
Batch Share Management Tool

October 2014

Author:
Ties de Kock

Supervisors:
Jérôme Belleman
Ulrich Schwickerath
CERN openlab Summer Student Report 2014

CERN openlab Summer Student Report 2014

Contents

1 Project goals . 3

1.1 Delegated resource allocation . 4

1.1.1 LSF Web . 4

1.1.2 Cloudman . 4

1.2 Design considerations . 5

1.2.1 Django Implementation Choices . 5

2 User stories . 6

2.1 Assign resources to a delegate . 6

2.2 Easy enrolment for resource usage . 6

2.3 User rights follow the allocation hierarchy 6

2.4 Import from LSF Web . 6

2.5 Split a resource over subgroups . 7

3 MoSCoW . 7

4 Design . 8

4.1 Usage . 8

4.1.1 Constraints . 9

5 Dependencies . 11

6 Security . 11

7 Conclusions . 12

A Database schemas . 13

A.1 LSF Web database schema . 13

A.2 Cloudman database schema . 14

CERN openlab Summer Student Report 2014

1 Project goals

One of the key computing services at CERN is the central batch system. The central batch

service currently consists of around 4000 machines with thousands of users, divided over more

than 250 groups.

The central batch service system runs IBM/Platform LSFr. Additionally, a pilot service based

on HTCondor is currently being set up.

In a batch system the worker nodes are shared among the users over time. The central batch

service uses fair-share scheduling, which ensures that, over a historic time window, a group of

users can use the capacity (share) that is assigned to them. Each share on the system is allocated

to a group of users. Compute coordinators can delegate capacity, as well as the control of this

capacity to subgroups. This situation is shown in figure 1.

WorkerBatch system…
…

Queues

SchedulerFairshare
Policy

Workers

UserCompute
Coordinators

Resource
allocation website

Policy

Figure 1: Central Batch System at CERN

3 | P a g e

CERN openlab Summer Student Report 2014

LSF configuration

configuration db

magic user groups
magic host partitions
group mapping

lsf_create_shares
LSF Web

Foreman

Quattor

share division

hostmodels

lsb.hosts

lsb.users
[generates]

lsb.queues

[refer to identifiers from]

lsb.resource
s

lsb.params

……

GIT
“batchconf”

[contains]

Figure 2: LSF configuration

Batch
Capacity

CMS ……

CMS
(16500 KSI2k)

CMS Phys
(… KSI2k)

……

CMS Grid
(… %)

CMS Prd
(… %)

CMS Priority
(… %) ……

Figure 3: Tree of shares in LSF Web

1.1 Delegated resource allocation

The users want to adjust the capacity assigned to groups, group structure and groupmemberships.

Adjusting the system configuration to match this information manually is a full-time job. This

motivated the creation of a resource allocation web application, where the allocation of capacity

is delegated to the compute coordinators.

Once a day the batch system configuration is updated to match the share database. The sources

of information for configuring LSF are shown in figure 2.

1.1.1 LSF Web

At the moment LSF Web is used to configure the shares. It was developed in 2008. In LSF Web

there are three layers of shares: Accounts, Groups and Subgroups. Each of these layers has its

own database table (see appendix A.1). Figure 3 shows a part of the allocation tree from LSF

Web.

Since 2008, the environment for the system changed. Threemajor areas need improvement:

Single Sign-On The login system used by LSF Web has been deprecated. The new system

should use the new single sign-on system.

Multiple resources LSF Web can only use one tree of resources. In order to be used for the

pilot of the HTCondor batch system, the new system should support multiple resources.

e-groups CERN uses a system for nested user-groups called e-groups. It is possible for users

to self-enrol in a group. The groups of users of LSF maps closely to e-groups. However, LSF

Web doesn’t natively support e-groups.

1.1.2 Cloudman

For my project I evaluated Cloudman as a tool to be used to configure the batch shares. Cloud-

man was developed at CERN as a very generic resource manager. It was designed to manage a

complex cloud environment. It supports multiple tenants in a cloud with multiple data-centres,

in multiple geographic locations.

4 | P a g e

CERN openlab Summer Student Report 2014

During the evaluation we concluded that the data model used by Cloudman (appendix A.2) is

too elaborate for our use cases. The system also has a number of bugs. We decided to start a

new design incorporating the lessons learned from Cloudman.

1.2 Design considerations

We learned a lot from Cloudman and LSF Web. The most import choices made based on the

earlier products are listed below.

Separation of concerns in Cloudman the security and validation logicwas scattered through-

out the code. Because of this it was very hard to verify that the code was working as intended.

The new project should separate these concerns.

Tree structure in LSF Web the allocations are nested. In Cloudman the defined resources

can have sub-resource types.

Both allocations and resources have a tree structure. Using a library for this tree structure makes

some operations faster and easier to implement than when using adjacency lists.

Unit Tests there is non-trivial logic in the application when it comes to the structure of the

allocation tree. The edge-cases should be tested with unit tests.

1.2.1 Django Implementation Choices

When setting up a project there are many small choices. We tried to follow the best practices

from “two scoops of django”1. The other libraries were chosen by gut feeling.

Django Implementation Choices

cbv use class based views only when you can use them without customization or it enables

code re-use.

tree library use the treebeard2 library for trees.

object based permissions use the django-permission3 library for object based permissions.

object factories use the factory_boy4 library to create objects in tests.

coding standards the code should adhere to the pep8 style guide as well as the checks of

flake85. Pre-commit hooks should be used to enforce this.

properties properties are stored as a JSON blob. This is a better fit than a key-value mapping.

1http://twoscoopspress.org/products/two-scoops-of-django-1-5
2https://tabo.pe/projects/django-treebeard/docs/2.0/
3http://django-permission.readthedocs.org/en/latest/
4http://factoryboy.readthedocs.org/en/latest/
5http://flake8.readthedocs.org/en/2.2.3/

5 | P a g e

http://twoscoopspress.org/products/two-scoops-of-django-1-5
https://tabo.pe/projects/django-treebeard/docs/2.0/
http://django-permission.readthedocs.org/en/latest/
http://factoryboy.readthedocs.org/en/latest/
http://flake8.readthedocs.org/en/2.2.3/

CERN openlab Summer Student Report 2014

2 User stories

2.1 Assign resources to a delegate

Subject allocation manager

The computemanager of the theory group needs to set up a share for the theory_t3 group.

He logs into the system and creates a new allocation under his top level budget of capacity on

LSF shared. The next morning the LSF configuration is updated and the users of theory_t3

can use their new quota.

2.2 Easy enrolment for resource usage

Subject resource user

During a group meeting one of the summer students talks about his progress. He is disappointed

that LXPLUS is too slow for his data processing tasks and he has trouble running the software

from CERN at his home institution.

Someone tells him that he should use LXBATCH for his processing tasks. He gets access to the

computing e-group of his section. His access is updated automatically.

2.3 User rights follow the allocation hierarchy

Subject computing manager

It is the middle of the summer. The quota of a sub-group needs to be updated but the group’s

manager is on vacation.

Themanager of a group higher in the hierarchy updates the access rights for the sub-group.

2.4 Import from LSF Web

Subject Batch team

The TRAP project has been finished and the batch team decides to migrate from LSF Web to

TRAP. There are major differences between LSF Web and TRAP:

• LSF Web contains user lists, not e-group names.

• TRAP supports multiple resource types, based on “compute” root types.

TRAP should provide users to migrate away from the old meta-data format (e.g. from user lists

to e-group names).

It should be possible to import the data from LSF Web. This import should create a reasonable

configuration for TRAP. This means that there is a tree of resource types from compute down to

lsf shares.

The pledge of all groups is modelled in compute capacity. The group then assigns compute

capacity to a batch instance. The top level shares within a batch instance are based on the raw

compute capacity a group assigns to that batch instance.

6 | P a g e

CERN openlab Summer Student Report 2014

2.5 Split a resource over subgroups

Subject computing manager

At some point in time, the majority of the computing capacity goes to two subgroups. The total

amount of resources changes through time.

Since the total capacity needs to be “filled up”, the children should be updated after new capacity

is added. When capacity is “full”, it can only be reduced after the children are reduced.

This means that it is almost impossible to reduce discrete capacity if it has been used. Users

should only use discrete capacity if they are aware of the caveats.

In our opinion it is better to use proportional capacity values, but this does not map to some of

the domains (i.e. virtual machine count).

3 MoSCoW

The system;

MUST:

support multiple projects the system should support multiple “projects” (e.g. LSF shared,

condor shared).

check budget constraints the system should check and enforce the available budget when

an allocation is updated or created.

support discrete allocation the allocation of a discrete resource (e.g. CPU count)

should fit in its parents budget.

support proportional allocation proportionally assigned capacity is split over the

descendants.

ensure the consistency of types the system should check that an allocation has a parent

with a compatible resource type.

ensure consistent allocation modes the system should check that all siblings have the

same “mode” of allocation (e.g. discrete or proportional).

contain the initial data from LSF Web the system should be able to import the share con-

figuration from LSF Web. This is detailed in story 2.4.

SHOULD

be able to store properties it should be possible to store properties of an allocation. Ideally

this storage should enable nested structures.

support allocation in the form of abstract computation capacity The system should

enable users to split their computing budget over multiple projects.

support homogeneous trees the system should enable users to allocate, and should be ca-

pable of processing a configuration with siblings of different resource types.

provide an API the system should provide an API. This API should provide enough informa-

tion for consumers to configure their system.

7 | P a g e

CERN openlab Summer Student Report 2014

COULD

keep an audit log the system could keep an audit log with all the changes made to the allo-

cations.

show status update the system could show the status + time of the last update of the con-

figuration of a resource.

WON’T

support multi-zone cloud resources The system shall have no knowledge of multiple re-

gions/zones for resources. Different (sub) locations are modelled as separate resources.

4 Design

We had multiple iterations of the database design for the Tree Resource Allocation Project

(TRAP). In this section we explain the iterations of, and decisions behind the model.

The first model (figure 6) has a structure where allocations are nested. There is only one tree of

allocations. The resource types and their conversion is implicit in the tree structure.

In the second iteration (figure 7) a Cluster has multiple resource types. Both Clusters and Allo-

cations are nested. This provides the functionality from Cloudman. For example, theOpenStack

cluster would have Storage, CPU and Memory resources.

In the third iteration (figure 8) the allocated amounts for each resource type are not stored in the

JSON but in a separate many-to-many table. The constraints on the allocation of each resource

of the Cluster need to be checked. This is a relatively complex feature.

We discussed the need for this use case and decided that for now, most resources could be normal-

ized into classes with set properties (e.g. medium EC2 compute instance) instead of allocating

all properties separately.

The fourth iteration includes this change (figure 9). Since multiple resources might use the same

unit (e.g. HS06) this table was extracted.

4.1 Usage

The model mainly consists of Resource and Allocation objects. Both resources and allocations

are nested.

Both resources and allocations are trees. This allows for a large degree of flexibility but it also

makes the model harder to comprehend.

In figure 4 and 5 we show two modes of configuring the system. In both cases the root of the

allocations consists of abstract computing power. In the left tree the split between HTCondor

and LSF is made early on. In the right tree, this split is pushed down to the groups within

experiments.

This sounds like an abstract choice. In practice this could be a useful feature when the capacity

split between HTCondor and LSF can be updated automatically.

In the left figure “The batch team chooses how our compute capacity is split between LSF and

HTCondor”. In the right figure “User groups can choose how they split their compute capacity

between LSF and HTCondor”.

8 | P a g e

CERN openlab Summer Student Report 2014

Compute
(HS06)

Discrete

LSF shares
(one)

Proportional
Condor shares
(one)

Proportional

4000
CMS

2000
CMS lsfshare

2000
CMS condor

100
CMS Grid

……

……

…… ……

100
CMS Prod

…… ……

Figure 4: Allocation of concrete resource is

pushed down

Batch shares
(one)

Proportional

LSF shares
(one)

Proportional
Condor shares
(one)

Proportional

10000
Batch-3rd

8000
B3 LSF

4000
CMS

…… ……

4000
ATLAS

…… ……

2000
B3 Condor

……

Figure 5: Resources are split at the top and

then delegated.

4.1.1 Constraints

1. An allocation can only have the resource type of its parent or one of the child resource

types of its parent.

2. If any allocation is of a discrete type, all its siblings should consist of a discrete resource

type.

3. Siblings of a proportional allocation should be of the same resource-type.

4. A proportional resource-type can only have proportional descendants.

In the domain it does make sense to have a discrete type with a proportional assignment below

it. This could be used to, for example, give half the virtual machines to one group and the rest

to others, without the need to update this split after the top amount changes.

However since reducing a discrete allocation is hard (read story 2.5), we restrict this possibility.

The restriction follows from a constraint that a proportional type can only have proportional

descendants.

amount
allocation mode
properties

Allocation

0..*

name
Group

1

name
default mode

ResourceType

parent

0..* 0..*

{
 users: ['JBL', 'SCHWICKE']
}

username
full_name
email

User

0..*

1..*

Figure 6: First iteration of TRAP model

9 | P a g e

CERN openlab Summer Student Report 2014

1

Allocation
amount
allocation mode
properties

0..*

name
Group

1

name
default mode

Cluster

parent

0..* 0..*

{
 users: ['JBL', 'SCHWICKE']
}

name
unit

Resource

subtypes

0..*

1

username
full_name
email

User

0..*

1..*

Figure 7: Minimal viable model — Cloudman

0..*

1..*

Allocation
allocation mode
properties

name
Group

1

name
default mode

Cluster

parent

0..* 0..*

{
 users: ['JBL', 'SCHWICKE']
}

name
unit

Resource

subtypes

0..*

1

username
full_name
email

User

0..*

1..*

Resource-
Allocation

amount

Figure 8: Minimal viable model — Multiple resource types in cluster

Allocation
amount
allocation mode
properties0..*

name
Group

1

name
default mode

Resource

parent

0..* 0..*

{
 users: ['JBL', 'SCHWICKE']
}

username
full_name
email

User

0..*

1..*

[transitions to]

0..*
name
abbreviation

Unit

1 0..*

Figure 9: Minimal viable model — One resourcetype per allocation

10 | P a g e

CERN openlab Summer Student Report 2014

5 Dependencies

Most of the python dependencies are listed in the requirements files (requirements/base.txt).

Some of the dependencies have not been released recently and a git version was needed in orer

to use them. Those are listed below:

pip install git+https://github.com/Brown-University-Library/\

django-shibboleth-remoteuser.git

6 Security

The security and authorization system is based on the django-permission library (see section 1.2.1).

As mentioned in story 2.3 the user rights should follow the structure of the tree.

An allocation can be changed by one of its administrators or the administrator of one of its

ancestors. For reference, listing 1 shows the usage of this rights system.

1 from allocation.models import *

2 from django.contrib.auth.models import User

3 batch = Allocation.objects.first()

4 user = User.objects.get(username=’username’)

5

6 # clear all groups, add him to top atlas group

7 user.groups.clear()

8 user.groups.add(Group.objects.filter(name=’atlas’))

9 user.save()

10

11 # The user has no top level batch permissions

12 user.has_perm(’allocation.add_allocation’, batch)

13 # => False

14

15 # But the user has permissions on one of the child

16 # groups in atlas.

17 atlas_tzero = Group.objects.get(name=’u_ATLASTZERO2’)

18 user.has_perm(’allocation.add_allocation’, atlas_tzero)

19 # => True

20

21 # In a view, we use decorators to check access. The

22 # decorator implicitly takes the id from the instance

23 # variables

24 @permission_required(’allocation.change_allocation’,

25 raise_exception=True)

26 class AllocationUpdate(views.FormValidMessageMixin,

27 UpdateView):

28 form_valid_message = ”Allocation has been updated.”

29

30 model = Allocation

31 form_class = AllocationAmountDescriptionAdminForm

Listing 1: Sample code that shows the recursive permissions.

11 | P a g e

CERN openlab Summer Student Report 2014

7 Conclusions

At the moment, TRAP is a proof of concept application that lacks some of the features that were

wished for. After choosing to re-implement the product there was not enough time left to deliver

all the features.

The application still needs to be deployed and integrated into the configuration of LSF.

Its design is (relatively) clean and extensible, and the allocation logic is covered with unit tests.

It should be relatively simple (compared to Cloudman or LSF Web) to implement and migrate

to this new project.

12 | P a g e

CERN openlab Summer Student Report 2014

A Database schemas

A.1 LSF Web database schema

username
date_joined
added_by
comment

group_admins

name
modified_at
modified_by

groups
1

0..*

name
unix_group_code
unix_group_id
modified_at
modified_by

accounts 1 0..* value
dedicated?
hostpartition
comment
modified_at
modified_by

shares
share history

1 0..*

1 1
current share

value
comment
modfied_at
modified_by

fractions
fraction history1

0..*

1 1
current fraction

name
alias
modified_at
modified_by

subgroups

1

0..*

username
admin
date_joined
added_by
comment

subgroup_members

1

0..*

Figure 10: Database schema from LSF Web

13 | P a g e

CERN openlab Summer Student Report 2014

A.2 Cloudman database schema

category
name
operation
comment
sys_comment
user
datetime
status

Changelog
name
status
empty?

Egroups
name
description
admin_group (str)

Region 0..* 1

name
resource_class
hepspecs
memory
storage
bandwidth

ResourceType

name
description
hepspecs
memory
storage
bandwidth
hepspec_overcommit
memory_overcommit

Zone

[zone allowed resourcetype]

name
description
admin_group (str)

Project

name
description
admin_group (str)

Groups
name
hepspec
memory
storage
bandwidth

TopLevelAllocationTopleveAllocationAllo
wedResourceType

hepspec
memory
storage
bandwidth

TopLevelAllocationByZ
one

name
hepspec
memory
storage
bandwidth

ProjectAllocation 10...*

1
1

0..*
0..*

[allowed type]
attribute
value

ProjectMetadata1 0..*

name
hepspec
memory
storage
bandwidth

GroupAllocation

[parent][allowed]

attribute
value

GroupAllocationMetad
ata

1 0..*

user_name (str)
group_name (str)

UserGroupMapping

user_name (str)
sphere_type (str)
sphere_name (str)
role (str)

UserRoles

Figure 11: Database schema from Cloudman

14 | P a g e

	Project goals
	Delegated resource allocation
	LSF Web
	Cloudman

	Design considerations
	Django Implementation Choices

	User stories
	Assign resources to a delegate
	Easy enrolment for resource usage
	User rights follow the allocation hierarchy
	Import from LSF Web
	Split a resource over subgroups

	MoSCoW
	Design
	Usage
	Constraints

	Dependencies
	Security
	Conclusions
	Database schemas
	LSF Web database schema
	Cloudman database schema

