
OpenStack Trove:
Evaluation and Interfacing
with the CERN Database
on Demand Service

September 2014

Author:
Benjamin Ernst Lipp

Supervisor:
Ignacio Coterillo Coz

CERN openlab Summer Student Report 2014

CERN openlab Summer Student Report 2014

Project Specification

As part of the ongoing migration of CERN’s virtual infrastructure to an OpenStack based solution the

CERN IT-DB group, responsible of the Database on Demand service, is migrating towards OpenStack

from an Oracle VM platform, on an effort to converge with the global CERN IT infrastructure

platforms.

The Database on Demand Service is a Database as a service developed in-house within the CERN

IT-DB group. The service manages the underlying infrastructure while providing the end user with an

easy to use interface to perform database backups, recoveries, database configuration, and monitoring.

Since its most recent release Icehouse, the OpenStack platform includes a new component, named

Trove, which provides Database as a Service functionalities. Thus, the main goal of the project is

to evaluate this component, OpenStack Trove, from the point of view of the feasibility of using it

as a resource provider for the Database on Demand service. With this objective, some major points

of interest are: the current status and maturity of the Trove project, ability to support additional

database types, and compatibility with Scientific Linux as the computing platform running most

CERN services.

A secondary goal of the project is to evaluate different Java interfaces to OpenStack which would

enable the service’s software to interact with the OpenStack service to create and manage instances

for the database servers.

Table of Contents

1 Introduction and Motivation . 5

1.1 CERN Database on Demand Service . 5

1.1.1 Database on Demand Infrastructure . 5

1.2 OpenStack . 5

1.3 OpenStack at CERN . 7

1.4 OpenStack Trove: The Database Management Component 7

2 Architectural Comparison of Trove and CERN Database on Demand 9

3 Installation of OpenStack and OpenStack Trove 12

3.1 Ways to Deploy OpenStack . 12

3.2 Diving into OpenStack or: Finding Help in the Community 12

3.3 Installation of OpenStack . 14

3.3.1 Installation Script . 14

3.3.2 Installation Process . 14

3.3.3 Network . 15

3.3.4 Creation of Instances . 17

3.4 Installation of Trove . 18

3.4.1 Configuration . 19

3.4.2 Image Creation . 21

3.5 Installation with DevStack . 23

3.5.1 Prerequisites . 23

3.5.2 Configuration and Installation . 23

3.6 Usage of Trove . 25

4 Evaluation of Java Interfaces to OpenStack . 25

5 Conclusion and Future Prospects . 26

5.1 Further Suggestions for a Next Project on OpenStack Trove 26

5.1.1 Technical Aspects . 27

5.2 Docker on OpenStack . 27

3

CERN openlab Summer Student Report 2014

5.3 From Scientific Linux to CentOS . 27

Acknowledgements . 28

A Appendix . 29

A.1 Participation in the Community . 29

A.2 Bug Reports . 29

References . 30

CERN openlab Summer Student Report 2014

1 Introduction and Motivation

1.1 CERN Database on Demand Service

The CERN Database on Demand Service (DBOD) started operating in 2012 with the objective of

providing the users with access to new databases and different service level agreements. Traditionally,

CERN users had the possibility of requesting a user or project database on the centrally managed

Oracle service, operated by the IT-DB group. Over time, though, there was a growing interest from

users in having a central service offering MySQL and PostgreSQL databases, as well as Oracle

databases with a broader access to the underlying database system than in the already existing Oracle

service. From the user’s perspective, DBOD now provides hosting of databases—managing the

installation and upgrade procedures—and an easy to use web interface to perform database backups,

recoveries, database configuration, and monitoring, see figure 1 on the following page. Since its

start, DBOD has grown rapidly within CERN, now hosting 168 database instances, whereof 141 are

MySQL, see figure 2 on the next page. The Database on Demand service is in itself a framework

profiting from pre-existing IT-DB management tools and infrastructures, and which, from the point

of view of the user, provides databases as a service (DBaaS).

1.1.1 Database on Demand Infrastructure

The DBOD service is designed and implemented in a way such that the nature of the underlying

platform running the database systems is not relevant to the service and as a consequence of this, the

current infrastructure operates on both physical hosts and virtual machines—a detailed description of

the infrastructure can be found in section 2 on page 9, where DBOD and OpenStack Trove will be

compared.

This point being made, virtualisation offers clear advantages from the point of view of consolida-

tion and manageability of resources, and, as it will be covered in the next two subsections, plays a

key role in the strategic plans for the IT department at CERN and the IT-DB group in particular.

The IT-DB group is on its final steps for completing their virtualisation platform migration

towards an OpenStack based solution, and this fact affects the DBOD service, while also providing

new opportunities for profiting from the OpenStack ecosystem. Hence the interest in evaluating the

current status of the OpenStack DBaaS component, Trove, whose expected functionality overlaps in

certain areas with the one DBOD offers.

1.2 OpenStack

OpenStack1 is a free and open source cloud computing platform started in 2010 providing infras-

tructure as a service. This means offering tools to manage resources like virtual machines, servers,

block and object storage and networks, distributing them automatically within a big pool of hardware

resources. OpenStack has a vibrant community, including a lot of companies2 using it for delivering

their own services and contributing back to the project. On the technical side, OpenStack relies on

a lot of other open source projects, making it a huge effort of integration. This is accomplished by

designing OpenStack to be built of components, each of them providing its features to the other

components and to the user via a REST API making it possible to use different technologies on

the back end side. This modular architecture makes it possible to update an existing OpenStack

cloud to the next release without downtime of the virtual machines3. The most common components

1https://www.openstack.org/
2https://www.openstack.org/foundation/companies/
3http://openstack-in-production.blogspot.fr/2014/02/our-cloud-in-havana.html

5 | P a g e

https://www.openstack.org/
https://www.openstack.org/foundation/companies/
http://openstack-in-production.blogspot.fr/2014/02/our-cloud-in-havana.html

CERN openlab Summer Student Report 2014

Figure 1: Various screenshots of the Database on Demand web interface [1], showing the buttons to

start and stop instances, execute backups and restores, perform pending upgrades and showmonitoring

information.

Figure 2: Statistics on the usage of the Database on Demand service. Left: Evolution of the overall

amount of DBOD instances. Right: the current distribution of different database management systems

6 | P a g e

CERN openlab Summer Student Report 2014

of OpenStack are shown in figure 3 on the next page, where they are represented by the task they

fulfil. Besides that, they all have a name, which is usually used to refer to them. Figure 4 on the

following page structures the components into layers making it easier to find a starting point. The

OpenStack Dashboard, called Horizon, is an easy to use web interface to all components that can

be used instead of the command line interfaces. It is built using the Python web framework Django.

Keystone is OpenStack’s common identity provider that is used by all components to authenticate

users. Nova, the computing component, manages (virtual) machines and decides on which of the

available nodes to boot them. Nova can use different hypervisors and virtualisation techniques to

achieve this, including KVM and Docker. Glance, the image service, holds operating system im-

ages that are used by Nova. Cinder manages block storage, that is, volumes that can be attached

to machines as virtual hard drives. Like Nova, Cinder can use different back ends. Swift can store

files and objects. Neutron and Nova Network are the two components capable of managing software

defined networks in OpenStack, Neutron being the more sophisticated one, based on OpenVSwitch.

There are new components coming up, after a time of incubation being officially integrated into the

project. This is how Trove, previously called Reddwarf became a component of OpenStack. It will

be described in section 1.4.

1.3 OpenStack at CERN

OpenStack is used at CERN and its experiments at four different places at least. There is the general

CERN Private Cloud, then an IT-DB internal OpenStack cloud, and furthermore ATLAS and CMS

using OpenStack to deploy a computing grid on their trigger farms to use the computing power for

analysis and simulation during detector shut down and maintenance periods [5].

Within the CERN Private Cloud, every group at CERN and every experiment connected to CERN

can request resources and then deploy their own operating system and software packages on instances.

The IT department chose OpenStack as a building block for the internal cloud because of multiple

reasons: A growing number of computing resources has to be managed, with the goal to virtualise

resources as much as possible and having the possibility to deploy this cloud on multiple sites, as

CERN just got a new data centre in Budapest, Hungary. OpenStack as a flexible and open source

cloud platform with a big community was a very suitable choice for this task. To integrate OpenStack

into CERN’s IT environment, some challenges had to be faced. The identity provider Keystone had

to be integrated with the existing user management, making it possible to provide the OpenStack

service to over 11 000 users, with 200 arrivals and departures every month [6]. In addition, to provide

the instances with network connectivity, OpenStack had to be attached to CERN’s own system of

assigning IP addresses and hostnames, the LANDB. Insights into these experiences are provided on

the OpenStack in Production4 blog by four of the engineers working on the CERN Private Cloud.

The IT-DB group operates its own OpenStack cloud under the guidance and configuration of the

central service because of specific configuration requirements demanding a second network interface

on the virtual machines, and to profit of physical proximity to their storage servers. The ATLAS

and CMS clouds use OpenStack to deploy grid middleware for connecting to the Worldwide LHC

Computing Grid (WLCG) on their high level trigger systems [7].

1.4 OpenStack Trove: The Database Management Component

OpenStack Trove provides Databases as a Service to its users. It is built upon Nova and installs

database management software inside the instances. Trove uses separate instances for different

database management systems. The user can manage databases, backups and restores through

4http://openstack-in-production.blogspot.fr/

7 | P a g e

http://openstack-in-production.blogspot.fr/

CERN openlab Summer Student Report 2014

Figure 3: Logical overview of OpenStack’s architecture, showing the most common components [2]

Figure 4: A more structured view to OpenStack, dividing the components into layers. This diagram

includes incubated but not yet integrated components as well. Proposed by Dean Troyer [3] and

visualised by Sean Dague [4]

8 | P a g e

CERN openlab Summer Student Report 2014

Figure 5: View of OpenStack’s dashboard: Create a new database [8]

OpenStack’s Dashboard or the command line interface. Figure 5 shows the Dashboard during

the launch of a new database. A deeper insight into Trove’s architecture will be given in section 2.

Currently the databasemanagement systems Cassandra, Couchbase, MongoDB,MySQL, PostgreSQL

and Redis are supported.

Trove was started in 2011 at Rackspace as Reddwarf. It was incubated into OpenStack with

release Havana and integrated with this year’s release Icehouse. Like all of OpenStack, it is written

in Python. Contributors to Trove are mainly the five companies Rackspace, HP, Mirantis, Tesora

and eBay5, which at the same time are the main companies using Trove in production either to offer

OpenStack based products or for internal use. Current work on the Trove project is done on the

integration of more database types, the completion of the architecture and on supporting replication.

The plans and development can be followed on Trove’s blueprints page on Launchpad6.

2 Architectural Comparison of Trove andCERNDatabase
on Demand

In this section, the architecture of DBOD will be illustrated. Then, the architecture of Trove will be

described referencing to DBOD to point out similarities and differences. Figures 6 and 7 on page 11

support this description. Not all elements of DBOD shown in the figure will be described in detail

though. The details of Trove’s architecture are taken from the Trove wiki [9].

For a DBOD user, there are three different interaction points with the service. The CERN

Federated Identity Management (FIM) is only needed at the beginning—it is used to keep track of

resource owners within CERN. There, the user has to fill out a form to request a database. After

the instance is ready, the web interface can be used to perform basic management tasks on it: start

and stop it, initiate backup and restore operations, confirm software updates, change the database

configuration and access monitoring information. The web interface is written in Java.

5http://stackalytics.com/?user_id=&project_type=all&release=all&metric=all&company=
&module=trove

6https://blueprints.launchpad.net/trove/

9 | P a g e

http://stackalytics.com/?user_id=&project_type=all&release=all&metric=all&company=&module=trove
http://stackalytics.com/?user_id=&project_type=all&release=all&metric=all&company=&module=trove
https://blueprints.launchpad.net/trove/

CERN openlab Summer Student Report 2014

To connect to the database, the user is provided with hostname, port and credentials. The database

user receives full database administrator privileges. Tasks commissioned by the user via the web

interface are stored in the DBOD database (DBOD DB). The daemon frequently polls the database

and executes the tasks via Syscontrol—a management infrastructure developed inside CERN, which

is replaced by Puppet more and more. Updates on the tasks are written back to the database by the

daemon. Different monitoring solutions are in place: Oracle EM, Racmon and the CERN Agile

Infrastructure monitoring. A custom component in the monitoring system is the DBOD state checker

which frequently connects to the database instances to test their availability. The results are stored in

the DBOD DB, so the web interface can display them.

The instances themselves run on Oracle virtual machines or physical hosts, with an ongoing

migration to virtual machines within the IT-DB internal OpenStack cloud. The virtual machines host

multiple database instances listening on different ports, and are not limited to one type of database

management system. The data storage is done separately from these hosts on network attached

storage. This enables a sophisticated backup solution based on snapshots on file system level instead

of with SQL dumps.

The architecture of Trove is not yet fixed. What is shown in figure 7 is almost the current

architecture, only the scheduler is not yet implemented. The entry point for Trove is the Trove API

which can be accessed by the command line interface or the Dashboard. The API corresponds to

DBOD’s web interface. Like with DBOD, the Trove database (Trove DB) is used to store status

information about instances and backups. The Trove API server directly executes synchronous tasks,

like getting a list of database users from the Guestagents, and delegates asynchronous task to the

Taskmanager—Trove’s equivalent to DBOD’s daemon. Asynchronous tasks are for example the

provisioning or resizing of an instance and the initiation of a backup. Thus, the Taskmanager mostly

talks to other OpenStack APIs like Nova and Cinder. In the future, the Scheduler will manage recurrent

tasks like scheduled backups. In DBOD, recurrent backups are managed by the web interface

as well. The Guestagents run inside the instances and are responsible for the databases, called

datastore in Troves terminology. They create schemas and users and execute backups. Furthermore,

the Guestagents sends a heartbeat to the Conductor.

The Guestagent and the database software need to be included in the image used for the instance.

There are two possibilities to provide these images: either an image including this software and the

correct configuration is prepared, or one basic image is used for all database types but a different

CloudInit configuration is used to provision the instances after boot. CloudInit is a tool with a simple

configuration format that can install packages, change files and basically execute arbitrary commands

on the boot of a new instance. It is available for a lot of Linux distributions. CloudInit needs to be

installed on the instance already, though. Images with CloudInit already included are often called

“cloud enabled”—a lot of Linux distribution vendors provide cloud enabled images.

The Conductor receives the heartbeats and status updates about backups and stores them in the

Trove DB. In DBOD, there is no such service as the Guestagents or the Conductor. Database users and

schemas are created via Syscontrol and Puppet, thus by the daemon. The heartbeats are implemented

the other way around with the state checker, providing the same result.

Trove uses Cinder to attach volumes to the instances so the data can be stored on them. This

makes it possible to use different backup solutions, as well. A major difference between DBOD and

Trove is that Trove uses separate virtual machines for different database types and only installs one

database server per virtual machine. If resources need to be consolidated more with Trove, a solution

is to use Docker as virtualisation technique, see section 5.2 on page 27.

10 | P a g e

CERN openlab Summer Student Report 2014

Figure 6: Architecture of the CERN Database on Demand service [1]

Figure 7: Architecture of OpenStack Trove. By courtesy of Denis Makogon, Mirantis [10]

11 | P a g e

CERN openlab Summer Student Report 2014

3 Installation of OpenStack and OpenStack Trove

This sections covers the process of installing and configuring OpenStack and Trove on Scientific

Linux, which was the main work during the project. Before starting, an overview of the ways to

deploy OpenStack and to connect to OpenStack’s community is given.

3.1 Ways to Deploy OpenStack

There are different possibilities to setup a new OpenStack cloud, the choice depending on the goal of

the project.

Manual setup For the deployment of a new production cloud, this might be the best solution.

Of course, tools like Puppet can be used to automatise this process, but for real-world production

deployments, full control over all configuration is needed.

Packstack Packstack is part of Red Hat’s effort of building RDO, a Red Hat distribution of Open-

Stack. This basically covers the packaging and documentation work for Red Hat based Linux distri-

butions. The project’s website is openstack.redhat.com. Since Scientific Linux is derived from Red

Hat Enterprise Linux, it was advisable to use Packstack for this project.

DevStack DevStack is a tool that can be used to deploy a development environment of OpenStack

on a local machine. Although it is in theory compatible with Red Hat based Linux distributions

as well, it is only well tested on Ubuntu. A short glimpse on the use of DevStack will be given in

section 3.5 on page 23. Section 5.1.1 on page 27 makes a recommendation on which one of Packstack

and DevStack to use for a future project like this.

Crowbar Another tool that can be used to deploy OpenStack, but cannot be covered in this report,

crowbar.github.io.

3.2 Diving into OpenStack or: Finding Help in the Community

OpenStack is an amazing project with a vibrant community. But for newcomers, it might be a

challenge to find the right place to start, as there are a lot of guides and tutorials, for a lot of different

aspects and versions of OpenStack, and a lot of mailing lists, forums and IRC channels. Thus, this

section intends to present some hints on starting with OpenStack, focused on Trove and Packstack.

Documentation The main documentation of OpenStack is published on docs.openstack.org. There

are different guides for different purposes: Installation guides, API references, an operation guide, an

architecture design guide and some more for people setting up and deploying OpenStack. For users,

there is an end user guide and an admin user guide. Thus, the first step is to find the most suitable

documentation for the project. For this project, the most used documentation was the installation

guide for Red Hat based Linux distributions7. Sometimes it is good to compare what the different

documentations recommend, as there are many possibilities to configure OpenStack. For users of

the CERN Private Cloud, there is the CERN Cloud Infrastructure Guide8 as a really comprehensive

starting point relating to the computing component Nova which mostly applies to general OpenStack

7http://docs.openstack.org/icehouse/install-guide/install/yum/content/
8http://information-technology.web.cern.ch/book/cern-private-cloud-user-guide

12 | P a g e

https://openstack.redhat.com/
https://crowbar.github.io/
http://docs.openstack.org/
http://docs.openstack.org/icehouse/install-guide/install/yum/content/
http://information-technology.web.cern.ch/book/cern-private-cloud-user-guide

CERN openlab Summer Student Report 2014

setups outside CERN as well. As a quick overview, the slides of the CERN OpenStack Training can

be helpful9.

The documentation of Trove is on a very early stage, whichmeans that currently there is only a very

basic install and usage guide available. As it will be clear later in section 3.3 on the following page,

the documentation for manual installs is incomplete at the moment. The most detailed description of

commands is still only the short help text included in the commend line tools.

Wiki The OpenStack Wiki is located at wiki.openstack.org. The most important pages might be

How to contribute and the other general guides linked on the main page. The pages of the components,

like the ones on Trove are used to track progress in development and to keep meeting notes. Single

pages can be heavily outdated. RDO with Packstack has its own wiki at openstack.redhat.com with a

Get Involved page.

Code, Bugs, Blueprints and Reviews All projects under OpenStack’s umbrella have their source

code under github.com/openstack-dev, github.com/openstack or github.com/stackforge. For bug

reports and blueprints, Launchpad is used. Code changes are not applied via pull requests but via the

Gerrit code review tool available at review.openstack.org.

Mailing lists There are a lot of mailing lists, all of them being covered on the corresponding page

in OpenStack’s Wiki and Packstack’s Wiki. The mailing lists openstack, openstack-announce,
rdo-newsletter and rdo-list are definitely the most important for a project on Scientific Linux.
openstack-docs is good to see what currently happens on the part of the documentation. The list
openstack-security is interesting but the topic was clearly out of scope of this project. As Trove
is a very young project, there are not many people able to provide help on the mailing lists.

Forums The main forum for OpenStack is ask.openstack.org. It follows the modus of the sites of

the Stack Exchange Network, thus it is based on questions and answers that can be up voted and

edited. Questions can be tagged, so an interesting feed to subscribe to is the one for Trove. As

people are asking questions on Stackoverflow as well, the feed for questions tagged with openstack
is worth a look. But as with the mailing lists, the forums are not yet a good place to get answers

concerning Trove. Better are the IRC channels.

IRC channels The list of all IRC channels operated by OpenStack is available in the wiki. The rele-

vant channels for this project were #openstack, #openstack-trove, #packstack-dev and #rdo.
On #openstack-trove, the developers are active and reply really fast and helpful to questions.

Blogs Announcements and explanations of new features are often published in blogs. A lot of blogs

on OpenStack are collected at planet.openstack.org, so it might be good to subscribe and filter the

interesting posts from time to time.

Slides The companies working on Trove typically present their most recent work on conferences,

publishing the slides on slideshare.net afterwards.

9http://information-technology.web.cern.ch/sites/information-technology.web.cern.ch/
files/OpenStack_Training_June_2014.pdf

13 | P a g e

https://wiki.openstack.org/
https://wiki.openstack.org/wiki/How_To_Contribute
https://wiki.openstack.org/wiki/Trove
https://openstack.redhat.com/
https://openstack.redhat.com/Get_involved
https://openstack.redhat.com/Get_involved
https://github.com/openstack-dev
https://github.com/openstack
https://github.com/stackforge
https://review.openstack.org/
https://wiki.openstack.org/wiki/Mailing_Lists
https://openstack.redhat.com/Mailing_lists
https://ask.openstack.org/
https://wiki.openstack.org/wiki/IRC
https://wiki.openstack.org/wiki/IRC
https://wiki.openstack.org/wiki/IRC
http://planet.openstack.org/
http://de.slideshare.net/
http://information-technology.web.cern.ch/sites/information-technology.web.cern.ch/files/OpenStack_Training_June_2014.pdf
http://information-technology.web.cern.ch/sites/information-technology.web.cern.ch/files/OpenStack_Training_June_2014.pdf

CERN openlab Summer Student Report 2014

3.3 Installation of OpenStack

The installation of OpenStack was done using Packstack following a step-by-step guide in the

RDO wiki [11]. This and the configuration of the virtual networks, and later the installation and

configuration of Trove was put into a Bash script.

3.3.1 Installation Script

This sections, Installation of OpenStack, and the next section Installation of Trove will describe how

the installation was done which is at the same time an explanation of parts of the script. The script

is available on Github10. It includes directions of how to configure and use it. The git repository

includes an archive of the step-by-step guide [11] as well. The script basically consists of Bash

functions that are meant to be executed in the order in which they are defined. Each of the functions

performs something that can be called one step of the installation. The functions can be called by

executing the script with one parameter being just the name of the function. If the script is executed

without parameters, it will do nothing. This is intended, as the script is not well-tested enough to be

just executed. Thus, the code of the script actually has to be read to see the names of the functions.

The installation was put into a Bash script and not into Puppet, because with Bash, parts of it just can

be copied to a shell and be executed.

3.3.2 Installation Process

Packstack makes heavy use of Puppet to install and configure all the components. The configuration

of Packstack can be done via command line parameters for some simple options or via a so-called

answer file. This configuration file is called answer file because if Packstack runs without any

parameters, it asks the user questions to determine the configuration. On Scientific Linux CERN,

some workarounds were needed to run Packstack without issues. They are available in the CERN

cloud infrastructure user guide11.

First of all, repositories had to be setup. The first needed workaround was to fix the priorities, so

the right packages will be installed:

1 yum install -y http://rdo.fedorapeople.org/rdo-release.rpm
2 sed -i -e 's/priority.*/priority=1/g' /etc/yum.repos.d/rdo-release.repo
3 sed --in-place '/^exclude=libmongodb/d;s/^priority=/exclude=libmongodb,

pymongo*,mongodb*,python-bson,python-webob,python-mako,python-
webtest\npriority=/g' /etc/yum.repos.d/slc6-os.repo /etc/yum.repos.d/
slc6-updates.repo /etc/yum.repos.d/slc6-extras.repo

Packstack uses SSH to connect to the hosts it should setup, as it is able to deploy OpenStack on

multiple nodes. At the moment of the installation, it had problems to add the SSH key correctly to

authorized_keys, so this had to be done manually before:

1 ssh-keygen -q -f /root/.ssh/id_rsa -t rsa -P ""
2 sh -c 'cat /root/.ssh/id_rsa.pub >> /root/.ssh/authorized_keys'
3 chmod 700 .ssh
4 chmod 600 .ssh/*

Then, Packstack itself could be installed. The next two workarounds concerned the MySQL Puppet

module and SELinux. Normally, SELinux should not be muted and instead the issues with the

10https://github.com/blipp/openlab-openstack-trove-setup
11http://information-technology.web.cern.ch/book/cern-cloud-infrastructure-user-guide/

advanced-topics/installing-openstack#icehouse

14 | P a g e

https://github.com/blipp/openlab-openstack-trove-setup
http://information-technology.web.cern.ch/book/cern-cloud-infrastructure-user-guide/advanced-topics/installing-openstack#icehouse
http://information-technology.web.cern.ch/book/cern-cloud-infrastructure-user-guide/advanced-topics/installing-openstack#icehouse

CERN openlab Summer Student Report 2014

software be fixed12. But for this evaluation project, this was out of scope.

1 yum install -y openstack-packstack
2 sed -i'' '3 s/^/#/' /usr/share/openstack-puppet/modules/packstack/

templates/innodb.cnf.erb
3 sed -i -e 's/^SELINUX=enforcing/SELINUX=permissive/g' /etc/selinux/config

Finally, Packstack could be called. The switch --allinone means that all services will be installed
on the machine on which Packstack is called. --provision-demo and --provision-all-in-
one-ovs-bridge stop Packstack from creating a demo user and network. Nagios had to be disabled

because of an installation issue—it was not important for this test setup anyway. Furthermore, the

networking component Neutron was chosen with os-neutron-install.

1 packstack --allinone --os-neutron-install=y --provision-demo=n
--provision-all-in-one-ovs-bridge=n --nagios-install=n

If any issue occurs during the run of Packstack, log files will be provided so it can be resolved

manually. Then, Packstack has to be called again, but with the answer file it produced:

1 packstack --answer-file=/root/packstack-answers-20140811-101751.txt

One problem that occurred during this setup was the mongodb-server package missing in Red Hat’s
repositories on that exact day—it was removed because of a security issue. An older version of the

package could be installed manually.

After the installation has finished successfully, Packstack will tell where it created the RC file for

the OpenStack admin user and show the URL to the dashboard. Packstack will show a notification if

a reboot is necessary because of a kernel update. The RC file is used to define environment variables

holding user name, password, tenant and the URL to which to connect. This file is meant to be

sourced in a terminal before using the command line clients. Otherwise, these details need to be

specified on each call via parameters. A tenant in OpenStack basically means project, a term that

is used in the dashboard. A user can be associated with more than one tenant, but needs one RC

file for each tenant—it would be sufficient to update the environment variables OS_TENANT_ID and
OS_TENANT_NAME holding the tenant to switch them though. The RC files can be downloaded from

the dashboard. Another practical feature of them is that they change the shell prompt so it is visible

which user and tenant currently is in use. For security reasons, the files can be adapted to ask for the

password instead of including it in plain text. In the installation script, two RC files for the admin

and a regular user are sourced depending on the task.

3.3.3 Network

OpenStack users can configure private networks for their instances. For connectivity to external

networks, so-called floating IP addresses need to be assigned to the instances. The according public

networks and routers need to be configured by the OpenStack administrator. To provide a firewall

feature and the ability to span the networks over multiple OpenStack nodes, Neutron uses rather a lot

of networking layers. This architecture is complex and cannot be covered in this report. The already

mentioned tutorial [11], Networking in too much detail13 and There’s Real Magic behind OpenStack

Neutron14 provide an overview backed by helpful visualisations.

A major challenge of the installation was the restricted external network. At CERN, each machine

has to be registered in the network service, the LANDB. For a 9 weeks test setup, it is not possible to get

12http://securityblog.org/2006/05/21/software-not-working-disable-selinux/
13https://openstack.redhat.com/Networking_in_too_much_detail
14http://pinrojas.com/2014/07/29/theres-real-magic-behind-openstack-neutron/

15 | P a g e

http://securityblog.org/2006/05/21/software-not-working-disable-selinux/
https://openstack.redhat.com/Networking_in_too_much_detail
http://pinrojas.com/2014/07/29/theres-real-magic-behind-openstack-neutron/

CERN openlab Summer Student Report 2014

an integration of the instances into it. Thus, another solution had to be found to achieve connectivity

to the internet. The original plan to deploy OpenStack on two nodes was given up because it turned

out to be too complicated within the restricted network. For a future attempt on this, the blog posts

of Boris Derzhavets might be helpful as he has written a lot of networking tutorials for multi node

setups15.

The external connectivity of the instances was solved by creating a NAT inside the all in one

host. This way, the instances can be fully reached from within the host, which is absolutely sufficient

for this project—see the requirements of a Trove installation16. For connections from outside, port

forwarding could be set up. The external network was chosen to be 10.0.21.0/24. The creation of
the network and the router inside Neutron had to be executed as the admin user. The allocation pool

is the range of addresses that can be associated with the instances. The virtual router has to be set as

gateway for this network:

1 . $RC_ADMIN
2 neutron net-create extnet --router:external=True | log_output extnet
3 NETWORK_ID=$(get_field extnet " id " 4)
4 # Create Subnet
5 neutron subnet-create extnet --allocation-pool start=10.0.21.10,end

=10.0.21.125 --gateway 10.0.21.1 --enable_dhcp=False 10.0.21.0/24 |
log_output extnet_subnet

6 # Create Router
7 neutron router-create rdorouter | log_output rdorouter
8 ROUTER_ID=$(get_field rdorouter " id " 4)
9 # Set the Router's Gateway
10 neutron router-gateway-set $ROUTER_ID $NETWORK_ID | log_output gateway-set

The actual NAT was created by the following script. It needs to be executed after each reboot of the

host. br-ex is the network interface to which Neutron’s public networks are attached.

1 #!/bin/bash
2 ip link set down br-ex
3 ip addr add 10.0.21.1/24 dev br-ex
4 ip link set up br-ex
5 iptables -I FORWARD -i br-ex -j ACCEPT
6 iptables -I FORWARD -o br-ex -j ACCEPT
7 iptables -t nat -I POSTROUTING -s 10.0.21.0/24 ! -d 10.0.21.0/24 -j

MASQUERADE

Then, user and tenant rdotest without special privileges were created. This was done to separate
privileges and to have a more or less standard OpenStack setup where users with standard privileges

use the resources provided by the administrators.

1 keystone tenant-create --name rdotest | log_output tenant-create
2 TENANT_ID=$(get_field tenant-create " id " 4)
3 TENANT_PASS=$(pwgen 15 1)
4 echo "rdotest" >> $PASSWORD_FILE
5 echo $TENANT_PASS >> $PASSWORD_FILE
6 keystone user-create --name rdotest --tenant-id $TENANT_ID --pass

$TENANT_PASS --enabled true | log_output user-create

The new user can now create a private network for the instances. The IP range 10.0.90.0/24 was
chosen. Here, the important point is to provide the IP addresses of CERN’s DNS servers, since no

15http://bderzhavets.blogspot.ch/2014/07/rdo-setup-two-real-node_29.html
16http://docs.openstack.org/developer/trove/dev/manual_install.html

16 | P a g e

http://bderzhavets.blogspot.ch/2014/07/rdo-setup-two-real-node_29.html
http://docs.openstack.org/developer/trove/dev/manual_install.html

CERN openlab Summer Student Report 2014

other DNS servers are allowed inside CERN’s network. The instances need working DNS to install

software from package repositories. Furthermore, the private network needs to be attached to the

previously created router.

1 . $RC_RDOTEST
2 neutron net-create rdonet | log_output net-create-rdonet
3 neutron subnet-create --dns-nameserver 137.138.17.5 --dns-nameserver

137.138.16.5 rdonet 10.0.90.0/24 | log_output subnet-create-rdonet
4 SUBNET_ID=$(get_field subnet-create-rdonet " id " 4)
5 . $RC_ADMIN
6 ROUTER_ID=$(get_field rdorouter " id " 4)
7 neutron router-interface-add $ROUTER_ID $SUBNET_ID | log_output router-

interface-add

3.3.4 Creation of Instances

As next step, an image was uploaded to Glance. For tests, CirrOS is a nice operating system, as it is

very lightweight.

1 . $RC_ADMIN
2 glance image-create --container-format=bare --disk-format=qcow2 --name=

cirros --is-public=True < $CIRROS_IMAGE_FILE | log_output image-create

To make it possible to connect to instances via SSH, OpenStack supports associating SSH keys to an

user account. In OpenStack, they are called key pairs. When creating a new instance, a key pair can

be chosen and then the according public key will be added to authorized_keys inside the machine.
Security groups in OpenStack implement a firewall. Instances are associated to a certain security

group. Rules can be defined within a security group to allow certain traffic. Here, ICMP and SSH

were enabled:

1 . $RC_RDOTEST
2 nova keypair-add --pub-key /root/.ssh/id_rsa.pub rdokey | log_output

keypair-add
3 neutron security-group-rule-create --protocol icmp --direction ingress

default | log_output security-group-rule-icmp
4 neutron security-group-rule-create --protocol tcp --port-range-min 22 --

port-range-max 22 --direction ingress default | log_output security-
group-rule-ssh

Finally, an instance could be booted using the nova command, defining flavor, image and key pair.
Flavors in OpenStack refer to the resources given to an instance. Administrators can define flavors

and which users are allowed to use them.

1 . $RC_RDOTEST
2 IMAGE_ID=$(get_field image-create " id " 4)
3 nova boot --flavor 1 --image $IMAGE_ID --key-name rdokey "cirros$1" |

log_output "boot-cirros$1"

The association of a floating IP follows the following workflow. An address has to be chosen and

then associated to the port in the private network the instance is attached to. Thus, the ID of the port

has to be found:

1 . $RC_RDOTEST
2 VM_ID=$(get_field "boot-cirros$1" " id " 4)
3 neutron port-list --device_id $VM_ID | log_output "port-list-cirros$1"
4 PORT_ID=$(get_field "port-list-cirros$1" "subnet_id" 2)

17 | P a g e

CERN openlab Summer Student Report 2014

5 neutron floatingip-create extnet | log_output "floatingip-create-cirros$1"
6 FLOATINGIP_ID=$(get_field "floatingip-create-cirros$1" " id " 4)
7 neutron floatingip-associate $FLOATINGIP_ID $PORT_ID

With this setup, instances could reach other instances, the host and the internet. Unfortunately, the

host could not reach the instances although the NAT in principle should work. The reason has not been

found. Means to debug the network setup are tcpdump and the libvirt commands as described
in [11]. To reach the instances anyway, a wrapper script around ip netns exec was written:

1 ip netns exec qrouter-8f9c4e18-2306-41c6-8f34-03fee14c7aeb $@

All network namespaces created by Neutron can be listed with ip netns. If there is only one private
and public network, there will be only one qrouter and one qdhcp namespace—either of them can

be chosen for the script. With this script it was possible to connect to the instances via SSH using

ipns ssh cirros@10.0.90.4.

3.4 Installation of Trove

For the installation and configuration of Trove, the according guide in OpenStack’s documentation

was followed [12]. Some hints were taken from DevStack’s installation script for Trove17. The

installation was first done via the package manager:

1 yum install -y openstack-trove python-troveclient

But for an evaluation, the most recent code is a better choice since this makes it easier to find help.

The upstream code, however, does not include init files for the services, as this depends on the Linux

distribution. Thus, the init files were kept—actually the manual installation was just made on top

of the installation from the package repositories. The only thing to pay attention to was automatic

package updates that could overwrite the changes made behind the package manager’s back. The

installation from the Github sources is not yet integrated in the installation script but only documented

here. The guide followed for this was rather outdated [13].

First of all, the Python package manager pip had to be updated. The second command indeed
had to be run twice18.

1 pip install -U pip
2 pip install -U setuptools
3 pip install -U setuptools

Then, the repositories of trove and the python-troveclient needed to be checked out.

1 git clone https://github.com/openstack/trove.git
2 git clone https://github.com/openstack/python-troveclient.git

The most recent release of Trove was 2014.2.b2, thus the according tag was checked out in the
repository.

1 cd trove
2 git checkout tags/2014.2.b2

The installation has to compile some packages, so a compiler and some libraries had to be installed:

1 yum groupinstall "Development Tools"
2 yum install libxml2-devel libxslt-devel

Then, the requirements of Trove and Trove itself were installed with pip and the setup script using
17http://devstack.org/lib/trove.html
18https://stackoverflow.com/a/25288078/3910830

18 | P a g e

http://devstack.org/lib/trove.html
https://stackoverflow.com/a/25288078/3910830

CERN openlab Summer Student Report 2014

1 pip install -r requirements.txt
2 python setup.py install

The output of the installation of the requirements had to be watched carefully: If some Python

packages are updated to a version that is not compatible with the already installed OpenStack

components, problems might arise. The script setup.py installed Trove’s binaries to /usr/bin.
The same procedure applied to python-troveclient.

1 pip install -r requirements.txt
2 python setup.py install

All OpenStack services were then restarted. However, Nova and Cinder did not start anymore. The

error message suggested a problem with the Python package kombu. During the installation, it was
upgraded to version 3, but Nova, Cinder and Trove only require a version greater than or equal to

2.4.8. After installing this exact version with

1 pip install kombu==2.4.8

the services came up again. Because Trove was previously installed via the package manager and

already configured and started, the Trove DB was filled with data which was not compatible with the

new version. Trove showed the error message NoSuchTableError: `capabilities`. To resolve
this, the function remove_configuration_trove in the script was called. This function stops all
Trove services, removes all configuration files and the Trove DB. After this, the configuration was

re-created with the function configure_trove, which is the topic of the next subsection.

3.4.1 Configuration

The configuration of Trove included creating an OpenStack user and tenant with certain privileges,

configuring the Trove services, creating an image, configuring datastores within Trove and finally

letting Keystone know about the new service.

TheOpenStack services all run as a user named after them. These service users need to bemembers

and administrators of the services tenant, which is usually named services in an installation

done with Packstack, but service when following the official OpenStack documentation from the

beginning. Thus, the user trove was created and assigned to the tenant services as member and
admin.

1 keystone user-create --name=trove --pass=$TROVE_PASS --email=
trove@localhost --tenant=services | log_output user-create-trove-
services

2 keystone user-role-add --user=trove --tenant=services --role=admin |
log_output user-role-add-trove-services

At the first try to run Trove, there always was the error message ERROR: Unauthorized (HTTP
401) coming up, regardless of which Trove command was executed. The first idea was, that the user
does not have the needed privileges and thus, different possibilities were tried. In the end it turned

out that not the user credentials or group membership was wrong but the wrong configuration option

was used to define the user, see the question on ask.openstack 19 and the first bug report that was

filed against the documentation 20.

Then, the configuration files for the different Trove services—the API service, the Taskman-

ager, Conductor and Guestagent—had to be written. There are the files api-paste.ini config-

uring the API itself, trove.conf for the API server, and trove-taskmanager.conf, trove-
19https://ask.openstack.org/en/question/45818/trove-trove-list-results-in-error-unauthorized-http-401/
20https://bugs.launchpad.net/openstack-manuals/+bug/1369116

19 | P a g e

https://ask.openstack.org/en/question/45818/trove-trove-list-results-in-error-unauthorized-http-401/
https://bugs.launchpad.net/openstack-manuals/+bug/1369116

CERN openlab Summer Student Report 2014

conductor.conf and trove-guestagent.conf for the Trove services. To write the configuration
options, openstack-config was used. This is a command line tool able to read and write ini
files making it easy to use inside scripts. The OpenStack community seems to move to crudini21

more and more though, because it supports a broader range of ini file syntax. Only some of the

configuration options will be explained here. All configuration options being set can be seen in the

script, and the meaning of them can be found in the OpenStack configuration reference22.

First of all, enhanced logging was enabled for all Trove services to simplify debugging:

1 for config_file in trove.conf trove-taskmanager.conf trove-conductor.conf
trove-guestagent.conf; do

2 openstack-config --set /etc/trove/$config_file DEFAULT verbose True
3 openstack-config --set /etc/trove/$config_file DEFAULT debug True
4 done

As from now, to save space, not the commands to set the configuration options but snippets from the

configuration files will be shown. To keep it general, there will be still Bash variables in them, so the

snippets are actually no valid configuration files.

There are different places where credentials had to be defined. In api-paste.ini, this was in a
section [filter:authtoken] and in all the others within [keystone_authtoken]:

1 [keystone_authtoken]
2 auth_uri = http://$HOST_IP:35357/
3 identity_uri = http://$HOST_IP:35357/
4 admin_password = $TROVE_PASS
5 admin_user = trove
6 admin_tenant_name = services

The Trove Taskmanager is talking to Nova to execute tasks and thus needs credentials granting this

access. The documentation suggests using the credentials of the OpenStack admin user. This might

be too many privileges for the task, but of course worked:

1 [DEFAULT]
2 nova_proxy_admin_user = admin
3 nova_proxy_admin_pass = $ADMIN_PASS
4 nova_proxy_admin_tenant_name = services

Trove uses a message broker for communication between the Trove services. The host of the broker

and the password had to be configured in each service configuration file:

1 [DEFAULT]
2 rabbit_host = $HOST_IP
3 rabbit_password = guest

trove.conf, trove-taskmanager.conf and trove-conductor.conf needed some basic set-

tings like the URLs to connect to the other OpenStack services and the connection parameters for the

Trove DB.

1 [DEFAULT]
2 trove_auth_url = http://$HOST_IP:5000/v2.0
3 nova_compute_url = http://$HOST_IP:8774/v2
4 cinder_url = http://$HOST_IP:8776/v1
5 swift_url = http://$HOST_IP:8080/v1/AUTH_
6 sql_connection = mysql://trove:$TROVE_MYSQL_PASS@$HOST_IP/trove

21http://www.pixelbeat.org/programs/crudini/
22http://docs.openstack.org/icehouse/config-reference/content/ch_configuring-trove.html

20 | P a g e

http://www.pixelbeat.org/programs/crudini/
http://docs.openstack.org/icehouse/config-reference/content/ch_configuring-trove.html

CERN openlab Summer Student Report 2014

As already mentioned in section 2 on page 9 about the architecture of Trove, the images can be

provisioned with CloudInit. The location of the configuration files for CloudInit had to be specified

in the Taskmanager config. The second line was necessary to avoid the Taskmanager from crashing

on startup23.

1 [DEFAULT]
2 cloudinit_location = /etc/trove/cloudinit
3 taskmanager_manager = trove.taskmanager.manager.Manager

These were the most important configuration changes. After this, the Trove DB could be created.

The file config/trove.sql was taken from the installation manual [12] and the credentials adapted

using sed:

1 sed -e "s/TROVE_DBPASS/$TROVE_MYSQL_PASS/g" config/trove.sql | mysql -u
root -p$MYSQL_ROOT_PASSWD

2 su -s /bin/sh -c "trove-manage db_sync" trove
3 su -s /bin/sh -c "trove-manage datastore_update mysql ''" trove

3.4.2 Image Creation

For this project, it was chosen to provision the instances with CloudInit because this seemed to

be easier than creating an image already containing the database management software and the

Guestagent. CloudInit configuration files were created for an Ubuntu and a Fedora guest. They could

never be tested, though, because both images did not boot. The issue was not related to Trove but to

Nova.

The syntax of CloudInit files is based on YAML and very simple—a lot of examples are available

in its documentation24. There even is a wiki page in the CERN wiki providing some CERN specific

examples25. The following is the configuration file created for Ubuntu. The one for Fedora is

available in the Github repository of the installation script.

1 #cloud-config
2 packages:
3 - trove-guestagent
4 - mysql-server-5.5
5

6 # config file for trove guestagent
7 write_files:
8 - path: /etc/trove/trove-guestagent.conf
9 content: |
10 rabbit_host = HOST_IP
11 rabbit_password = guest
12 nova_proxy_admin_user = admin
13 nova_proxy_admin_pass = ADMIN_PASS
14 nova_proxy_admin_tenant_name = trove
15 trove_auth_url = http://HOST_IP:35357/v2.0
16 control_exchange = trove
17

18 ssh_authorized_keys:
19 - SSH_KEY
20

23https://bugs.launchpad.net/openstack-manuals/+bug/1369119
24http://cloudinit.readthedocs.org/
25https://twiki.cern.ch/twiki/bin/view/LCG/CloudInit

21 | P a g e

https://bugs.launchpad.net/openstack-manuals/+bug/1369119
http://cloudinit.readthedocs.org/
https://twiki.cern.ch/twiki/bin/view/LCG/CloudInit

CERN openlab Summer Student Report 2014

21 # restart trove-guestagent as the config has been changed
22 runcmd:
23 - stop trove-guestagent
24 - start trove-guestagent

Internally, Trove will call nova and append the parameter --user-data /etc/trove/cloudinit/
mysql.cloudinit. The place holders are set using sed again and the file then written to the right
place—for the file name this means it has to follow the rule <datastore>.cloudinit:

1 # create the CloudInit config file
2 sed -e "s/HOST_IP/$HOST_IP/g" -e "s/ADMIN_PASS/$ADMIN_PASS/g" -e "s|

SSH_KEY|$(cat /root/.ssh/id_rsa.pub)|g" config/mysql.cloudinit > /etc/
trove/cloudinit/mysql.cloudinit

An Ubuntu image in qcow2 format was then added to Glance, and a new datastore created in Trove

using this image. When creating a new datastore, the type of the datastore has to be set, here mysql,
then a name for the version of the datastore, mysql-5.5, then a name for the datastore, again mysql,
the ID of the image, packages to be installed on the new instance, and a boolean value to indicate if

the datastore should be active.

1 glance image-create --name trove_mysql_ubuntu --file $IMAGE_DIR/ubuntu.
qcow2 --property hypervisor_type=qemu --disk-format qcow2 --container-
format bare --is-public True --owner trove | log_output image-create-
trove-ubuntu

2 UBUNTU_IMAGE_ID=$(get_field "image-create-trove-ubuntu" " id " 4)
3 trove-manage --config-file /etc/trove/trove.conf datastore_version_update

mysql mysql-5.5 mysql $UBUNTU_IMAGE_ID mysql-server-5.5 1

The possibility to provide packages to be installed overlaps with the functionality of CloudInit. The

type of the datastore advises Trove which module to use for the management of the instance. This

makes it possible to have more than one datastore of the same type, for example a MySQL datastore

running on an Ubuntu image and one running on Fedora.

Finally, the service could be announced to Keystone. An important point was to indicate the right

region. Regions in OpenStack are a possibility to use the same infrastructure for example for the

identity management but having two different sites with different services available to the user. The

default region used by python-keystoneclient is regionOne, but Packstack is using RegionOne
with upper case R. This was reported as a bug in the documentation26.

1 # create the Trove service and endpoint in Keystone
2 keystone service-create --name=trove --type=database --description="

OpenStack Database Service" | log_output service-create-trove
3 TROVE_SERVICE_ID=$(get_field "service-create-trove" " id " 4)
4 keystone endpoint-create --service-id=$TROVE_SERVICE_ID --publicurl=http

://$HOST_IP:8779/v1.0/%\(tenant_id\)s --internalurl=http://$HOST_IP
:8779/v1.0/%\(tenant_id\)s --adminurl=http://$HOST_IP:8779/v1.0/%\(
tenant_id\)s --region RegionOne | log_output endpoint-create-trove

At a last step, the Trove services were enabled on system startup. As the configuration of Trove was

tried with different configuration options a lot of times, it was convenient to use etckeeper to keep
track of the configuration files:

1 for i in api taskmanager conductor; do
2 service openstack-trove-$i start
3 chkconfig openstack-trove-$i on

26https://bugs.launchpad.net/openstack-manuals/+bug/1369329

22 | P a g e

https://bugs.launchpad.net/openstack-manuals/+bug/1369329

CERN openlab Summer Student Report 2014

4 done
5

6 etckeeper commit "Finished setting up Trove using script"

The usage of Trove will shortly be covered in section 3.6 on page 25.

3.5 Installation with DevStack

At the end of the project a short attempt was made to setup OpenStack and Trove with DevStack on

an Ubuntu virtual machine. This was done because the installation and configuration on Scientific

Linux could not be finished completely. DevStack however promises to setup a working development

environment of OpenStack including Trove [14]. A successful installation with DevStack could be

used to test some more of Trove’s features even though not on Scientic Linux.

3.5.1 Prerequisites

VirtualBox was chosen as hypervisor, running on the personal workstation, and Ubuntu 14.04.1

Server as guest operating system. The virtual machine was created with 4GB of RAM and 20GB of

disk space. During the installation of Ubuntu, only the SSH server was chosen as additional service

that should be installed. The virtual machine was provided with internet access via a NAT configured

by VirtualBox. To connect from the host to the virtual machine via SSH, an additional network

interface of type “host-only adapter” was added and configured with a static IP address [15]. Thus,

the virtual machine has a private IP address only reachable from the host that can as well be used to

access the OpenStack Dashboard via a web browser.

3.5.2 Configuration and Installation

DevStack is executed as a normal user. To use DevStack, the code is checked out from Github via

1 git clone https://github.com/openstack-dev/devstack.git

DevStack is configured via a local.conf configuration file. The configuration file used for this
setup is shown in listing 1 on the next page. DevStack was configured to use OpenStack’s stable

branch Icehouse. Additionally, Trove has to be enabled as it is disabled by default. DevStack usually

is configured to use the same password for all services, which is easier for development but of course

not suitable for production setups. For the configuration of the network, DevStack’s single machine

guide [16] was followed: The HOST_IP is the virtual machine’s IP address within VirtualBox’ NAT.

The network FIXED_RANGE is the network range OpenStack should use for internal IP addresses.

The network FLOATING_RANGE is configured to be the same as the network from which VirtualBox’

host-only network assigns IP addresses. Thus, instances created and managed by OpenStack can be

reached from the outside network and can reach the outside network themselves. FLAT_INTERFACE
is the virtual machine’s interface that is connected to the host-only network. The values for HOST_IP
and FLAT_INTERFACE can be found by examining the output of ifconfig on the virtual machine.

After the configuration file is prepared, DevStack’s setup routine is called via

1 $./stack.sh

This downloads the sources of all needed OpenStack components, installs them into /opt/stack
and starts them.

Immediately after the run of stack.sh, OpenStack’s Dashboard and nova and trove commands
were functional. However, the Ubuntu image chosen by DevStack for Trove’s instances was not able

to boot. An instance with CirrOS could be launched successfully though. At this point, the further

investigation of DevStack was stopped due to the lack of time. Despite the issue with Trove’s image,

23 | P a g e

CERN openlab Summer Student Report 2014

Listing 1: local.conf config file for DevStack
1 [[local|localrc]]
2

3 # choose branch
4 KEYSTONE_BRANCH=stable/icehouse
5 NOVA_BRANCH=stable/icehouse
6 NEUTRON_BRANCH=stable/icehouse
7 SWIFT_BRANCH=stable/icehouse
8 GLANCE_BRANCH=stable/icehouse
9 CINDER_BRANCH=stable/icehouse
10 HEAT_BRANCH=stable/icehouse
11 TROVE_BRANCH=stable/icehouse
12 HORIZON_BRANCH=stable/icehouse
13

14 # enable Trove
15 ENABLED_SERVICES+=,trove,tr-api,tr-tmgr,tr-cond
16

17 # set credentials
18 ADMIN_PASSWORD=*********
19 DATABASE_PASSWORD=$ADMIN_PASSWORD
20 RABBIT_PASSWORD=$ADMIN_PASSWORD
21 SERVICE_PASSWORD=$ADMIN_PASSWORD
22 SERVICE_TOKEN=a682f596-76f3-11e3-b3b2-e716f9080d50
23

24 # logging
25 LOGDAYS=1
26 LOGFILE=$DEST/logs/stack.sh.log
27 SCREEN_LOGDIR=$DEST/logs/screen
28

29 # networking
30 HOST_IP=10.0.2.15
31 FIXED_RANGE=172.31.1.0/24
32 FLOATING_RANGE=192.168.56.0/25
33 FLAT_INTERFACE=eth1

24 | P a g e

CERN openlab Summer Student Report 2014

DevStack seems to be a really good starting point for trying out OpenStack and learning its concepts.

Within about half an hour, an installation with a working trove command could be set up.

3.6 Usage of Trove

New database instances can be created using the command line or the Dashboard. Regardless of the

interface used, the name of the instance has to be defined as well as the ID of the Nova flavor to use,

the size of the data volume, the name of the schema, the user credentials and finally the datastore

version and type to use:

1 trove create mysql_instance_1 10 --size 2 --databases myDB --users userA:
password --datastore_version 5.5 --datastore mysql

The command trove list then immediately shows the new instance in state BUILD. The command
nova list shows a new entry as well, but with a different ID—the ID of a database instance and

the ID of a virtual machine are different values. Trove creates a new security group per instance

only allowing access to the database port. Thus, any other ports, like for SSH, have to be allowed

manually.

Unfortunately, more features of Trove could not be tested because, as already mentioned, the

images did not boot, and there was no time left to resolve this issue.

4 Evaluation of Java Interfaces to OpenStack

Only a very short look was taken at different Java interfaces that expose the OpenStack API to Java.

They would make it possible to interact with the OpenStack service from within the DBOD service

software. Instances for the database servers could then be created and managed directly, decreasing

the need of manual intervention. Different flavors could be set up in Nova, the DBOD software just

choosing one of them that fits the needs of the user, and Nova carrying out the work of placing the

instance on a suitable host.

Two Java interfaces implementing most of the API are OpenStack4j and Apache jclouds. The

following table summarises some important characteristics of OpenStack4j and Apache jclouds.

OpenStack4j Apache jclouds

Website openstack4j.com jclouds.apache.org

Releases since March 2014,

2 releases

since April 2009,

87 releases

Development 5 contributors 117 contributors,

backed by Apache Software Foundation

API Coverage only OpenStack OpenStack, Docker, AWS, …

Trove API no support support included

While OpenStack4j focuses on OpenStack, Apache jclouds has the goal to support all cloud platforms

to make it easy to port an application to another cloud provider. Both are implemented as fluent

interfaces27 and should be easy to use with the help of their documentation. The choice between

them probably depends on the question if other APIs than only OpenStack are needed. If DBOD will

make use of Docker, then either Apache jclouds can be used or OpenStack4j and one of the existing

Java interfaces to Docker. For the case that DBOD uses Docker on OpenStack, no direct talking to

27http://martinfowler.com/bliki/FluentInterface.html

25 | P a g e

http://www.openstack4j.com/
https://jclouds.apache.org/
http://martinfowler.com/bliki/FluentInterface.html

CERN openlab Summer Student Report 2014

Docker should be needed, as Nova can take care of that. The following listing shows an example

code booting a new instance using OpenStack4j28:

1 // Create a Server Model Object
2 Server server = Builders.server()
3 .name("Ubuntu 2")
4 .flavor("large")
5 .image("imageId")
6 .build();
7

8 // Boot the Server
9 Server server = os.compute().servers().boot(server);
10

11 // Create a Snapshot
12 os.compute().servers().createSnapshot("id", "name");

5 Conclusion and Future Prospects

This project has shown that the publicly available documentation and packages of Trove for Red

Hat based Linux distributions are not yet ready for use. Some bug reports were filed to improve this

situation, see A.2. In the end, Trove was running on Scientific Linux, but problems not related to

Trove made it impossible to test its features. However, from the existing publications of companies

using Trove29, it can be believed that the basic functionality is indeed present and working. It might be

a challenge to get OpenStack Trove running on Scientific Linux though—but once it is up and running,

the functionality needed for DBOD might already mostly be there. Almost, because the integration

of Oracle single-instance databases has not yet been started, only a blueprint is existing [17]. The

integration of PostgreSQL was just finished during this summer on September, 4th, see the according

blueprint [18] and has to be checked if it fulfils DBOD’s needs. Also, it has to be evaluated if Trove

can provide database administrator privileges to users, a feature which might already be supported

with the root-enable capability that can be assigned to an instance [19]. Consolidation of resources
on a level achieved by the current DBOD implementation could be realised by using Docker as

virtualisation technique. The present backup strategy of DBOD based on snapshots probably just can

be applied to Cinder volumes as well, because Cinder supports NetApp.

5.1 Further Suggestions for a Next Project on OpenStack Trove

There are some suggestions to take along for a next project on OpenStack Trove based on the

experiences made during this project. Section 3.2 on page 12 shows on which ways to reach the

OpenStack and Trove community. A summer project like the one presented in this report has to

manage with little time. Thus, it seems best to join IRC channels, subscribe to mailing lists and

forums at the very beginning so the atmosphere and the way of working of the community can be

grasped. During the process of learning, it is a good way to check the own understanding of the

subject and to give something back to the community by taking part in discussions or answering

questions as far as the own knowledge makes it possible.

28the code example was taken from the project’s website
29Some details can for example be found at slideshare.net/tesoracorp/5-hp-presentation-final and slideshare.net/tesora-

corp/4-open-stack-trove-day-ebay-final. Replication and clusters seem to be the most interesting topic right now.

26 | P a g e

http://de.slideshare.net/tesoracorp/5-hp-presentation-final
http://de.slideshare.net/tesoracorp/4-open-stack-trove-day-ebay-final
http://de.slideshare.net/tesoracorp/4-open-stack-trove-day-ebay-final

CERN openlab Summer Student Report 2014

5.1.1 Technical Aspects

During this project, more time than expected beforehand was spent on installing the test setup and

getting the basic configuration of Trove working. With this in mind, next time it might be better to

start with DevStack on an Ubuntu virtual machine—or what might be the preferred development

environment by then—to learn OpenStack and get familiar with its concepts. A single-machine

DevStack setup would be sufficient to evaluate the status of Trove and to test its features, as section 3.5

on page 23 showed. The installation on CERN’s preferred Linux distribution can be started afterwards,

when there are plans to integrate Trove into DBOD.

5.2 Docker on OpenStack

As mentioned in the introduction, DBOD is moving towards using machines managed by OpenStack.

Furthermore, DBOD could profit from another technology, which is working well together with

OpenStack. Docker [20] is an only 1.5 year old tool providing easy-to-deploy Linux containers which
is already used in some big software companies [21]. This is a virtualisation technique which doesn’t

rely on virtual machines but is working on kernel level using resource isolation features like cgroups

and namespaces [22]. As a result, the containers use the same kernel and operating system as the host.

This of course is less flexible as with fully-fledged virtual machines but much less resource intensive.

Thus, if for the present use case it is not necessary to have a different kernel or operating system,

Linux containers provide a good way to consolidate resources. For DBOD it would be perfectly

fine to run the database instances on the same operating system than the host, as this would be the

standard Scientific Linux CERN anyway.

Docker can be used as the underlying virtualisation technique for Nova in OpenStack. For users

of Nova and all other OpenStack components built upon Nova, this is transparent—except the fact

that the operating system cannot be chosen—making it possible that Trove can profit from this as

well. There has already been a lot of work on integrating Docker into OpenStack, and it seems to be

stable. Nitin Agarwal, a fellow CERN openlab summer student, has tested Docker and Docker on

OpenStack during his project. The results will be available in his report [23].

5.3 From Scientific Linux to CentOS

Until now, CERN has been using a variant of Scientific Linux (SL) for all Linux based installations,

called Scientific Linux CERN (SLC). As announced this year by the CERN IT Operating systems and

Infrastructure Services section (IT-OIS), the next major Linux release at CERNwill probably be based

on CentOS [24]. This change has been caused by Red Hat and CentOS joining forces [25]. CentOS

still is based on Red Hat Enterprise Linux, so any software running on SLC should be compatible

with the new CERN CentOS.

The scripts written during this project were not tested on CentOS but should as well be compatible.

Packstack runs on any Red Hat based Linux distribution, thus this part should not be a problem [26].

One issue that might arise is network namespaces not being supported by default, a feature of which

OpenStack’s network component Neutron and more precisely OpenVSwitch, makes heavy use. In

this case this feature has to be installed beforehand. See [27] and [28] for guidelines on how to detect

and solve this problem.

27 | P a g e

CERN openlab Summer Student Report 2014

Acknowledgements

I would like to thank everyone who was involved in making my stay at CERN and my work on this

project possible. The project was part of this year’s CERN openlab summer student programme

and belonged to CERN openlab’s partnership with Oracle. Hence, I would like to thank Oracle for

funding this project and CERN openlab for providing the basis for it. I thank my supervisor Ignacio

Coterillo Coz that he gave me the opportunity to work with him. Thanks for the guidance throughout

the whole time, the valuable discussions and the insights into DBOD. I would like to thank the whole

IT-DB group for welcoming me and the other summer students into the team, it was a great time.

I thank Giacomo Tenaglia from IT-DB for showing me the right way to reach the Trove community.

I am grateful for the hint from mikehn on the IRC channel #openstack-trove which helped me to
resolve one of the configuration issues. I thank Andrea Giardini who worked on OpenStack Trove as

a summer student last year, for providing his results and notes. And finally, I would like to thank the

CERN openlab management and administration team for the great work they did in preparing the

whole summer programme.

This report was written in LATEX using a template created by Kacper B Sokol.

28 | P a g e

https://github.com/So-Cool/LaTeX-report-template-CERN/

CERN openlab Summer Student Report 2014

A Appendix

A.1 Participation in the Community

ask.openstack.org The questions and answers contributed during this project can be found at

https://ask.openstack.org/en/users/7204/beni/.

A.2 Bug Reports

Four bug reports were filed against OpenStack’s documentation:

• Setting up Trove: Missing Configuration for Keystone Credentials https://bugs.launchpad.
net/openstack-manuals/+bug/1369116

• Setting up Trove: Missing Configuration Option for Taskmanager prevents it from starting

https://bugs.launchpad.net/openstack-manuals/+bug/1369119

• Setting up Trove: Refer to cloudinit for provisioning instances https://bugs.launchpad.
net/openstack-manuals/+bug/1369123

• Default region for the service endpoints is different for docs and Packstack/DevStack

https://bugs.launchpad.net/openstack-manuals/+bug/1369329

29 | P a g e

https://ask.openstack.org/en/users/7204/beni/
https://bugs.launchpad.net/openstack-manuals/+bug/1369116
https://bugs.launchpad.net/openstack-manuals/+bug/1369116
https://bugs.launchpad.net/openstack-manuals/+bug/1369119
https://bugs.launchpad.net/openstack-manuals/+bug/1369123
https://bugs.launchpad.net/openstack-manuals/+bug/1369123
https://bugs.launchpad.net/openstack-manuals/+bug/1369329

CERN openlab Summer Student Report 2014

References

[1] Ruben Domingo Gaspar Aparicio, Ignacio Coterillo Coz, Daniel Gomez Blanco and

David Collados Polidura. Database on Demand: a DBaaS story, Jun 2014. URL

http://indico.cern.ch/event/313869/.

[2] Solinea. OpenStack Grizzly Architecture (revisited), Jun 2013. URL

http://www.solinea.com/blog/openstack-grizzly-architecture-revisited.

[3] Dean Troyer. OpenStack - Seven Layer Dip as a Service, Sep 2013. URL http://hackstack.
org/x/blog/2013/09/05/openstack-seven-layer-dip-as-a-service/.

[4] Sean Dague. OpenStack as Layers, Aug 2014. URL

https://dague.net/2014/08/26/openstack-as-layers/.

[5] Tim Bell. A tale of 3 OpenStack clouds : 50,000 cores in production at CERN, Sep 2013. URL

http://openstack-in-production.blogspot.fr/2013/09/
a-tale-of-3-openstack-clouds-50000.html.

[6] Tim Bell. Managing identities in the cloud, Aug 2013. URL

http://openstack-in-production.blogspot.fr/2013/08/
managing-identities-in-cloud.html.

[7] Anastasios Andronidis. Cold start booting of 1000 VMs under 10 minutes, 2014. URL

https://openstacksummitnovember2014paris.sched.org/event/
6724030ccceb0b4ec1c694e09ce9a08b.

[8] Andrea Giardini. DBaaS with OpenStack Trove. Tech. Rep.

CERN-STUDENTS-Note-2013-179, CERN, Geneva, Sep 2013. URL

http://cds.cern.ch/record/1597972?ln=en.

[9] OpenStack community. TroveArchitecture, Dec 2013. URL

https://wiki.openstack.org/wiki/TroveArchitecture.

[10] Denis Makogon. OpenStack Trove Database-as-a-Service Overview, Nov 2013. URL

http://de.slideshare.net/mirantis/trove-d-baa-s-28013400.

[11] RDO Community. PackStack All-in-One DIY Configuration, Aug 2013. URL

https://openstack.redhat.com/PackStack_All-in-One_DIY_Configuration.

[12] OpenStack community. Install the Database service - OpenStack Installation Guide for Red

Hat Enterprise Linux, CentOS, and Fedora - icehouse, 2014. URL http://docs.openstack.
org/icehouse/install-guide/install/yum/content/trove-install.html.

[13] OpenStack communitiy. Manual Trove Installation, 2013. URL

http://docs.openstack.org/developer/trove/dev/manual_install.html.

[14] DevStack Community. DevStack – Deploying OpenStack for Developers, 2014. URL

http://devstack.org/.

[15] Stuart Colville. Howto: SSH into VirtualBox 3 Linux Guests, Feb 2010. URL

https://muffinresearch.co.uk/howto-ssh-into-virtualbox-3-linux-guests/.

30 | P a g e

http://indico.cern.ch/event/313869/
http://www.solinea.com/blog/openstack-grizzly-architecture-revisited
http://hackstack.org/x/blog/2013/09/05/openstack-seven-layer-dip-as-a-service/
http://hackstack.org/x/blog/2013/09/05/openstack-seven-layer-dip-as-a-service/
https://dague.net/2014/08/26/openstack-as-layers/
http://openstack-in-production.blogspot.fr/2013/09/a-tale-of-3-openstack-clouds-50000.html
http://openstack-in-production.blogspot.fr/2013/09/a-tale-of-3-openstack-clouds-50000.html
http://openstack-in-production.blogspot.fr/2013/08/managing-identities-in-cloud.html
http://openstack-in-production.blogspot.fr/2013/08/managing-identities-in-cloud.html
https://openstacksummitnovember2014paris.sched.org/event/6724030ccceb0b4ec1c694e09ce9a08b
https://openstacksummitnovember2014paris.sched.org/event/6724030ccceb0b4ec1c694e09ce9a08b
http://cds.cern.ch/record/1597972?ln=en
https://wiki.openstack.org/wiki/TroveArchitecture
http://de.slideshare.net/mirantis/trove-d-baa-s-28013400
https://openstack.redhat.com/PackStack_All-in-One_DIY_Configuration
http://docs.openstack.org/icehouse/install-guide/install/yum/content/trove-install.html
http://docs.openstack.org/icehouse/install-guide/install/yum/content/trove-install.html
http://docs.openstack.org/developer/trove/dev/manual_install.html
http://devstack.org/
https://muffinresearch.co.uk/howto-ssh-into-virtualbox-3-linux-guests/

CERN openlab Summer Student Report 2014

[16] DevStack Community, 2013. URL

http://devstack.org/guides/single-machine.html.

[17] Denis Makogon. Support single instance OracleDB, Feb 2014. URL

https://blueprints.launchpad.net/trove/+spec/oracle-db.

[18] Kevin Conway. Add support for postgresql databases, Nov 2013. URL

https://blueprints.launchpad.net/trove/+spec/postgresql-support.

[19] OpenStack Community. Trove/trove-capabilities, Jun 2014. URL

https://wiki.openstack.org/wiki/Trove/trove-capabilities#Capabilities.

[20] Docker. Docker - Build, Ship, and Run Any App, Anywhere, 2014. URL

https://docker.com/.

[21] Docker. Use Cases - Examples, 2014. URL https://docker.com/resources/usecases/.

[22] Docker Documentation. Kernel Requirements, Jan 2014. URL

http://docker.readthedocs.org/en/v0.7.3/installation/kernel/.

[23] Nitin Agarwal. Docker on OpenStack, 2014. URL

http://openlab.web.cern.ch/education/summer-students/reports?field_
published_date_value[value][year]=2014.

[24] CERN IT-OIS Linux. CC7: CERN CentOS 7, Aug 2014. URL

http://linux.web.cern.ch/linux/centos7/.

[25] CERN IT-OIS Linux. Scientific Linux @ CERN: Next Version, Aug 2014. URL

http://linux.web.cern.ch/linux/nextversion.shtml.

[26] RDO Community. Red Hat Deployed OpenStack, 2014. URL

https://openstack.redhat.com/Main_Page.

[27] Yanis Guenane. Enable network namespaces in CentOS 6.4, Nov 2013. URL

http://spredzy.wordpress.com/2013/11/22/
enable-network-namespaces-in-centos-6-4/.

[28] OpenStack Community. Does the CentOS/RHEL 6.5 kernel support namespaces?, 2014. URL

https://ask.openstack.org/en/question/10738/
does-the-centosrhel-65-kernel-support-namespaces/.

31 | P a g e

http://devstack.org/guides/single-machine.html
https://blueprints.launchpad.net/trove/+spec/oracle-db
https://blueprints.launchpad.net/trove/+spec/postgresql-support
https://wiki.openstack.org/wiki/Trove/trove-capabilities#Capabilities
https://docker.com/
https://docker.com/resources/usecases/
http://docker.readthedocs.org/en/v0.7.3/installation/kernel/
http://openlab.web.cern.ch/education/summer-students/reports?field_published_date_value[value][year]=2014
http://openlab.web.cern.ch/education/summer-students/reports?field_published_date_value[value][year]=2014
http://linux.web.cern.ch/linux/centos7/
http://linux.web.cern.ch/linux/nextversion.shtml
https://openstack.redhat.com/Main_Page
http://spredzy.wordpress.com/2013/11/22/enable-network-namespaces-in-centos-6-4/
http://spredzy.wordpress.com/2013/11/22/enable-network-namespaces-in-centos-6-4/
https://ask.openstack.org/en/question/10738/does-the-centosrhel-65-kernel-support-namespaces/
https://ask.openstack.org/en/question/10738/does-the-centosrhel-65-kernel-support-namespaces/

	1 Introduction and Motivation
	1.1 CERN Database on Demand Service
	1.1.1 Database on Demand Infrastructure

	1.2 OpenStack
	1.3 OpenStack at CERN
	1.4 OpenStack Trove: The Database Management Component

	2 Architectural Comparison of Trove and CERN Database on Demand
	3 Installation of OpenStack and OpenStack Trove
	3.1 Ways to Deploy OpenStack
	3.2 Diving into OpenStack or: Finding Help in the Community
	3.3 Installation of OpenStack
	3.3.1 Installation Script
	3.3.2 Installation Process
	3.3.3 Network
	3.3.4 Creation of Instances

	3.4 Installation of Trove
	3.4.1 Configuration
	3.4.2 Image Creation

	3.5 Installation with DevStack
	3.5.1 Prerequisites
	3.5.2 Configuration and Installation

	3.6 Usage of Trove

	4 Evaluation of Java Interfaces to OpenStack
	5 Conclusion and Future Prospects
	5.1 Further Suggestions for a Next Project on OpenStack Trove
	5.1.1 Technical Aspects

	5.2 Docker on OpenStack
	5.3 From Scientific Linux to CentOS

	Acknowledgements
	A Appendix
	A.1 Participation in the Community
	A.2 Bug Reports

	References

