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Abstract:  
Genetic programming (GP) is an automated method for creating a working computer program from a 

high-level problem statement of a problem. Genetic programming starts from a high-level statement of 

“what needs to be done” and automatically creates a computer program to solve the problem.  In artificial 

intelligence, genetic programming (GP) is an evolutionary algorithm-based methodology inspired by 

biological evolution to find computer programs that perform a user defined task. It is a specialization of 

genetic algorithms (GA) where each individual is a computer program. It is a machine learning technique 

used to optimize a population of computer programs according to a fitness span determined by a program's 

ability to perform a given computational task. This paper presents a idea of the various principles of 

genetic programming which includes, relative effectiveness of mutation, crossover, breeding computer 

programs and  fitness test in genetic programming. The literature of traditional genetic algorithms contains 

related studies, but through GP, it saves time by freeing the human from having to design complex 

algorithms. Not only designing the algorithms but creating ones that give optimal solutions than traditional 

counterparts in noteworthy ways. 
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Introduction 
 

Going back to the history   back to  1954 where the first work on Genetic Programming  has 

initiated highlighting the basic functionality of all the four basic aspects (breeding, mutation, 

crossover and fitness test), Genetic Programming  began with the evolutionary algorithms firstly 

developed  by Fogel Owens and Walsh applied to evolutionary simulations as given table 1. 

During 1960s and early 1970s, evolutionary algorithms became widely recognized as 

optimization methods. Genetic programming addresses the problem of automatic programming, 

namely, the problem of how to enable a computer to do useful things without instructing it, step 

by step, on how to do it. The first statement of modern "tree-based" Genetic Programming i.e., 

procedural languages organized in tree-based structures and operated on by suitably defined GA-

operators was given by Nichael L. Cramer (1985). Koza has argued that mutation is in fact 

useless in Genetic Programming because of the position-independence of GP subtrees, and 

because of the large number of chromosome positions in typical Genetic Programming 

populations [Koza 1992, pp. 105–107]. This paper shows the merits of the application of the basic 

aspects of Genetic Programming  that have proved more efficient is generating a good algorithms 

and pool of programs for better delivery of results[12]. The whole discussion lies in the advantage 

of utility of these major points in modern computations and algorithm writing. In the 1990s, GP 

was mainly used to solve relatively simple problems because it is very computationally intensive. 

Recently GP has produced many novel and outstanding results in areas such as quantum 

computing, electronic design, game playing, sorting and searching due to improvements in GP 
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technology and the power[6][8]. These results include the replication or development of several 

post-year-2000 inventions. GP has also been applied to evolvable hardware as well as computer 

programs. The history of computer programming is a history of attempts to move away from the 

"craftsman" approach - structured programming, object-oriented programming, object libraries 

and rapid prototyping. But each of these advances leaves the code that does the real work firmly 

in the hands of  the programmer. The ability to enable computers to learn to program themselves 

is of the utmost importance in freeing the computer industry and the computer user from code that 

is obsolete before it is released. Since the 1950s, computer scientists have tried, with varying 

degrees of success, to give computers the ability to learn. The umbrella term for this field of study 

is "machine learning" a phrase crafted in 1959 by the first person who made a computer perform 

a serious learning task is Samuel. Originally, Samuel used "machine learning" to mean computers 

programming themselves [Samuel, 1963]. That goal has, for many years, proven too difficult. So 

the machine learning community has pursued more modest goals. A good contemporary 

definition of machine learning is due to Mitchell’s, the study of computer algorithms that improve 

automatically through experience [Mitchell, 1996]. Genetic programming, aspires to do precisely 

that - to induce a population of computer programs that improve automatically as they experience 

the data on which they are trained. Accordingly, GP is part of the very large body of research 

called machine learning.  Developing a theory for GP has been very difficult and so in the 1990s 

GP was considered a sort of outcast among search techniques. But after a series of breakthroughs 

in the early 2000s, the theory of GP has had a formidable and rapid development. So much so that 

it has been possible to build exact probabilistic models of GP (schema theories and Markov chain 

models). 

Genetic Programming is an extension of the Genetic Algorithm which was invented by John 

Holland (1975). Although the idea of evolving programs was first suggested by Forsyth (1981) 

and Cramer (1985) among others, it was proved, promoted and developed into a practical tool by 

John Koza. Genetic Programming is one technique amongst a whole range of possible 

evolutionary algorithms [3].  
 

What Machine Learning 
Although genetic programming is a relative newcomer to the world of machine learning, some of 

the earliest machine learning research bore a distinct resemblance to today's GP. In 1958 and 

1959, Friedberg attempted to solve fairly simple problems by teaching a computer to write 

computer programs [Friedberg, 1958] [Friedberg et al., 1959]. Friedberg's programs were 64 

instructions long and were able to Manipulate, bitwise, a 64-bit data vector. Each instruction had 

a virtual "opcode" and two operands, which could reference either the data vector or the 

instructions. An instruction could jump to any other instruction or it could manipulate any bit of 

the data vector. Friedberg's system learned by using what looks a lot like a modern mutation 

operator - random initialization of the individual solutions and random changes in the 

instructions. The process of machine learning, that is, the defining of the environment and the 

techniques for letting the machine learning system experience the environment for both training 

and evaluation, are surprisingly similar from system to system. In the next section of this chapter, 

we shall, therefore, focus on machine learning as a high-level process. By the early 1980s, 

machine learning was recognized as a distinct scientific discipline. Since then, the field has grown 

tremendously. Systems now exist that can, in narrow domains, learn from experience and make 

useful predictions about the world. Today, machine learning is frequently an important part of 

real-world applications such as industrial process control, robotics control, time series prediction, 

prediction of creditworthiness, and pattern recognition problems such as optical character 



Advanced Computing: An International Journal ( ACIJ ), Vol.1, No.1, November 2010 

13 

 

recognition and voice recognition, to name but a few examples [White and Sofge, 1992] 

[Biethahn and Nissen, 1995]. At the highest level, any machine learning system faces a similar 

task - how to learn from its experience of the environment[1][4].  

 

Table 1: Summary of evolutionary algorithms 

 
 

The whole field is now called Evolutionary Computation. In common with many search 

techniques, the Genetic Programming algorithm has three basic components.  

• A population of candidate solutions (usually called genes or chromosomes). 

• A set of operations (genetic operators) which act on members of this population to produce 

new solutions[9]. 

• A method for evaluating how good each solution is, which involves trying it out in an 

appropriate environment. 

 

In Genetic Programming, each candidate solution is stored in the form of a tree structure. Two 

examples of these trees are shown in Figure 1. The first of these might be interpreted as the 

example function i.e.  p = 2.107p + 0.345 and the second as the logical expression (agent-4 

saidYes) OR (agent-3 DidBetterThan me). Initially, the population of candidate solutions is 

generated randomly from a specification of the possible nodes and terminals which can be used to 

construct a legal tree.  

 
 

Figure 1. Example of Genetic Programming solution being stored in tree pattern. 
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Different problems in artificial intelligence, symbolic processing, and machine learning can be 

viewed as wanted discovery of a computer program that results in some desired output for 

particular inputs being fed. In this new genetic programming, pool of computer programs are 

genetically bred using “the Darwinian principle of survival” of the fittest and using a genetic 

crossover (recombination) operator appropriate for genetically mating computer programs.   

A.      Breeding features: 

• Attributed features: 

-competes with neural nets and alike 

       -needs huge populations (thousands). 

• Special features : 

-non-linear chromosomes: trees, graphs, Computer Programs as Trees. 

- Mutation possible but not necessary (disputed!) . 

Start off with a large “pool” of random computer programs. Need a way of coming up with the 

best solution to the problem using the programs in the “pool”. Based on the definition of the 

problem and criteria specified in the fitness test, mutations and crossovers are used to come up 

with new programs which will solve the problem further.   

 

For example: IF (NOC = 2) AND (S > 80000) THEN good ELSE bad  

can be represented by the following tree 

IF formula THEN good ELSE bad . Only unknown is the right formula, hence our search space 

(phenotypes) is the set of formulas i.e.   Natural fitness of a formula: percentage of well classified 

cases of the model it stands for 

Natural representation of formulas (genotypes) is: parse trees  
 

 

 
 

 

The Trees are a universal form and can be represented for example consider: 

 

 

 
 

                                            Tree based representation: 

                                        (x ∧ true) → (( x ∨ y ) ∨ (z ↔ (x ∧ y))) 
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In GA, ES, EP chromosomes are linear structures (bit strings, integer string, real-valued vectors, 

and permutations). Tree shaped chromosomes are non-linear structures. In GA, ES, EP the size of 

the chromosomes is fixed. Trees in Genetic Programming may vary in depth and width. 

 

B. The Fitness Test Function 
Identifying the way of evaluating how good a given computer program is at solving the problem 

at hand [11] [12]. How good can a program cope with its environment? Can be measured in many 

ways, i.e. error, distance, time, complexity etc. 

• Fitness Test Criteria; 

• Time complexity a good criteria i.e. n
2
 vs. nlogn. 

• Accuracy - Values of variables. 

• Combinations of criteria may also be tested. 

Fitness is the measure used by GP during simulated evolution of how well a program has learned 

to predict the output(s) from the input(s) i.e. the features of the learning domain. The goal of 

having a fitness evaluation is to give feedback to the learning algorithm regarding which 

individuals should have a higher probability of being allowed to multiply and reproduce, which 

individuals should have a higher probability of  being removed from the population. The fitness 

function is calculated on what we have earlier referred to as the training sets. Continuous Fitness 

Function, the fitness function should be designed to give graded and continuous feedback about 

how well a program performs on the training set. There are also other methods for calculating 

fitness.  

In co-evolution methods for fitness evaluation [Angeline and Pollack, 1993][Hillis, 1992], 

individuals compete against each other without an explicit fitness value. In a game-playing 

application, the winner in a game may be given a higher probability of reproduction than the 

loser. In some cases, two different populations may be evolved simultaneously with conflicting 

goals. For example, one population might try to evolve programs that sort lists of numbers while 

the other population tries to evolve lists of numbers that are hard to sort. This method is inspired 

by arms races in nature where, for example, predators and prey evolve together with conflicting 

goals. In some cases, it might be advantageous to combine very different concepts in the fitness 

criteria. We could add terms for the length of the evolved programs or their execution speed, etc. 

Such fitness function is referred to as a multiobjective fitness function. 
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Each individual in a population is allotted with a fitness value as a result of its communication 

with the environment. Fitness is the driving force of Darwinian natural selection and, similarly to 

genetic algorithms. The environment is a set of cases which provides a basis for evaluating the 

fitness of the S expressions in the population. For example, for the exclusive-or function, the 

obvious choice for the environment is the set of four combinations of possible values for the two 

variable atoms D0 and D1 along with the associated value of the exclusive-or function for the 

four such combinations. For most of the problems described herein, the raw fitness of any LISP 

S-expression is the sum of the distances between the point in the range space returned by the S-

expression for a given set of arguments and the correct point in the range space. The S-expression 

may Boolean-valued, integer-valued, real-valued, complex-valued, vector valued, multiple-

valued, or symbolic-valued. If the S-expression is integer-valued or real-valued, the sum of 

distances is the sum of absolute values of the differences between the numbers involved. In 

particular, the raw fitness r(i,t) of an individual LISP S-expression i in the population of size M at 

any generational time step t is : 
 

 

 

 

 

 
 

Where S (i,j) is the value returned by S-expression i for environmental case j (of Ne 

environmental cases) and where C(j) is the correct value for environmental case j. If the S-

expression is Boolean-valued or symbolic-valued, the sum of distances is equivalent to the 

number of mismatches. If the S-expression is complex-valued, or vector-valued, or multiple 

valued, the sum of the distances is the sum of the distances separately obtained from each 

component of the vector or list. The closer this sum of distances is to zero, the better is  the S-

expression. 

One can use the sum of the distances or the square root of the sum of the squares of the distances 

in this computation. It is important that the fitness function return a range of various values that 

distinguish the performance of single entities in the pool. As an example, a fitness function test 

that returns only two values (say, a true for a solution and a false otherwise) provides not enough 

information for helping guide to an adaptive process. Any outcome that is discovered with such a 

fitness function test is, then, essentially can be an accident (a false return). A wrong choice of the 

function set in relation to the number of environment cases for a given case can raise the same 

situatution. For example, if the Boolean function OR is in the function set for the exclusive-or 

problem, this function alone satisfies three of the four environment cases. Since the initial random 

population of individuals will almost certainly be numerous S-expressions equivalent to the OR 

function, we are effectively left with only two distinguishing levels of the fitness (i.e. 4 for a 

solution and 3 otherwise). 

 

The process of solving some typical problems can be reframed as a search for a most fit 

individual computer program in the range of possible computer programs. In particular, the 

search Space is the hyperspace of LISP symbolic expressions (called S-expressions) 

encapsulating functions and terminals appropriate to the problem domain. As noticed, the LISP S-

expression which solves each of the problems described above will surface from a simulated 

r(i,t) =Ne 

          ∑S(i,j) [Ex-Or] C(j) 

          j=1 
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evolutionary process using a new genetic programming paradigm using a "hierarchical genetic 

algorithm”.  

The functions may be standard arithmetic operations, standard programming operations, standard 

mathematical functions and various domain-specific functions[10]. A fitness function evaluates 

how well each individual LISP S-expression in the population performs in the particular problem 

environment. In many problems, the fitness is measured by the sum of the distances i.e. taken for 

all the environmental cases  between the point in the range space (whether Boolean-valued, 

integer-valued, real-valued, complex-valued, vector-valued, symbolic valued, or multiple-valued) 

created by the S-expression for a given set of arguments and the correct point in the range space. 

An algorithm based on the Darwinian model of reproduction and survival of the fittest and 

genetic recombination is used to create a new population of individuals from the current 

population of individuals.  

The two participating parental S-expressions are selected in proportion to fitness. The resulting 

offspring S-expressions are composed of sub expressions "building blocks" from their parents. 

Then, the new population of offspring i.e. the new generation replaces the old population of 

parents, the old generation. Then, each individual in the new population is measured with the 

fitness function and the process is repeated. At every level of this highly parallel, locally 

governed, and defragmented process, the state of the process will include only of the current 

population of individuals. Moreover, the only input to the algorithmic process will be the 

observed fitness of the individuals in the current population in correlation with the problem 

environment. This algorithm will produce populations which, over a period of generations, intend 

to show increasing average fitness in dealing with their environment, and which, in addition, will 

tend to robustly i.e. rapidly and effectively adapt and work accordingly to the changes in their 

environment. The solution produced by this algorithm at any given time can be viewed as the 

entire population of distinctive alternative solutions (typically with improved overall average 

fitness as compared to the beginning of the algorithm), or, more commonly, as the single best 

individual in the population at that time. The hierarchical character of the computer programs that 

are produced by the genetic programming paradigm is an important characteristic of the genetic 

programming. The results of this genetic programming methodology process are inherently 

hierarchical.  

The dynamic variability of the computer programs that are developed along the way to a solution 

is also an important feature of the genetic programming paradigm. In each case, it would be 

difficult and unnatural to try to specify or limit the size and shape of the eventual solution in 

advance. Moreover, the advance specification or restriction of the size and shape of the solution 

to a problem narrows the window by which the system views the world and might well prohibit 

finding the solution to the problem. 

Another important feature of the genetic programming paradigm is absence of preprocessing of 

inputs and the fact that the solution is expressed directly in terms of the functions and arguments 

from the problem domain. This makes the results immediately comprehensible and intelligible in 

the terms of the problem domain. Most importantly, the "genetic programming" paradigm is 

general and provides a single, unified approach to a variety of seemingly different problems in a 

variety of areas. 

 

II.  THE CROSSOVER (RECOMBINATION) OPERATION 
 
Crossing over, process in genetics by which the two chromosomes of a homologous pair swap 

equal segments with each other. Crossing over occurs in the first division of meiosis. At that stage 
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each chromosome has replicated into two strands called sister chromatids[5]. The two 

homologous chromosomes of a pair synapse, or come together. While the chromosomes are 

synapsed, breaks occur at corresponding points in two of the non-sister chromatids, i.e., in one 

chromatid of each chromosome[1]. Since the chromosomes are homologous, breaks at 

corresponding points mean that the segments that are broken off contain corresponding genes, 

i.e., alleles. The broken sections are then exchanged between the chromosomes to form complete 

new units, and each new recombined chromosome of the pair can go to a different daughter sex 

cell as shown in Figure 2. Crossing over results in recombination of genes found on the same 

chromosome, called linked genes that would otherwise always be transmitted together. Because 

the frequency of crossing over between any two linked genes is proportional to the chromosomal 

distance between them, crossing over frequencies are used to build genetic, or linkage, maps of 

genes on chromosomes. 
 

 
                                          Figure 2. Chromosomes Pairs and Genetic Recombinations 
There are three principal constraints on biological crossover: 

• Biological crossover takes place only between members of the similar species. In fact, 

living creatures put much energy into identifying other members of their species - often 

putting their own existence at risk to do so. Bird songs, for example, attract mates of the 

same species and predators.  

• Biological crossover occurs with remarkable attention to preservation of "semantics”. 

Thus, crossover usually results in the same gene from the father being matched with the 

same gene from the mother. In other words, the hair color gene does not get swapped for 

the tallness gene[2]. 

•  Biological crossover is homologous. The two DNA strands are able to line up identical 

or very similar base pair sequences so that their crossover is perfect almost down to the 

molecular level. But this does not eliminate crossover at duplicate gene sites or other 

variations, as long as very similar sequences are available. 

In nature, most crossover events are successful i.e. they result in viable offspring. This is a sharp 

contrast to GP crossover, where over 75% of the crossover events are what would be termed in 

biology "lethal”. What causes this difference? In a sense, GP takes on an enormous task. It must 

evolve genes (building blocks) so that crossover makes sense and it must evolve a solution to the 

problem all in a few hundred generations. It took nature billions of years to come up with the 
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preconditions so that crossover itself could evolve. GP crossover is very different from biological 

crossover. Crossover in standard GP is unconstrained and uncontrolled. Crossover points are 

selected randomly in both parents. There are no predefined building blocks (genes). Crossover is 

expected to find the good building blocks and not to disorder them even while the building blocks 

grow. 

• In the basic GP system, any subtree may be crossed over with any other subtree. There is 

no requirement that the two subtrees fulfill similar functions. In biology, because of 

homology, the different alleles of the swapped genes make only minor changes in the 

same basic function. 

• There is no requirement that a subtree, after being swapped, is in a context in the new 

individual that has any relation to the context in the old individual. In biology, the genes 

swapped are swapped with the corresponding gene in the other parent. 

• Were GP to develop a good subtree building block, it would be very likely to be 

disrupted by crossover rather than preserved and spread. In biology, crossover happens 

mostly between similar genetic materials. It takes place so as to conserve gene function 

with only minor changes. 

There is no reason to suppose that randomly initialized individuals in a GP population are 

members of the same species-they are created randomly. 

 

Crossovers in Programs: 
 

The crossover (recombination) operation for the genetic programming paradigm creates variation 

in the population by producing offspring’s that combine traits from two parents. The crossover 

operation starts with two parental S-expressions and produces at least one offspring S-expression. 

In general, at least one parent is chosen from the population with a probability equal to their 

respective normalized fitness values. In this paper, both parents are so chosen. The operation 

begins by randomly and independently selecting one point in each parent using a Probability 

distribution. Note that the number of points in the two parents typically is not equal. 

• Two parental programs are selected from the population based on fitness.  

• A crossover point is randomly chosen in the first and second parent.  

• The sub tree rooted at the crossover point of the first, or receiving, parent is deleted and 

replaced by the sub tree from   

        the second, or contributing, parent. 

• Crossover is the predominant operation in genetic programming (i.e. genetic algorithm) work 

and is performed with a  

        high probability that is about 85% to 90%. 

 

The "crossover fragment" for a particular parent is the rooted sub-tree whose root is the crossover 

point for that parent and where the sub-tree consists of the entire sub-tree lying below the 

crossover point (i.e. more distant from the root of the original tree). Viewed in terms of lists in 

LISP programming language , the crossover fragment is the sub-list starting at the crossover point 

[4]. 

The first offspring is produced by deleting the crossover fragment of the first parent from the first 

parent and then impregnating the crossover fragment of the second parent at the crossover point 

of the first parent. In producing this first offspring the first parent acts as the base parent (the 

female parent) and the second parent acts as the impregnating parent (the male parent). The 

second offspring is produced in a symmetric manner. 
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EXAMPLE: 
For example, consider the two parental LISP S-expressions below: 

 
In terms of LISP S-expressions, the two parents are  (OR (NOT  D1) (AND D0 D1))   and 

 

(OR (OR D1 (NOT D0)) (AND  (NOT  D0)  (NOT  D1)) 

 

Assume that the points of both trees above are numbered in a depth-first way starting at the left. 

Suppose that the second point (out of the 6 points of the first parent) is selected as the crossover 

point for the first parent and that the sixth point (out of the 10 points of the second parent) is 

selected as the crossover point of the second parent. The crossover points are therefore the NOT 

function in the first parent and the AND function in the second parent. Thus, the bold, underlined 

portions of each parent above are the crossover fragments. The two crossover fragments are 

shown below: 

 

 
Note that the first offspring above is a perfect solution for the exclusive-or function, namely 

(OR (AND (NOT D0) (NOT D1)) (AND D0 D1)). 

 

Note that because entire sub-trees are swapped, this genetic crossover (recombination) operation 

produces valid LISP S-expressions as offspring regardless of which point is selected in either 

parent. If the root of one tree happens to be selected as the crossover point, the crossover 

operation will insert that entire parent into the second tree at the crossover point of second parent. 

In addition, the sub-tree from the second parent will, in this case, then become the second 

offspring. If the roots of two parents happen to be chosen as crossover points, the crossover 

operation simply degenerates to an instance of fitness proportionate reproduction on those two 

parents. 
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If a terminal is located at the crossover point in precisely one parent, then the sub-tree from the 

second parent is inserted at the location of the terminal in the first parent and the terminal from 

the first parent is inserted at the location of the sub-tree in the second parent. In this case, the 

crossover operation often has the effect of increasing the depth of one tree and decreasing the 

depth of the second tree. If terminals are located at both crossover points selected, the crossover 

operation merely swaps these terminals from tree to tree[7][12]. 

 

III.    Mutation in Nature 

Mutations can involve large sections of DNA becoming duplicated, usually through genetic 

recombination. These duplications are a major source of raw material for evolving new genes, 

with tens to hundreds of genes duplicated in animal genomes for million years and have 

following characteristics. 

• Ultimate source of genetic variation. 

• Radiation, chemicals change genetic information. 

• Causes new genes. 

• One chromosome. 

• Asexual. 

• Very rare combinations possible. 

A gene mutation is a permanent change in the DNA sequence that makes up a gene. Mutations 

range in size from a single DNA building block (DNA base) to a large segment of a chromosome. 

Gene mutations occur in two ways: they can be inherited from a parent or acquired during a 

person’s lifetime. Mutations that are passed from parent to child are called hereditary mutations 

or germ line mutations (because they are present in the egg and sperm cells, which are also called 

germ cells). This type of mutation is present throughout a person’s life in virtually every cell in 

the body. Figure 3. showcases a example involving crossover and mutation process  for  a  

inducting assembler . 

Somatic also called as acquired mutations occur in the DNA of individual cells at some time 

during a person’s life. These changes can be caused by environmental factors such as ultraviolet 

radiation from the sun, or can occur if a mistake is made as DNA copies itself during cell 

division. Acquired mutations in somatic cells (cells other than sperm and egg cells) cannot be 

passed on to the next generation. 
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Figure 3. example showing a mechanism in crossover and mutuation to induce an assembler. 

Some genetic changes are very rare, others are common in the population. Genetic changes that 

occur in more than 1 % of the population are called polymorphisms [6] [1] [9]. They are common 

enough to be considered a normal variation in the DNA. Polymorphisms are responsible for many 

of the normal differences between people such as eye color, hair color, and blood type. Although 

many polymorphisms have no negative effects on a person’s health, some of these variations may 

influence the risk of developing certain disorders. Mutations can involve large sections of DNA 

becoming duplicated, usually through genetic recombination. 

Entropy driven variation, such as mutation, is the principal source of variability in evolution. 

There are many types of mutation, including [Watson and Wonklhofer   et al., 1987] as given 

below: 

• Changes from one base pair to another are a possibility. These often produce neutral or useful 

variations. Although a base pair switch occurs about once every ten million replications or 

less, there are hot spots where base pair switching is up to twenty-five times the usual rate.  

• Additions or deletions of one or more base pairs. This is called a frame shift mutation and 

often has drastic consequences on the functioning of the gene. 

• Large DNA sequence rearrangements. These may occur for any number of reasons and are 

almost always lethal to the organism. 

Mutation operates on only one individual. Normally, after crossover has occurred, each child 

produced by the crossover undergoes mutation with a low probability. The probability of 

mutation is a parameter of the run. A separate application of crossover and mutation, however, is 

also possible and provides another reasonable procedure. When an individual has been selected 

for mutation, one type of mutation operator in tree GP selects a point in the tree arbitrarily and 

replaces the existing subtree at that point with a new randomly generated subtree. The new 

randomly generated subtree is created in the same way, and subject to the same limitations (on 

depth or size) as programs in the initial random population. The altered individual is then located 

back into the population. In linear GP, mutation is a bit different. When an individual is chosen 

for mutation, the mutation operator first selects one instruction from that individual for mutation. 
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It then makes one or more changes in that instruction. The type of change is chosen randomly 

from the following list: 

 

• Any of the register designations may be changed to another randomly chosen register 

designation that is in the register set.  

•  The operator in the instruction may be changed to another operator that is in the function set. 

• A constant may be changed to another randomly chosen constant in the designated constant 

range. 

 

Mutations in Programs 
• Single parental program is probabilistically selected from the population based on fitness.  

• Mutation point randomly chosen. the sub tree rooted at that point is deleted, and a new 

subtree is grown there using the    

       same random growth process that was used to generate the initial population.  

• Asexual operations are typically performed sparingly (with a low probability of, 

probabilistically selected from the  

       population based on fitness).  

• Most common mutation: replace randomly chosen sub tree by randomly generated tree. 

 
 

• Mutation has two parameters: Probability pm to choose mutation vs. recombination and 

the Probability to chose an internal point as the root of the sub tree to be replaced. Remarkably pm 

is advised to be 0 (Koza’92) or very small, like 0.05 (Banzhaf et al. ’98). The size of the child can 

exceed the size of the parent. The below subtrees shows the parent and child patterns in detail. 
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Parent1 Pare

nt2  

Child1                                                                                                                                       Child2  

 

The mutation operation potentially can be beneficial in reintroducing diversity in a population 

that may be tending to prematurely converge. 

IV.    Applications of Genetic Programming 

The detailed summary of applications of Genetic Programming domain is listed n the table 2. and  

Tables 3.                                                 

A. Designing Electronic Circuits: 

John Koza, a professor at Stanford and CEO of Genetic Programming Inc. is perhaps the person 

most responsible for making GP more acceptable in the eyes of the AI community. He and his team 

have successfully applied genetic programming techniques to a variety of applications ranging from 

bioinformatics to distributed systems. One of their most successful endeavors has been to the 

generation of electronic circuit designs. Here, the programs are actually all about the flow of 

information around the circuits, so the function set contains functions which mimic the actions of 

transistors, resistors, etc., on the flow of electricity. According to the web site at Genetic 

Programming Inc: "there are now 36 instances where genetic programming has automatically 

produced a result that is competitive with human performance, including 15 instances where genetic 

programming has created an entity that either infringes or duplicates the functionality of a previously 

patented 20th-century invention, 6 instances where genetic programming has done the same with 

respect to a 21st-century invention, and 2 instances where genetic programming has created a 

patentable new invention."  

B. Evolutionary Art: 

One of the most exciting and creative areas in which genetic programming is being is applied is 

evolutionary art. In contrast to most GP applications, in evolutionary art, the user often acts 

directly as the fitness function. That is, the GP engine generates a set of programs which can 
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produce images (i.e. JPEG's etc.), either by transforming a given image, or generating pixel data 

from scratch. These images are then shown to the user, who performs the selection by choosing 

those which they most like. The GP engine then generates a population from the chosen images 

and selects from it images which fairly closely resemble the ones chosen by the user, or which 

have some properties similar to the chosen ones, e.g., color distribution. The user then selects 

those with most appeal again, and the process continues until the user is so happy with the image 

that they put it on their homepage. The evolutionary art community includes many artists and 

computing professionals, and the artworks their programs produce generate much interest (similar 

to how everyone was amazed by fractal images when they first came out). Such an approach was 

recently used to generate images for an ad-campaign by Absolute Vodka, for example.  
        

                                      Table 2. :Applications of  Genetic  Programming                                                   
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Table 3.:Science Oriented Applications of  Genetic Programming 

 

 

 
 

V.   Conclusion 
 

The data presented in this paper is formulated on various studies and research work carried out, 

presenting various examples that explain well in detail about the aspects of genetic programming. 

The final analysis of the data indicates that crossover is more successful than mutation overall, 

though mutation is often better for small populations, depending on the domain. However, the 

difference between the two is usually small, and often statistically insignificant. Apart from its 

straightforward instrumental uses, the study of GP opens up a new and wide range of possibilities 

for social simulators that of models based on a learning technique where the structure of what is 

learnt can come to the fore. It is a methodology that can be used to generate some aspects of the 

creative learning caliber of humans. Of course, the GP algorithm is not a perfect mirror of human 

cognition. To be used effectively as a descriptive element in a social simulation, it needs to be 

adapted to ensure that it is as realistic as possible.  GP is not yet a completely mature technique. 

As such, its impact in the field of social simulation has just begun. No doubt its impact will be at 
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least as great as those of previous paradigms such as neural networks or genetic algorithms, not 

so much in that it introduces a new computational analogy but because it is unparalleled as a 

creative computational technique thus we anticipate that in the days to come GP would be applied 

and you may be genuinely surprised at the results.  
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