<u>A Kinematic Study of</u> <u>Eruptive Prominences</u>

Kaitlin Evans Under the direction of Patrick McCauley and Dr. Yingna Su

Prominence Structure

Prominence Eruption

Kink Instability

Torus Instability?

Reconnection

Coronal Mass Ejection (CME) Structure

Three components to a CME

- Bright frontal loop: material overlying the prominence
- Cavity
- The inner core: contains the prominence

Our Study

- Measure the velocity and height of ~50 prominence eruptions over time.
- Use height-time plots constructed from AIA data to find a curve that best describes the prominence trajectory.
- Project the curve forward in time in order to predict velocity at the LASCO C2 field of view
- Compare predicted velocities with those measured by LASCO using the CACTus catalog.
- Collected fast rise onset heights.

SDO/AIA 304 Å at 2012/06/23 07:04

Height-Time Plot

Fitting Procedure

- Canny edge detection algorithm used to detect leading edge of the prominence eruption.
- Modified the input and algorithm parameters to find the best fit.
 - Smoothing
 - Base difference
 - Threshold

Fitting Procedure

Start time = 2012/06/23 03:00:32.120 UT

Height function:

Beginning of the fast rise (Onset of CME):

$$h(t) = c_0 e^{(t-t_0)/\tau} + c_1(t-t_0) + c_2$$

 $t_{onset} = \tau \ln(c_1 \tau / c_0) + t_0$

Summary of Slices for all Events

Event Starts Behind the Limb

Active Region

Trajectory

The fit is projected forward to the LASCO field of view.

Predicted velocity compared with recorded values (CACTus).

Future Work

- Study eruption mechanisms.
- Look for evidence of reconnection using other wavelengths.
 - Process more events

• Compare the decay index of the magnetic field with onset of the fast rise phase.

Acknowledgments

- Real Patrick McCauley and Yingna Su
- Rean McKillop
- Reeves and Trae Winter
- NSF-REU solar physics program at SAO grant AGS-1263241
- AIA contract SP02H1701R from Lockheed-Martin to SAO