to the problem domain. As noticed, the LISP S-

expression which solves each of the problems described above will surface from a simulated

r(i,t) =Ne

 ∑S(i,j) [Ex-Or] C(j)

 j=1

Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

17

evolutionary process using a new genetic programming paradigm using a "hierarchical genetic

algorithm”.

The functions may be standard arithmetic operations, standard programming operations, standard

mathematical functions and various domain-specific functions[10]. A fitness function evaluates

how well each individual LISP S-expression in the population performs in the particular problem

environment. In many problems, the fitness is measured by the sum of the distances i.e. taken for

all the environmental cases between the point in the range space (whether Boolean-valued,

integer-valued, real-valued, complex-valued, vector-valued, symbolic valued, or multiple-valued)

created by the S-expression for a given set of arguments and the correct point in the range space.

An algorithm based on the Darwinian model of reproduction and survival of the fittest and

genetic recombination is used to create a new population of individuals from the current

population of individuals.

The two participating parental S-expressions are selected in proportion to fitness. The resulting

offspring S-expressions are composed of sub expressions "building blocks" from their parents.

Then, the new population of offspring i.e. the new generation replaces the old population of

parents, the old generation. Then, each individual in the new population is measured with the

fitness function and the process is repeated. At every level of this highly parallel, locally

governed, and defragmented process, the state of the process will include only of the current

population of individuals. Moreover, the only input to the algorithmic process will be the

observed fitness of the individuals in the current population in correlation with the problem

environment. This algorithm will produce populations which, over a period of generations, intend

to show increasing average fitness in dealing with their environment, and which, in addition, will

tend to robustly i.e. rapidly and effectively adapt and work accordingly to the changes in their

environment. The solution produced by this algorithm at any given time can be viewed as the

entire population of distinctive alternative solutions (typically with improved overall average

fitness as compared to the beginning of the algorithm), or, more commonly, as the single best

individual in the population at that time. The hierarchical character of the computer programs that

are produced by the genetic programming paradigm is an important characteristic of the genetic

programming. The results of this genetic programming methodology process are inherently

hierarchical.

The dynamic variability of the computer programs that are developed along the way to a solution

is also an important feature of the genetic programming paradigm. In each case, it would be

difficult and unnatural to try to specify or limit the size and shape of the eventual solution in

advance. Moreover, the advance specification or restriction of the size and shape of the solution

to a problem narrows the window by which the system views the world and might well prohibit

finding the solution to the problem.

Another important feature of the genetic programming paradigm is absence of preprocessing of

inputs and the fact that the solution is expressed directly in terms of the functions and arguments

from the problem domain. This makes the results immediately comprehensible and intelligible in

the terms of the problem domain. Most importantly, the "genetic programming" paradigm is

general and provides a single, unified approach to a variety of seemingly different problems in a

variety of areas.

II. THE CROSSOVER (RECOMBINATION) OPERATION

Crossing over, process in genetics by which the two chromosomes of a homologous pair swap

equal segments with each other. Crossing over occurs in the first division of meiosis. At that stage

Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

18

each chromosome has replicated into two strands called sister chromatids[5]. The two

homologous chromosomes of a pair synapse, or come together. While the chromosomes are

synapsed, breaks occur at corresponding points in two of the non-sister chromatids, i.e., in one

chromatid of each chromosome[1]. Since the chromosomes are homologous, breaks at

corresponding points mean that the segments that are broken off contain corresponding genes,

i.e., alleles. The broken sections are then exchanged between the chromosomes to form complete

new units, and each new recombined chromosome of the pair can go to a different daughter sex

cell as shown in Figure 2. Crossing over results in recombination of genes found on the same

chromosome, called linked genes that would otherwise always be transmitted together. Because

the frequency of crossing over between any two linked genes is proportional to the chromosomal

distance between them, crossing over frequencies are used to build genetic, or linkage, maps of

genes on chromosomes.

 Figure 2. Chromosomes Pairs and Genetic Recombinations
There are three principal constraints on biological crossover:

• Biological crossover takes place only between members of the similar species. In fact,

living creatures put much energy into identifying other members of their species - often

putting their own existence at risk to do so. Bird songs, for example, attract mates of the

same species and predators.

• Biological crossover occurs with remarkable attention to preservation of "semantics”.

Thus, crossover usually results in the same gene from the father being matched with the

same gene from the mother. In other words, the hair color gene does not get swapped for

the tallness gene[2].

• Biological crossover is homologous. The two DNA strands are able to line up identical

or very similar base pair sequences so that their crossover is perfect almost down to the

molecular level. But this does not eliminate crossover at duplicate gene sites or other

variations, as long as very similar sequences are available.

In nature, most crossover events are successful i.e. they result in viable offspring. This is a sharp

contrast to GP crossover, where over 75% of the crossover events are what would be termed in

biology "lethal”. What causes this difference? In a sense, GP takes on an enormous task. It must

evolve genes (building blocks) so that crossover makes sense and it must evolve a solution to the

problem all in a few hundred generations. It took nature billions of years to come up with the

Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

19

preconditions so that crossover itself could evolve. GP crossover is very different from biological

crossover. Crossover in standard GP is unconstrained and uncontrolled. Crossover points are

selected randomly in both parents. There are no predefined building blocks (genes). Crossover is

expected to find the good building blocks and not to disorder them even while the building blocks

grow.

• In the basic GP system, any subtree may be crossed over with any other subtree. There is

no requirement that the two subtrees fulfill similar functions. In biology, because of

homology, the different alleles of the swapped genes make only minor changes in the

same basic function.

• There is no requirement that a subtree, after being swapped, is in a context in the new

individual that has any relation to the context in the old individual. In biology, the genes

swapped are swapped with the corresponding gene in the other parent.

• Were GP to develop a good subtree building block, it would be very likely to be

disrupted by crossover rather than preserved and spread. In biology, crossover happens

mostly between similar genetic materials. It takes place so as to conserve gene function

with only minor changes.

There is no reason to suppose that randomly initialized individuals in a GP population are

members of the same species-they are created randomly.

Crossovers in Programs:

The crossover (recombination) operation for the genetic programming paradigm creates variation

in the population by producing offspring’s that combine traits from two parents. The crossover

operation starts with two parental S-expressions and produces at least one offspring S-expression.

In general, at least one parent is chosen from the population with a probability equal to their

respective normalized fitness values. In this paper, both parents are so chosen. The operation

begins by randomly and independently selecting one point in each parent using a Probability

distribution. Note that the number of points in the two parents typically is not equal.

• Two parental programs are selected from the population based on fitness.

• A crossover point is randomly chosen in the first and second parent.

• The sub tree rooted at the crossover point of the first, or receiving, parent is deleted and

replaced by the sub tree from

 the second, or contributing, parent.

• Crossover is the predominant operation in genetic programming (i.e. genetic algorithm) work

and is performed with a

 high probability that is about 85% to 90%.

The "crossover fragment" for a particular parent is the rooted sub-tree whose root is the crossover

point for that parent and where the sub-tree consists of the entire sub-tree lying below the

crossover point (i.e. more distant from the root of the original tree). Viewed in terms of lists in

LISP programming language , the crossover fragment is the sub-list starting at the crossover point

[4].

The first offspring is produced by deleting the crossover fragment of the first parent from the first

parent and then impregnating the crossover fragment of the second parent at the crossover point

of the first parent. In producing this first offspring the first parent acts as the base parent (the

female parent) and the second parent acts as the impregnating parent (the male parent). The

second offspring is produced in a symmetric manner.

Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

20

EXAMPLE:
For example, consider the two parental LISP S-expressions below:

In terms of LISP S-expressions, the two parents are (OR (NOT D1) (AND D0 D1)) and

(OR (OR D1 (NOT D0)) (AND (NOT D0) (NOT D1))

Assume that the points of both trees above are numbered in a depth-first way starting at the left.

Suppose that the second point (out of the 6 points of the first parent) is selected as the crossover

point for the first parent and that the sixth point (out of the 10 points of the second parent) is

selected as the crossover point of the second parent. The crossover points are therefore the NOT

function in the first parent and the AND function in the second parent. Thus, the bold, underlined

portions of each parent above are the crossover fragments. The two crossover fragments are

shown below:

Note that the first offspring above is a perfect solution for the exclusive-or function, namely

(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)).

Note that because entire sub-trees are swapped, this genetic crossover (recombination) operation

produces valid LISP S-expressions as offspring regardless of which point is selected in either

parent. If the root of one tree happens to be selected as the crossover point, the crossover

operation will insert that entire parent into the second tree at the crossover point of second parent.

In addition, the sub-tree from the second parent will, in this case, then become the second

offspring. If the roots of two parents happen to be chosen as crossover points, the crossover

operation simply degenerates to an instance of fitness proportionate reproduction on those two

parents.

Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

21

If a terminal is located at the crossover point in precisely one parent, then the sub-tree from the

second parent is inserted at the location of the terminal in the first parent and the terminal from

the first parent is inserted at the location of the sub-tree in the second parent. In this case, the

crossover operation often has the effect of increasing the depth of one tree and decreasing the

depth of the second tree. If terminals are located at both crossover points selected, the crossover

operation merely swaps these terminals from tree to tree[7][12].

III. Mutation in Nature

Mutations can involve large sections of DNA becoming duplicated, usually through genetic

recombination. These duplications are a major source of raw material for evolving new genes,

with tens to hundreds of genes duplicated in animal genomes for million years and have

following characteristics.

• Ultimate source of genetic variation.

• Radiation, chemicals change genetic information.

• Causes new genes.

• One chromosome.

• Asexual.

• Very rare combinations possible.

A gene mutation is a permanent change in the DNA sequence that makes up a gene. Mutations

range in size from a single DNA building block (DNA base) to a large segment of a chromosome.

Gene mutations occur in two ways: they can be inherited from a parent or acquired during a

person’s lifetime. Mutations that are passed from parent to child are called hereditary mutations

or germ line mutations (because they are present in the egg and sperm cells, which are also called

germ cells). This type of mutation is present throughout a person’s life in virtually every cell in

the body. Figure 3. showcases a example involving crossover and mutation process for a

inducting assembler .

Somatic also called as acquired mutations occur in the DNA of individual cells at some time

during a person’s life. These changes can be caused by environmental factors such as ultraviolet

radiation from the sun, or can occur if a mistake is made as DNA copies itself during cell

division. Acquired mutations in somatic cells (cells other than sperm and egg cells) cannot be

passed on to the next generation.

Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

22

Figure 3. example showing a mechanism in crossover and mutuation to induce an assembler.

Some genetic changes are very rare, others are common in the population. Genetic changes that

occur in more than 1 % of the population are called polymorphisms [6] [1] [9]. They are common

enough to be considered a normal variation in the DNA. Polymorphisms are responsible for many

of the normal differences between people such as eye color, hair color, and blood type. Although

many polymorphisms have no negative effects on a person’s health, some of these variations may

influence the risk of developing certain disorders. Mutations can involve large sections of DNA

becoming duplicated, usually through genetic recombination.

Entropy driven variation, such as mutation, is the principal source of variability in evolution.

There are many types of mutation, including [Watson and Wonklhofer et al., 1987] as given

below:

• Changes from one base pair to another are a possibility. These often produce neutral or useful

variations. Although a base pair switch occurs about once every ten million replications or

less, there are hot spots where base pair switching is up to twenty-five times the usual rate.

• Additions or deletions of one or more base pairs. This is called a frame shift mutation and

often has drastic consequences on the functioning of the gene.

• Large DNA sequence rearrangements. These may occur for any number of reasons and are

almost always lethal to the organism.

Mutation operates on only one individual. Normally, after crossover has occurred, each child

produced by the crossover undergoes mutation with a low probability. The probability of

mutation is a parameter of the run. A separate application of crossover and mutation, however, is

also possible and provides another reasonable procedure. When an individual has been selected

for mutation, one type of mutation operator in tree GP selects a point in the tree arbitrarily and

replaces the existing subtree at that point with a new randomly generated subtree. The new

randomly generated subtree is created in the same way, and subject to the same limitations (on

depth or size) as programs in the initial random population. The altered individual is then located

back into the population. In linear GP, mutation is a bit different. When an individual is chosen

for mutation, the mutation operator first selects one instruction from that individual for mutation.

Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

23

It then makes one or more changes in that instruction. The type of change is chosen randomly

from the following list:

• Any of the register designations may be changed to another randomly chosen register

designation that is in the register set.

• The operator in the instruction may be changed to another operator that is in the function set.

• A constant may be changed to another randomly chosen constant in the designated constant

range.

Mutations in Programs
• Single parental program is probabilistically selected from the population based on fitness.

• Mutation point randomly chosen. the sub tree rooted at that point is deleted, and a new

subtree is grown there using the

 same random growth process that was used to generate the initial population.

• Asexual operations are typically performed sparingly (with a low probability of,

probabilistically selected from the

 population based on fitness).

• Most common mutation: replace randomly chosen sub tree by randomly generated tree.

• Mutation has two parameters: Probability pm to choose mutation vs. recombination and

the Probability to chose an internal point as the root of the sub tree to be replaced. Remarkably pm

is advised to be 0 (Koza’92) or very small, like 0.05 (Banzhaf et al. ’98). The size of the child can

exceed the size of the parent. The below subtrees shows the parent and child patterns in detail.

Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

24

Parent1 Pare

nt2

Child1 Child2

The mutation operation potentially can be beneficial in reintroducing diversity in a population

that may be tending to prematurely converge.

IV. Applications of Genetic Programming

The detailed summary of applications of Genetic Programming domain is listed n the table 2. and

Tables 3.

A. Designing Electronic Circuits:

John Koza, a professor at Stanford and CEO of Genetic Programming Inc. is perhaps the person

most responsible for making GP more acceptable in the eyes of the AI community. He and his team

have successfully applied genetic programming techniques to a variety of applications ranging from

bioinformatics to distributed systems. One of their most successful endeavors has been to the

generation of electronic circuit designs. Here, the programs are actually all about the flow of

information around the circuits, so the function set contains functions which mimic the actions of

transistors, resistors, etc., on the flow of electricity. According to the web site at Genetic

Programming Inc: "there are now 36 instances where genetic programming has automatically

produced a result that is competitive with human performance, including 15 instances where genetic

programming has created an entity that either infringes or duplicates the functionality of a previously

patented 20th-century invention, 6 instances where genetic programming has done the same with

respect to a 21st-century invention, and 2 instances where genetic programming has created a

patentable new invention."

B. Evolutionary Art:

One of the most exciting and creative areas in which genetic programming is being is applied is

evolutionary art. In contrast to most GP applications, in evolutionary art, the user often acts

directly as the fitness function. That is, the GP engine generates a set of programs which can

Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

25

produce images (i.e. JPEG's etc.), either by transforming a given image, or generating pixel data

from scratch. These images are then shown to the user, who performs the selection by choosing

those which they most like. The GP engine then generates a population from the chosen images

and selects from it images which fairly closely resemble the ones chosen by the user, or which

have some properties similar to the chosen ones, e.g., color distribution. The user then selects

those with most appeal again, and the process continues until the user is so happy with the image

that they put it on their homepage. The evolutionary art community includes many artists and

computing professionals, and the artworks their programs produce generate much interest (similar

to how everyone was amazed by fractal images when they first came out). Such an approach was

recently used to generate images for an ad-campaign by Absolute Vodka, for example.

 Table 2. :Applications of Genetic Programming

Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

26

Table 3.:Science Oriented Applications of Genetic Programming

V. Conclusion

The data presented in this paper is formulated on various studies and research work carried out,

presenting various examples that explain well in detail about the aspects of genetic programming.

The final analysis of the data indicates that crossover is more successful than mutation overall,

though mutation is often better for small populations, depending on the domain. However, the

difference between the two is usually small, and often statistically insignificant. Apart from its

straightforward instrumental uses, the study of GP opens up a new and wide range of possibilities

for social simulators that of models based on a learning technique where the structure of what is

learnt can come to the fore. It is a methodology that can be used to generate some aspects of the

creative learning caliber of humans. Of course, the GP algorithm is not a perfect mirror of human

cognition. To be used effectively as a descriptive element in a social simulation, it needs to be

adapted to ensure that it is as realistic as possible. GP is not yet a completely mature technique.

As such, its impact in the field of social simulation has just begun. No doubt its impact will be at

Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

27

least as great as those of previous paradigms such as neural networks or genetic algorithms, not

so much in that it introduces a new computational analogy but because it is unparalleled as a

creative computational technique thus we anticipate that in the days to come GP would be applied

and you may be genuinely surprised at the results.

VI. References

[1] Andre, D. and Teller, A. 1996. A Study in Program Response and the Negative Effects of Introns. in

Genetic Programming. In Proceedings of the First Annual Conference on Genetic Programming (GP96),

edited by John Koza et al.The MIT Press. pp. 12–20.

[2] Angeline, P.J. 1996. Two Self-Adaptive Crossover Operators for Genetic Programming. In Advances

in Genetic Programming 2, edited by P.J. Angeline and K.E. Kinnear, Jr. The MIT Press. pp. 89–109.

[3] Koza, J.R. 1992. Genetic Programming: On the Programming of Computers by Means of Natural

Selection.. The MIT Press.Koza, J.R. 1994.

[4] Genetic Programming II: Automatic Discovery of Reusable Programs. The MIT Press.Mitchell, M.

1996. An Introduction to Genetic Algorithms. The MIT Press.

[5] Shaffer, J.D., and L.J. Eshelman. 1991. On Crossover as an Evolutionarily Viable Strategy. In

Proceedings of the Fourth International Conference on Genetic Algorithms, edited by R.K. Belew and L.B.

Booker. Morgan Kaufmann.

[6] Genetic programming from tiera.ruW Banzhaf, JR Koza, C Ryan, L Spector, C Jacob - 1998 -

bib.tiera.ru

[7] Genetic programming and redundancy T Blickle, L Thiele - 1994 – Citeseer

[8] Discovery of subroutines in genetic programming JP Rosca, DH Ballard - 1996 – Citeseer.

[9] Genetic programming: A paradigm for genetically breeding populations of computer programs to solve

problems. JR Koza - Soucek and the IRIS Group – Citeseer

[10] Subtree crossover: Building block engine or macromutation PJ Angeline - Genetic Programming,

1997 - ncra.ucd.ie

[11] Fitness distance correlation in structural mutation genetic programming L Vanneschi, M Tomassini, P

Collard, M Clergue - Genetic Programming, 2003 – Springer

[12] Survey of genetic algorithms and genetic programming JR Koza - Technology Producing Quality

Products Mobile 2002

 Prof.T.Venkat Narayana Rao , received B.E in Computer Technology and

Engineering from Nagpur University, Nagpur , India , M.B.A (Systems) and M.Tech in computer

Science from Jawaharlal Nehru Technological University , Hyderabad, A.P., India and a

Research Scholar in JNTUk. He has 20 years of vast experience in Computer Engineering area

pertaining to academics and industry related IT issues. He is presently Professor and Head,

Department of Computer Science and Engineering, Hyderabad Institute of Technology and

management, Gowdavally, R.R.Dist., A.P, INDIA. He has been nominated as an Editor and

Reviewer to number of International journals in Computer Science and Information Technology

area. He is currently working on research areas which include Digital Image Processing, Digital

Watermarking, Data Mining and Network Security and other emerging areas. He can be reached

at tvnrbobby@yahoo.com

Advanced Computing: An International Journal (ACIJ), Vol.1, No.1, November 2010

28

Srikanth Madiraju, pursuing B.Tech final year from Hyderabad Institute of Technology and

Management, gowdawalli, RR dist. ,Jawaharlal Nehru Technological University , Hyderabad,

A.P, India. He has organized national level tech-cultural festivals (iconix and esparto) during the

year 2008 and 2009. He is life member and college representative for STED (society for

triggering engineer’s development, a jntu student chapter). In addition to this he also won many

paper presentation events at inter-collegiate level and an active member of WWF CLUB (world

wildlife federation). He can be reached at mdrjsrikanth@yahoo.com

