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Abstract. Emerging cloud applications like machine learning and data
analytics need to process huge amount of data. Typical processor archi-
tecture cannot achieve efficient processing of the vast amount of data
without consuming excessive amount of energy. Therefore, novel archi-
tectures have to be adopted in the future data centers in order to face
the increased amount of data that needs to be processed. In this pa-
per, we present a novel scheme for the seamless deployment of FPGAs
in the data centers under the Spark framework. The proposed scheme,
developed in the VINEYARD project, allows the efficient utilization of
FPGAs without the need to change the applications. The performance
evaluation is based on the KMeans ML algorithm that is widely used
in clustering applications. The proposed scheme has been evaluated in
a cluster of heterogeneous MPSoCs. The performance evaluation shows
that the utilization of FPGAs can be used to speedup the machine learn-
ing applications and reduce significantly the energy consumption.
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1 Introduction

Machine learning, data analytics and Big Data are some of the emerging cloud
applications responsible for the significant increases in data-center workloads
during the last years. In 2015, the total network traffic of the data centres was
around 4.7 Exabytes and it is estimated that by the end of 2018 it will cross
the 8.5-Exabyte mark, following a cumulative annual-growth rate (CAGR) of
23% [1]. In response to this scaling in network traffic, data-centre operators
have resorted to utilizing more powerful servers. Relying on Moore’s law for the
extra edge, CPU technologies have scaled in recent years through packing an
increasing number of transistors on chip, leading to higher-performance ratings.
However, on-chip clock frequencies were unable to follow this upward trend due
to strict power-budget constraints. Thus, a few years ago a paradigm shift to
multicore processors was adopted as an alternative solution for overcoming the
problem. With multicore processors one could increase server performance with-
out increasing their clock frequency. Unfortunately, this solution was soon found
to scale poorly in the longer term, as well. The performance gains achieved by
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adding more cores inside a CPU come at the cost of various, rapidly scaling com-
plexities: inter-core communication, memory coherency and, most importantly,
power consumption [2].

The failure of Dennard scaling, to which the shift to multicore chips is par-
tially a response, has limited multicore scaling just as single-core scaling has
been curtailed. This issue has been identified in the literature as the dark-silicon
era in which some of the areas in a chip are kept powered down in order to
comply with thermal constraints [3].

A solution that can be used to overcome this problem is the use of application-
specific accelerators. Specialized multicore processors with application-specific
acceleration modules can leverage the underutilized die area to overcome the
initial power barrier, delivering significantly higher performance for the same
power envelope [4]. The main idea is to use the abundant die area by implement-
ing application-specific accelerators and dynamically powering up only those ac-
celerators suitable for a given workload. This approach can be applied either
at fine-grain level (using accelerators inside the chip) or at coarse-grain level
(using rack-based accelerators). In the latter case, the accelerators can either be
located on the same board with the server processor or in a different blade/rack.
The use of highly specialized units designed for specific workloads can greatly
enhance server processors and can also increase significantly the performance of
data centres subject to a maximum power budget.

The VINEYARD project aims towards the development of an integrated
platform for the efficient utilization of hardware accelerators in the data centers.
VINEYARD aims to develop an integrated platform for energy-efficient data
centers based on programmable hardware accelerators. It also developed a high-
level framework for allowing end-users to seamlessly utilize these accelerators
in heterogeneous computing systems by using typical data-center programming
frameworks (e.g. Spark, etc.).

2 VINEYARD project

VINEYARDs goal is to develop the technology and the ecosystem that will en-
able the efficient integration of the hardware acceleration in the data centre
applications, seamlessly. The deployment of energy-efficient hardware accelera-
tors will be used to improve significantly the performance of cloud computing
applications and reduce the energy consumption in data centres.

VINEYARD is developing an integrated framework for energy-efficient data
centres based on programmable hardware accelerators. It is working towards a
high-level programming framework that allows end-users to seamlessly utilize
these accelerators in heterogeneous computing systems by using typical data-
centre cluster frameworks (i.e. Spark). The VINEYARD framework and the re-
quired system software hides the programming complexity of the heterogeneous
computing system based on hardware accelerators. This programming frame-
work also allows, the hardware accelerators to be swapped in and out of the
heterogeneous infrastructure so as to offer both efficient energy use and flexibil-
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Fig. 1. High-level block diagram of the VINEYARD library for seamless integration
with programming frameworks

ity. To allow the efficient utilization of the accelerators from several applications,
a novel VM appliance model for provisioning of data to shared accelerators has
been developed. The enhanced VINEYARD middleware augments the function-
ality of the resource manager, by enabling more informed allocation of tasks to
accelerators.

Figure 1 depicts the high-level overview of the VINEYARD library. Appli-
cations that are targeting heterogeneous data centers using traditional servers
or micro-servers are programmed using traditional data center frameworks, such
as Spark, or more application specific frameworks such as the PyNN framework
that is used for neural networks. In these applications, VINEYARD provides the
required APIs that enable the utilization of the heterogeneous infrastructures
without any other modifications in the source code.

The figure shows all the layers of the controllers developed in VINEYARD for
the efficient communication of the FPGAs with the programming frameworks.
The controllers that we developed support the Xilinx Zynq platforms. We created
a unified software stack, tailored to our new needs, that would be able to support
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expansions for supporting more platforms or new accelerators. The FPGA driver
API is packed in a shared object library and can be used in a transparent way
hiding all the low level details. What is more, we implemented top level APIs
in Python for standalone and Apache Spark integrated use, that are easy to be
used and are also easily maintained since the middle layer, our shared library
remains the same for all of the above. In other words, we implemented a 3-tier
style software stack. The top level hosts the users’ applications, the middle layer
hosts our libraries and the lower layer hosts the SDSoC-HLS API which is used
to actually invoke the accelerator. This 3-tier scheme has a lot of advantages
which we will go through in more detail in the next paragraphs.

Application Layer: This layer hosts users’ applications. The applications can
run natively using Python. Users are able to perform a plethora of methods
(i.e. train(), test(), load() etc.) on their machine learning models. Users already
having their machine learning applications running standalone or in an Apache
Spark cluster, don’t need to change a single line of code except from the im-
ported library. Except from that, changes in the lower layers of our stack won’t
affect this. This way we are able to make changes, optimize and add stuff or
functionality to our libraries and drivers without affecting any top-level applica-
tions.

Vineyard Layer: This layer hosts the whole functionality of our framework.
The key element of this layer is the implemented shared library (libVine.so).
It hosts the FPGA drivers for each application, written in C/C++ and is
used to communicate with the SDSoC - HLS API. Each kernel driver (e.g cen-
troids driver) invokes the corresponding FPGA kernel to perform the requested
tasks.

SDSoC-HLS API and FPGA layer: The bottom layer, that serves as the
FPGA runtime, is basically consisted of the SDSoC-HLS library that is provided
from Xilinx along with the FPGA itself hosting any implemented kernels.

3 Seamless deployment of FPGA under Spark: A use-case
on KMeans clustering

In this section we present a use-case for the evaluation of the VINEYARD frame-
work under the Spark framework. Apache Spark [5] is one of the most widely
used frameworks for data analytics. Spark has been adopted widely in recent
years for big data analysis by providing a fault-tolerant, scalable and easy to use
in-memory abstraction.

Specifically, Spark provides programmers with an application programming
interface centered on a data structure called the resilient distributed dataset
(RDD). RDD is a read-only multiset of data items distributed over a cluster
of machines, that is maintained in a fault-tolerant way [6]. It was developed in
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Fig. 2. VINEYARD’s library for the deployment of FPGAs in the Spark library

response to limitations in the MapReduce cluster computing framework, which
forces a particular linear dataflow structure on distributed programs. MapReduce
programs read input data from disk, map a function across the data, reduce the
results of the map, and store reduction results on disk.

In the typical case, the Spark application invokes the Spark MLlib and this
library utilizes the Breeze library (a numerical processing library for Scala).
Breeze library invokes the Netlib Java framework that is a wrapper for low-
level linear algebra tools implemented in C or Fortran. Netlib Java is executed
through the Java Virtual Machine (JVM) and the actual linear algebra tools
(BLAS - Basic Linear Algebra Subprograms) are executed through the Java
Native Interface (JNI).

All these layers add significant overhead to the Spark applications. Especially
in applications like machine learning, where heavy computations are required,
these layers add significant overhead to the computational kernels. Most of the
clock cycles are wasted for passing through all these layers.

In this project, we have developed the required APIs for python and C that
allows the direct invoking of the hardware accelerators from the python level
used in Spark. The Python API is used for each accelerator that is used for the
communication with the hardware accelerator. Each Python API is communicat-
ing with the C library that serves as the hardware accelerator driver. Therefore,
the only modification that is required is the extension of the Python library with
the new function calls for the communication with the hardware accelerator.

The utilization of hardware accelerators directly from Spark has two major
advantages; firstly, the application in Spark remains as it is and the only mod-
ification that is required is the replacement of the machine learning library’s
function with the function that invokes the hardware accelerator. Secondly the
invoking of the hardware accelerators from the Python API eliminates many of
the original layers thus making faster the execution of these tasks. The Python
API invokes the C API that serves as a hardware acceleration’s library.

3.1 Python API for Spark

Most machine learning techniques have a common characteristic that makes
them ideal as means to explore the performance benefits of our heterogeneous
cluster. They are iterative algorithms that make multiple passes over the data set,
while also allow the computations in each iteration to be performed in parallel
on different data chunks.
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In KMeans, for example, the computation of the partial sums and counts for
each new cluster is performed on the available Workers, and then the Master
aggregates the results and calculates the new centroids.

Taking into account and understanding the structure of Sparks MLlib, we
developed new libraries for KMeans clustering, that take advantage of the accel-
erator that is available in the workers. As a result, when a Spark user wants to
utilize the hardware accelerator in an existing application, the main change that
needs to be made, is the replacement of Sparks mllib library, that is imported,
with our mllib accel one. Therefore, a user can speedup the execution time of a
Spark application by simply replacing the library package.

The first approach was to simply replace the mapper functions (centroids kernel)
with Python APIs that drive the hardware accelerators. Inside these new func-
tions we used to download the equivalent overlay, create the necessary DMA ob-
jects, store the data inside the corresponding buffers, perform the DMA transfers
and finally destroy them, free the allocated memory and return the results. After
profiling the applications though, we concluded that most of the time (99%) is
wasted on writing the train RDD data to the allocated DMAs buffers.

However, since the data remain the same (cached) over the whole execution
of the training, we have managed and implemented a novel scheme that allows
the persistent storing of the RDD in contiguous memory, avoiding in-memory
transfers every time the accelerator is invoked. For this reason, we developed a
new mapper function that allocates and fills contiguous memory buffers with the
training data, in order to remain there for the rest of the application execution.
So when the DMA objects are created in each iteration, there is no need to
create new buffers for them and fill them with the corresponding data, they just
get assigned the previously created ones. Also, before destructing these DMA
objects, their assigned buffers are set to ’None’, so that they remain intact and
are not freed as it is shown in Figure 3.

Based on the above, we have created Python APIs which basically consist of
three calls:

– cma (contiguous memory allocate): This call is used for the creation of the
buffers and the further allocation of contiguous memory. Also at this point
the overlay is downloaded and the training data is written to the correspond-
ing buffers. Using cma, a new RDD, which contains only information about
these buffers (memory addresses, sizes, etc.), is created and persisted.

– kernel accel (centroids): In this call, the DMA objects are created using
Xilinxs built-in modules and classes; previously allocated buffers are assigned
to DMAs, current weights/centers are written in memory and finally data
are transferred to the programmable logic. Counts and sums are computed in
return, buffers are dis-assigned from DMAs and the last ones are destructed.

– cmf (contiguous memory free): This call is explicitly used to free all previ-
ously allocated buffers.

It is important to note that the above demonstrated APIs are Spark inde-
pendent and can be used in any python application.
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Original flow of transfer Optimized version

Fig. 3. Flow of the original and optimized method for the DMA transfers to the accel-
erator

4 Use-case on Machine Learning under Spark

To evaluate the proposed framework, we have developed a hardware accelerator
for KMeans clustering and more specifically for the computation of the centroids.
The hardware accelerator has been implemented using the Xilinx Vivado High-
Level Synthesis (HLS) tool. The algorithm have been written in C and has been
annotated with HLS pragmas for the efficient mapping in reconfigurable logic.

4.1 Algorithmic approach of KMeans

KMeans is one of the simplest unsupervised learning algorithms that solve the
well known clustering problem and is applicable in a variety of disciplines, such
as computer vision, biology, and economics. It attempts to group individuals in
a population together by similarity, but not driven by a specific purpose.

The procedure follows a simple and easy way to cluster the training data
points into a predefined number of clusters (K). The main idea is to define K
centroids c, one for each cluster.

Given a set of numExamples (n) observations {x0, x1, , xn−1}, where each
observation is an m-dimensional real vector, KMeans clustering aims to partition
the n observations into K (≤ n) sets {s0, s1, , sK−1} so as to minimize total intra-
cluster variance, or, the squared error function:

J =

K∑
k=1

∑
x∈sk
||x− ck||2

The KMeans clustering algorithm is as follows:
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1 : procedure train(x)
2 : initialize c with K random data points
3 : while not converged:
4 : centroids kernel(x, c)
5 : for every k = 0, ...,K − 1:
6 : ck = 1

|sk|
∑

x∈sk x

7 : procedure centroids kernel(x, c)
8 : for every k = 0, ...,K − 1:

9 : sk =
{
x :
∥∥x− ck

∥∥2 ≤ ∥∥x− ck
′∥∥2 ∀k′, 0 ≤ k′ ≤ K − 1

}
The algorithm as described, starts with a random set of K centroids (c).

During each update step, all observations x are assigned to their nearest centroid,
while afterwards, these center points are repositioned by calculating the mean
of the assigned observations to the respective centroids.

5 Performance evaluation

As a case study, we built a KMeans clustering model with 784 features and 14
centers, using 40k available training samples, for a handwritten digits recognition
problem. The data are provided by Mixed National Institute of Standards and
Technology (MNIST) database [7]. To evaluate the performance of the system
and to perform a fair comparison we built a cluster of four nodes based on the
Zynq platform and we compared it with four Spark worker nodes using the Intel
Xeon cores [8]. Table 1 shows the features of each platform.

It is important to note that a single Spark executor JVM process requires
most of the available 512 MB RAM on PYNQ-Z1s, placing a restriction on
the Spark application, which requires main memory to cache and repeatedly
access the working dataset from FPGAs off-chip RAM once read from HDFS.
This results in delays during the execution as inevitably are performed transfers
between the memory and the swap file, which is stored inside the SD card.
This memory restriction is also the reason why we limit the number of Spark
executors to 1 ARM core per node, thus preventing both cores from performing
Spark tasks simultaneously.

On the other hand, the Xeon system consists of 12 cores with 2 threads each
core. The Spark cluster started on this platform allocates 4 out of 24 threads, as
worker instances, in order to compare it with the 4 nodes of the Pynq cluster.
We also compared the accelerated platform with the software only scenario in
which the algorithm is executed only on the ARM cores. Such comparison is
valuable as there are applications where only embedded processors can be used
and big-core systems like Xeon cannot be supported due to power constraints.

5.1 Latency and Execution time

Figure 4 depicts the execution time of the KMeans clustering application running
on a high-performance x86 64 Intel processor (Xeon E5 2658) clocked at 2.2 GHz
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Table 1. Main features of the evaluated processors.

Features Xeon Zynq

Vendor Intel ARM

Processor E5-2658 A9

Cores (threads) 12(24) 2

Architecture 64-bit 32-bit

Instruction Set CISC RISC

Process 22nm 28nm

Clock Frequency 2.2 GHz 667 MHz

Level 1 cache 380 kB 32 kB

Level 2 cache 3 MB 512 kB

Level 3 cache 30 MB -

TDP 105 W 4 W

Operating system Ubuntu Ubuntu

25 50 75 100 125 150
0

100

200

300

400

500

600

0x 

1x 

2x 

3x 

4x 

KMeans (1 Master / 4 Workers)

SW-only (Intel XEON) HW accelerated Speedup

iterations

Ti
m

e
 (

se
c)

Fig. 4. KMeans speedup versus the number of the iterations (Intel XEON vs Pynq).

and a Pynq cluster which makes use of the Programmable Logic, for an input
dataset of 40000 lines splitted in chunks of 5000 lines, for various numbers of
iterations. In the PYNQ-Z1 boards the data extraction part, for the KMeans
clustering, takes about 80 sec to complete, while every iteration of the algorithm
is completed in 0.54 sec, since the train input data is already cached into the
previously allocated buffers. On the other hand, Xeon CPU reads, transforms
and caches the data in only 7.5 sec, but every iteration takes approximately
3.3 sec. This is the reason why the speedup actually depends on the number of
iterations that are performed. For this specific example the LR model converges,
and achieves up to 91.5% accuracy, after 100 iterations of the algorithm, in which
up to 2x system speedup is achieved compared to the Xeon processor. However,
there are cases in which much higher number of iterations is required, until the
convergence criteria is met, and thus much higher speedup can be observed.
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Table 2 shows the execution time of the main mapper functions which are
executed on the worker nodes. In the Xeon platform and the ARM-only case,
both the data extraction and the algorithm computations are performed on the
CPUs, while in the Pynq workers the data extraction is executed on the ARM
core while the algorithmic part is offloaded to the programmable logic. Figure
5 show the speedup of the accelerated execution compared to the software only
solution running on the same cluster but using only the ARM processors. In this
case, we can achieve up to 31x for KMeans, compared to the software only case,
which shows that it is definitely crucial to provide accelerator support for future
embedded datacenters.

Worker Data KMeans Algorithm Computations
Type Extraction (per iteration)

Intel XEON 7.5 3.3

ARM 80 41.5

Pynq 80 (ARM) 0.54 (FPGA)

Table 2. Execution time (sec) of the worker (mapper) functions.

5.2 Power and energy consumption

To evaluate the energy savings we measured the average power running the algo-
rithm both in the SW-only, and the HW accelerated cases. In order to measure
the power consumption of the Xeon server, we used Intels Processor Counter
Monitor (PCM) API, which, among others, enables capturing the power con-
sumed by the CPU and DRAM memory for executing an application. We also
measured the power consumption in the accelerated case using the ZC702 Eval-
uation board, which hosts the same Zynq device as the PYNQ-Z1 board, taking
advantage of the on-board power controllers.
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Fig. 6. KMeans energy consumption based on the number of iterations (Intel XEON
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Fig. 7. KMeans energy consumption based on the number of iterations (ARM vs Pynq).

Figure 6 show the energy consumption of the Xeon processor compared to
the Pynq cluster. The average power consumption of the Xeon processor and
the DRAMs is 100 Watt, while a single Pynq node (both the AP SoC and
the DRAM) consumes about 2.6 Watt during the data extraction and 3.2 Watt
during the hardware computations. In that case, we can achieve up to 23x better
energy efficiency due to the lower power consumption and the lower execution
time.

In Figure 7 is depicted the energy consumption comparison between the
SW-only (ARM) and HW-accelerated execution of the application on the Pynq
cluster. It is clear that the average power consumption of the accelerated case
is slightly higher than the power consumption of the ARM-only one, because
of the need to power supply also the programmable logic. However, due to the
significant much higher execution time of the ARM-only solution, eventually, up
to 29x lower energy consumption is achieved.
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6 Conclusions

The main goal of the VINEYARD project is to develop a new framework for
the efficient integration of accelerators into commercial data centres. The VINE-
YARD project will not only develop novel accelerator-based servers but will also
develop all the required systems (hypervisor, middleware, APIs and libraries)
that will allow the users to seamlessly utilize the accelerators as an additional
cloud resource. The efficient utilization of accelerators in data centres will sig-
nificantly improve the overall performance of cloud-based applications and will
also reduce the energy consumption in the data centres. Finally, VINEYARD
aspires to foster the innovation of soft-IP accelerators in the domain of cloud
computing by the promotion of a central repository for the hosting of the rele-
vant accelerators.
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