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Orbital limited motion theory has been applied to two biased probes in a low beta

Polywell. The cases studied include electron injection, magnetic field scaling, Polywell

bias scaling, and radial position profiles. Langmuir’s original orbital limited motion

results for a monoenergetic electron beam are shown to be in excellent agreement

for electron injection into the Polywell. A distribution function is proposed for the

electron plasma characteristics in the centre of the magnetic null and confirmed with

experimental results. A translational stage was used to measure the radial plasma po-

tential profile. In other experiments two probes were used to simultaneously measure

the profiles in both the null and a position halfway along a corner cusp. The results

confirm a radial potential well created by electron trapping in the device. In addition,

we present preliminary results of the potential well scaling with the magnetic field,

Polywell bias voltage, and the injected beam current. The electron population was

found to maintain non-equilibrium in all cases studied.
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I. THE POLYWELL CONCEPT

The Polywell is a hybrid fusion device based on concepts from inertial electrostatic con-

finement (IEC)1–3,5–8 and cusped magnetic confinement fusion9,10. The Polywell11–14,16–18

uses a cusped magnetic field to trap electrons that create a negative spherical potential

well for trapping positive ions. Ions created at the edge of the device are accelerated to

fusion relevant energies and confined by the potential well. The magnetic field required for

trapping energetic electrons is much less than the corresponding B needed for energetic ions

because of the much larger charge to mass ratio, q/m, of the electrons. Hence in principle

the problem of trapping energetic ions is replaced by the problem of energy loss by electron

transport across field lines. The use of this concept is aimed at solving a key limitation

discovered in gridded IEC systems through the formation of a virtual cathode4,5.

The unique magnetic field configuration of the Polywell is created by pairs of opposing

current loops, each creating a cusp about the origin. In the cube configuration each pair

of loops is centred on a Cartesian axis such that each loop is on a face of the cube. The

opposing contributions from each current loop cancel out in the centre of the device creating

a magnetic null point. The resulting field acts like a magnetic well and a proportion of the

electron population is confined by the magnetic mirror effect19. The magnetic field structure

of the Polywell is shown in Figure 1 overlaid with the magnetic field lines. By using a virtual

cathode there is no longer a loss surface embedded within the plasma. The outer grid that

contains the magnetic field coils is effectively isolated by the magnetic field it creates14.

Further improvement to confinement may occur at high densities where diamagnetic effects

are expected to push out the fieldlines into a Wiffleball configuration14. In this mode,

normal mirror confinement would be replaced by ballistic “Wiffleball” confinement leading

to reduced energy loss.

A biased probe diagnostic enables a number of parameters to be measured that are crucial

to a Polywell’s performance. A single ended Langmuir probe provides a local measurement of

the plasma potential at the probe position and hence can be used to directly map the spatial

potential profile within the device. Characterising the potential well structure is crucial to

any experimental study of the Polywell because the formation of a deep virtual cathode is in-

tegral to the operation of a Polywell14. In addition, a biased probe allows the determination

of the Electron Energy Distribution Function (EEDF) and electron density, ne. Understand-
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ing the EEDF is critical for measuring the relative energy components for monoenergetic

(beam like) and thermal motion. In an ideal Polywell electrons would be monoenergetic to

avoid large energy losses through energy upscattering. However in any real plasma system

we expect thermalisation to occur, hence we also want to measure the temperature of the

electrons, Te. Rosenberg and Krall have theoretically proposed that the Polywell should

be able to support a non-maxwellian plasma on moderately long time scales20. Measuring

the ratio of the monoenergetic and thermal components of the electron energy distribution

enables the degree of thermalisation in the plasma to be determined and is important for

determining whether a monoenergetic electron population can be sustained20.

A biased cylindrical Langmuir probe can be used to measure all of these parameters but

is not usually applied to experiments with a high (keV) electron energy or with a magnetic

field. At the high bias voltages required for measuring keV electrons the probe can create its

own discharge corrupting the results. However the underlying confinement properties scale

with magnetic field strength and energy, and thus can be studied with low energy electrons

without fundamentally changing the physics.

In magnetic fields the analysis of biased probes can become extremely complicated and

sometimes intractable. In general, there is no exact theory about the interpretation of the

current versus voltage I(V) trace of a single ended Langmuir probe in a magnetic field.

However, the Polywell has a magnetic null in the centre of the device which can be used

to exactly characterise the electron parameters. The magnetic field varies with r3 radially

outwards from the null, and hence we can use a second probe to measure the gradual change

in the I(V) traces, assuming the deviation due to the presence of the magnetic field is initially

small. Eventually one expects the I(V) trace to slowly diverge from the theoretically expected

curve, producing increasingly larger errors.

The only previous experiment to measure the plasma potential of the Polywell was per-

formed by Krall using a capacitive probe13. The capacitive technique is expected to be

superior in larger fusion relevant Polywells where large electron energies and higher electron

densities may make the single biased probe method unusable. However, when the physics

is scaled down to a comparatively low electron energy and magnetic field regime the biased

probe method is advantageous because of its measurement accuracy and scope of parameters

measured.

The principle aim of this work is to apply two biased probes to measure the radial poten-

3



tial well profile as a function of other parameters such as magnetic field, injection current

and injection energy. We will also present preliminary measurements of the way the poten-

tial well scales with the Polywell bias voltage and magnetic field strength. Furthermore, we

will comment on the relationships between other parameters measured such as the electron

density, mean energy and thermal energy component.

II. EXPERIMENTAL SETUP

The Polywell was constructed from 6 coils each with 15 turns of enamelled copper wire.

These coils were mounted into coil formers that were Aluminium torus shells made using a

metal spinning procedure. The coils were driven from a pulsed current power supply that

consisted of a 7.5 mF capacitor bank, which could be charged to a maximum voltage of

450 V. The capacitors were discharged into the Polywell coils through a triggered silicon

controlled rectifier (SCR). The peak current attainable varied between 50 A and 2.5 kA by

changing the voltage applied to the capacitors. A second power supply utilised two 12 V car

batteries in series, with an SCR to provide a pulsed constant current source with current

range 0 to 50 A.

The Polywell was mounted on a cross-beam in the centre of a cylindrical vacuum chamber,

see Figure 2. The electron guns were 6 light bulb filaments, each mounted so as to be centred

on a coil face at a distance of 2 cm from the outside plane of a coil face. The toroidal

Aluminium shells of the coils were biased with a positive potential in order to extract the

electrons from the filaments and to accelerate them into the interior of the device. Although

it might be advantageous in future to employ a more sophisticated 3 terminal configuration,

this design was chosen to mimic Bussard’s original WB6 configuration14. Despite the fact

that the experiment included a mass flow system for injection of hydrogen gas, all results

reported in this paper were carried out in moderate vacuum conditions with a pressure

< 10−5 Torr. For simplicity, our initial experiments were aimed at determining the electron

behaviour in the absence of any background gas.

Two cylindrical Langmuir probes were constructed from tungsten wire with a radius

rp = 50 µm and mounted into ceramic tubing with a 0.8 mm outer diameter. The part of

the tungsten wire that extends into the plasma is the probe length, lp = 5 mm. Probe A

was mounted onto a translation stage with a total travel distance of 5.5 cm and moved in 3
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mm increments. It was positioned along a coil axis so that the extremities of translation are

the geometric centre of the Polywell and a location just outside the Polywell coils. Probe A

was at an angle of 8° to the coil axis so that it did not block the filament that was the source

of electrons to this face of the Polywell. An additional reason for having a small angle is

so that the probe crosses more magnetic field lines. Electron transport along magnetic field

lines is much faster than cross field transport. This is expected to accelerate space potential

build up across field lines and would result in a larger potential difference than would occur

along a point cusp. Probe B is permanently mounted in alignment with a corner cusp and

located halfway along the Polywell radius.

Both probes were driven from a PA241 high voltage op-amp. An Arduino Mega 2560

was used as a configurable function generator for controlling parameters such as sweep time,

pulse height and shape, etc. Both probes were swept from -140 V to +140 V in a sweep time

of 100 µs. Current signals were measured directly on an oscilloscope. Current resolution of

up to 1 µA was possible. The driving circuit is shown in Figure 3, which also features a

two pole Bessel filter for noise suppression.

III. ORBITAL LIMITED MOTION LANGMUIR PROBE THEORY

The most appropriate type of theory to use is an orbital limited motion theory which was

originally described by Langmuir and Mott-Smith23. Based on the emission current of our

filaments, we expect to observe densities between 108-109 cm−3 at energies that give us debye

lengths, λd, ranging from 2 cm down to 1 mm. Hence it is assumed that the device radius

Rdevice > λd � rp at all times. In the low density limits we expect to have inaccuracies

when the λd is almost as large as the device. However, even before this limit is reached, the

characteristic curve will start to deviate from the theory as λd ≈ lp and the infinite cylinder

approximation is no longer applicable. It was assumed that the sheath around a probe has

a sharp edge boundary. The potential at this boundary was considered to be the plasma

potential.

We also assumed that the electron plasma is collisionless such that the electron motion in

the sheath around the probe can be described by free orbits. Because rp � lp we can assume

the sheath is cylindrically symmetric and probe end effects can be ignored. Consequently,

the conditions that determine whether an electron will reach the collector for a given voltage
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depend only on the space potential and initial electron velocity at the sheath edge. Therefore

the total I(V) curve for electron current collected at the probe is determined by summing the

contributions from the electron distribution function with the appropriate initial conditions.

The resulting equation is only a function of the potential across the sheath and the sheath

radius. For the calculation to be exact it is also necessary to solve Poisson’s equation for the

space charge in the sheath. This approach has been carried out on a number of occasions26

however we will assume that the problem is independent of sheath size and focus on orbital

limited motion.

In cylindrical symmetry the current is calculated in a 2D plane intersecting the probe,

giving current per unit probe length, I/l. The velocity co-ordinates u and v are defined as

the radial and tangential velocity components, respectively, of an electron arriving at the

probe sheath. The velocity distribution function, f(u, v) is normalised such that

nef(u, v)dudv, (1)

gives the number of electrons per unit volume with velocity components in du and dv.

Therefore, the number of electrons in unit time that arrive at the sheath edge with velocities

in du and dv are

2πaneuf(u, v)dudv, (2)

where a is the sheath radius and ne is the electron density. In its current form, this equation

is challenging to use because the sheath radius is an unknown. However, Langmuir has

shown23 that in the limit of an infinite sheath, equation 2 approaches a limiting form. By

taking the limit of a large sheath in equation 2, multiplying by the charge q, length lp,

and integrating over the limits of velocity for electrons that can reach the probe, Langmuir

obtained the general form for the current collected by a cylindrical probe23.

I(V ) = 4πrplpneq

∫ ∞

0,v0

u

√
u2 +

2q(V − Vp)

me

f(u, 0)du. (3)

Here V is the probe bias voltage. The lower boundary of velocity integration is split based

on whether the probe is attractive or repulsive with respect to the local plasma potential, Vp.

When the probe is attractive, V > Vp, the lower bound is 0 since all electrons have enough

energy to potentially reach the probe surface. However, when the probe is negatively biased,

V < Vp, electrons must have at least some critical minimum energy in order to overcome the
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repulsive field from the probe and reach the probe surface. This critical minimum energy

is determined by the voltage difference between the probe and the plasma, and can be

expressed as a minimum velocity v0, where

v0 =

√
2q(V − Vp)

me

. (4)

This equation was used by Langmuir and Mott-Smith23 to derive the ubiquitous maxwellian

Im(V ) characteristic as well as the Ib(V ) for a one dimensional beam. However, these re-

sults are only applicable in plasmas with the appropriate distribution functions and become

meaningless in plasmas where extra complicating factors such as a magnetic field can sig-

nificantly alter the EEDF. To make the process of analysing the probe data tractable it is

important to build up information about the EEDF at each phase of progressively more

complex plasma conditions.

In the case of the Polywell this means at first understanding and confirming the char-

acteristics of the electrons being injected into the Polywell. This information can be used

to approximate the EEDF in the centre of the well when a relatively weak magnetic field

is applied. And finally we can build on these results to make measurements of electrons in

a moderate magnetic field. At each stage the base I(V ) equation (3) for the biased probe

response can be directly modified for the specific plasma conditions anticipated. As long as

the expected distribution function is known we can integrate this function numerically and

compare it with the data, and use it to fit plasma parameters to the measured I(V ) data.

IV. MEASUREMENTS OF ELECTRON INJECTION

The electron source (the heated filament) was at ground potential. Electrons were ex-

tracted and accelerated by the electrostatic potential placed on the metal casing of the

Polywell field coils, thus accelerating the electrons in a direction that is normal to the plane

of the coils. As a result, the energy distribution function of the electron beam was expected

to be monoenergetic. However, one can also expect some spreading in this energy distri-

bution due to interactions of the electrons with the local space charge established by the

beam.

We have assumed that the magnetic field lines at the centre plane of a coil, and therefore

approximately parallel to the direction of motion of the beam, would not change the energy
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distribution greatly. As a result, we approximated the electron distribution function as that

given by Langmuir23 for a beam of electrons with a Maxwellian energy component given by

fb(u, v, θ) =
me

2πkT
exp{− me

2kT
(u2 + v2 + u2

d

−2ud(u cos θ + v sin θ))}, (5)

where ud is the drift velocity of the beam. The coordinate θ is the angle between the beam

axis along ud and the radial velocity coordinate, u, with respect to the sheath. In the limit of

a large sheath, the sheath can be approximated as being circular. Hence the probe current is

found by using fb(u, v, θ) in Equation 3 and integrating around the sheath circumference23,

Ib(V ) = 2πrplpneq∫ 2π

0

∫ ∞

0,v0

u

√
u2 +

2q(V − Vp)

me

fb(u, 0, θ)dudθ. (6)

When the probe is at the plasma potential Vp, the collected probe current can be approx-

imated as

I0 =
1

4
Apneqc̄ (7)

where Ap is the probe surface area and c̄ is the mean speed of the electron distribution27.

In the case of the beam distribution fb, c̄ = ud.

Equation 6 cannot be evaluated analytically. Heatley24 has found an exact series solution

but it converges very slowly when the drift velocity is large compared with the thermal

velocity. Since this scenario is expected in our situation, we have obtained solutions through

numerical evaluation of equation 6.

The measured I(V) data was filtered using a moving window average combined with

a Svatsky and Golay filter21,22. The data was fitted using the standard non-linear fitting

tools available in Mathematica. The only constraint applied to the fitted model was that

Vp < Vbias, since it is not possible for the plasma potential Vp to be more positive than the

Polywell bias potential Vbias in an electron only plasma.

A sample fit is shown with the fitted parameters in Figure 4. All fit parameters are

reported in their voltage equivalent energies to make for easy comparisons with other ex-

perimental parameters. If electrons are accelerated from ground through to Vp then they

are expected to have a monoenergetic drift energy, Vd, close to but less than Vp, which is

observed. Since the electron density and beam transit times are small, such that the electron
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collision frequency is negligible, we also expect the thermal energy component, Vth, to be

much less than the drift energy. The fitted parameters are in the order Vbias > Vp > Vd � Vth,

and support the hypothesis that this experimental setup results in a beam of monoenergetic

electrons with a very small thermal energy.

A further justification for the use of the drift maxwellian distribution over the most

commonly occurring normal maxwellian distribution, fm, is now given by examining the dif-

ferences between both I(V ) characteristics. The characteristic I(V ) for fm, Im(V ), consists

of two regions, one on either side of the plasma potential. The Im(V ) is ∝ eV when the

probe is repulsive, and ∝
√
V when attractive. The plasma potential can then be found by

plotting the double derivative, d2I/dV 2, and finding the zero crossing point which is equal

to Vp. This is because the two halves of the Im(V ) around Vp have opposite curvature. By

following this standard procedure we can show that our data differs substantially from the

normal maxwellian characteristic, Im(V ), and hence a poor fit was obtained. There is sig-

nificant deviation in the fit residuals around the Vp given by d2I/dV 2 = 0. This procedure

proved that the standard maxwellian distribution is not suitable, but does not prove that

the drifting maxwellian is the best choice.

Because of the complex geometry this is likely to be an oversimplification and other

distributions could arise. In some cases, in particular cases with low extraction voltage, an

appropriate fit to either distribution could not be obtained. Consequently, one must assume

there might be another more appropriate distribution. Consider that at lower extraction

voltages space charge effects can significantly alter the distribution shape. A 1D vacuum

diode approximation to this geometry suggests space charge effects may occur in the lower

extraction voltage range of this experiment.

V. WITH B AND WITHOUT B TEST CASES

By building on the information learned about the EEDF of extracted electrons in the

previous section, we can now begin to analyse how a biased probe will respond when placed

in the magnetic null at the centre of the device. When the magnetic field is turned off,

Bpeak = 0, we can use the same drifting maxwellian as that given in Eqn. 6. However, when

the magnetic field is turned on, one needs to take into account the effects of the magnetic

field structure on the EEDF in the null. As discussed in a previous paper17, the magnetic
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null region causes an electron beam to become defocused and undergo ballistic collisions

around the adiabatic flux surface. This ballistic scattering effect leads to an electron energy

distribution that is isotropic and predominantly monoenergetic with a narrow spread of

electron energies due to thermalisation. These assumptions are expected to be valid only

in the absence of space charge effects for a low density electron plasma, which were the

experimental conditions reported in this paper. The resulting distribution could be described

as a maxwellian with an isotropic mean offset energy, Vµ. The distribution we propose is

fµ(vr) = e−
m(vr−vµ)2

2σ2 (8)

where vr is the velocity component along the radial coordinate in spherical coordinates, vµ

is the velocity equivalent to the offset energy Vµ, σ is the standard deviation of the velocities

and is related to the thermal energy Vth, through σ2 = qVth = kTe. Here it is possible to

define an electron temperature Te although it is not strictly true in the conventional sense.

This distribution function is isotropic because there is no dependence on the angular velocity

coordinates vθ or vφ. A plot of fµ(vr) is given in Fig. 5.

Two limits are imposed on the proposed velocity distribution as a check to its validity.

First, in the limit of no mean speed vµ we expect a relaxation to a maxwellian velocity

distribution. This can be seen by converting back to Cartesian velocity components.

lim
vµ→0

e−(

√
v2x+v2y+v2z−vµ

σ
)2 = e−

v2x+v2y+v2z

σ2 = fm (9)

Second, the distribution approaches an infinitesimally thin velocity surface as the width of

the thermal component approaches zero, σ → 0. This describes an isotropic monoenergetic

distribution.

lim
σ→0

e−(

√
v2x+v2y+v2z−vµ

σ
)2 =

1, if
√

v2x + v2y + v2z = v2µ

0, if
√

v2x + v2y + v2z 6= v2µ

(10)

The equation for the probe current is expressed in terms of the velocity components in

the 2D plane intercepting the probe, and hence the distribution becomes

f(vx, vy) =

∫ ∞

−∞
e−(

√
v2x+v2y+v2z−vµ

σ
)2dvz. (11)

A slice of f(vx, vy) is shown in Fig. 6 revealing its dependence on vµ and illustrating its

convergence on the monoenergetic isotropic distribution in the limit as σ → 0.
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Further support for the use of the proposed isotropic mean energy distribution fµ has

been given by 2D PIC code simulations using the commercially available OOPIC code28,29.

The simulated dimensions and parameters were designed to approximately reproduce the

experimental conditions explored in this paper. The simulation geometry was in a 2D slice

through the centre of the device, intersecting four of the six Polywell coils. The simulated

Polywell had a coil current of 7950 Amp turns, giving a peak field in the coil face of Bpeak =

0.14 T. Four simulated electron sources surrounded the coils, each emitting a current of

0.2 mA/cm (note this is expressed as a current per unit of height because the simulation

is 2D). The extraction voltage was set to Vbias = 130 V, and the resulting potential well

formed by the electrons is 35 V deep. The velocity components of the simulated particles

have been extracted at four spatial positions along the coil axis, extending from the centre

of the null to the field coil. The extracted velocity data has been used to create a plot of the

projected 2D velocity distribution function, f(vx, vy). A 1D slice of that function is plotted

in Fig. 7 and shows reasonable agreement with our proposed function, plotted in Fig. 6.

Further discussion and analysis of the simulation results are left for further work, and is

only presented here to support the proposed distribution function.

Substituting Eqn. 11 into Eqn. 3 gives the I(V ) characteristic for the isotropic mean

energy distribution, Iµ(V ). Two data sets are compared with their respective fits in Figure 8.

In both cases the data has been collected from a single Langmuir probe located in the centre

of the device. The Polywell bias voltage was held constant at VBias ' 112 V, extracting

a current of IBeam ' 2.7 mA. The coil current IPoly was varied to contrast the Bpeak = 0

T case (no field in the coil face) with Bpeak = 15 mT. At electron energies in the range of

20 eV to 100 eV, a magnetic field of 15 mT is sufficient to force the electron gyroradius

to approach 10% of the device radius, rg < 10%RD, which is the approximate condition

for reflection from the adiabatic flux surface at the magnetic null boundary17. Hence B is

sufficiently large to prolong the electron confinement in the core.

Note that an equally good qualitative fit to the data can be made with the drifting/beam

maxwellian distribution, giving only negligible difference in the fit residuals (not plotted for

clarity). Both distributions can be made to fit the data but give different plasma parameters

in Table I. The reason for this similarity in the underlying I(V ) functions is that Langmuir

probes only measure relative energy, not potential. As a result, a Langmuir probe can be

considered as a particle energy filter. Although it can be shown that a Maxwellian fit is not
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appropriate to either of these data sets, it might be impossible to conclusively prove which

distribution is correct without resorting to an extra diagnostic that can provide additional

information25. However, due to the magnitude of the applied magnetic field, ballistic reflec-

tions are likely to occur and will effectively make the beam distribution isotropic, and hence

Eqn. 11 should be the most appropriate distribution of the two discussed. The results of

the OOPIC simulation in Fig. 7 support this hypothesis.

It is worth noting that regardless of which of the two distributions is applied, the plasma

potential Vp has decreased relative to the B = 0 case. This is consistent with an increase in

potential well depth, relative to the potential on the coils, due to an increase in the dwell

time of the electrons in the presence of a magnetic field. However, the measured electron

densities for the two cases were not significantly different, which would appear to oppose

a claim of potential well formation. A possible explanation for this is that the application

of the magnetic field causes the unidirectional beam to spread out isotropically to a larger

volume within the device, which would cause a decrease in density. However, an increase in

the electron dwell time within the device will lead to a higher electron recirculating current,

thus increasing the density. Although the increase in this density is similar or equal to the

density of the initial electron beam, a deeper potential well will result since the electrons

occupy a larger volume.

If a potential well has formed then Vµ must drop to conserve energy as the electrons transit

into the well centre. However, if the magnetic field has increased the electron confinement

time, then the increased electron density superimposes a space charge on to the vacuum

potential field such that the electrons may no longer be accelerated to the same energy

as in the B = 0 case. The thermal component, Vth, of the energy distribution remains

unchanged, which is expected for the low magnetic fields used in this experiment. However,

larger magnetic fields should result in an increase in confinement time leading to more

thermalisation.

VI. RADIAL PLASMA POTENTIAL PROFILE IN A HIGH MAGNETIC

FIELD

High magnetic fields in the planes of the coils and corner cusps are required to produce

sufficient electron confinement in order to establish a virtual cathode in the core of the device.
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It has been shown17 there is a non-adiabatic core in the central null region surrounded by

adiabatic mirror confinement. Increasing the current in the coils should produce a larger

confinement time for electrons within the device. However, this will also result in adiabatic

mirror reflections on the outside of the device, thus limiting the injected electron current.

Moreover, increasing the coil current further to create large confining fields will result in a

reduction in volume of the non-adiabatic core region, which ultimately leads to a smaller

confinement volume. When ions are introduced to the device, this might lead to a smaller

volume for fusion reactions and limit the device efficiency.

In the experiment reported here, the electron injection parameters and coil currents

were kept constant so that the effects of varying electron confinement time, volume and

admittance do not produce additional confounding effects to the probe results. The probe

located at the centre of the device, Probe A, was mounted on a translation stage that could

move radially in increments of 3 mm. At each spatial point the experiment was repeated

under the same initial conditions, allowing a measurement of the spatial change in the I(V )

characteristic across the device radius. All probe traces were analysed with the isotropic

mean energy distribution. Some sample probe traces at four different spatial points are

shown in Figure 9.

In the discussion of the previous section, the isotropic mean energy characteristic, Iµ(V ),

was shown to accurately represent the underlying EEDF in the null region. As the probe

moves into higher B field regions, we expect to see a growing disparity between the predicted

I(V ) and the measured data in the attractive saturation current region. This is because the

magnetic field limits electron transport across magnetic field lines to the probe, and hence

limits the attainable saturation current. The result is an asymmetric sheath around the

probe which significantly complicates the I(V ) characteristic calculation.

This deviation becomes progressively larger as the B field increases and the electron

gyroradius rg approaches the probe radius. The parameters in this experiment have been

chosen to minimise this effect over a large spatial range of the device. For the radial positions

ranging from 0 cm to 2 cm, the gyroradius is expected to be at least ten times larger than

the probe radius, rg ≥ 10rp, and approaches 3rp in the limit of the maximum magnetic field

in the coil face. This means that over a wide range of measurement points, the gyroradius

rg & λd and hence the deviation from the prediction is expected to be minimal. A sample

of the typical deviation in the saturation region is shown in Figure 10. The deviation in
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the saturation region was excluded from the curve fitting procedure. In figure 10 the fitting

algorithm was restricted to the data range of -10 V to +60 V.

Although we would expect the magnetic field to alter the distribution function measured

with the probe, we anticipate that when rg > rp the magnetic field acts to locally randomise

the incoming electron trajectories at the probe sheath, and acts to maintain the mean energy

isotropic distribution observed in the magnetic null. This hypothesis is supported by the

OOPIC case study presented in Fig. 7, where the velocity distribution within the point cusp

is similar to the predicted distribution presented in Fig. 6. Hence, we have used the mean

energy isotropic Iµ(V ) for data fitting for magnetic fields that range from the magnetic null

at the device centre to the maximum field, Bpeak, in the plane of the coils. It was assumed

that any fitting errors become progressively larger as Bpeak was approached.

The resulting data for the radial plasma potential profile is shown in Fig. 11. The error

bars were calculated from the error in the fit residuals during the fitting process. Note that

there is a potential well (also known as a virtual cathode4,5) of -10 V with a 2 cm radius

from the centre. The fitting procedure is accurate over this region since the magnetic field

is relatively low and the effects of the magnetic field on the distribution function are well

characterised. However, there is more uncertainty about the values of the plasma potential

in the 2 - 3.5 cm region, due to the higher magnetic fields, and are likely to represent an

underestimate of the potentials.

The potential well formed can be compared with an analytical estimate from Poisson’s

equation if we assume that the well is approximately spherically symmetric and the electron

density is approximately constant as a function of radius. In spherical coordinates Poisson’s

equation is

1

r2
∂

∂r

(
r2

∂

∂r
V

)
= −neq

ε0
. (12)

Under the stated conditions we set the boundary condition ∂V/∂r = 0 at r = 0. Moreover,

we set V = 0 at radius r = R. Using both of these boundary conditions equation 12 can be

solved to yield the relationship

Vwell = −neqR
2

6ε0
. (13)

Using the approximate density ne = 108 cm−3 and radius R = 0.01 m, we obtain Vwell =

14



−30 V. This deviation from the measured value is a result of the simplified assumptions

stated above. A more accurate calculation of the potential well will need to take into

account the real spatial density profile of the electrons.

VII. SCALING WITH B AND E

To allow the measurement of the potential well variation with changes in magnetic field

B, electric field bias Vbias, and electron density ne, two probes were used to simultaneously

measure Vp at different radial points. Probe A was mounted at the centre of the device,

and the other, Probe B, at a radial position of 1.8 cm, which was approximately halfway

along the device radius. In the first experiment, the magnetic field was varied such that the

peak magnetic field in the coil face varies from Bpeak = 0 to Bpeak = 26 mT. The measured

plasma potential from the two probes as a function of the maximum magnetic field is given

in Fig. 12. When the magnetic field is relatively weak, the potential difference between the

probes indicates that no potential well is present, because the Vp at the centre probe is more

positive than at Probe B. When the magnetic field reaches some crucial minimum value, 5.5

mT in this experiment, the potential difference between the two probes is inverted and a

potential well begins to form and is clearly measurable. Moreover, the potential difference

between the two probes becomes progressively larger with increasing magnetic field.

There are significant challenges in designing an experiment that can be used to accurately

characterise the way the potential well scales with B because the size of the adiabatic flux

surface becomes progressively smaller with increasing B. Hence, the position of Probe B

would have to be adjusted for each data point to compensate for the change in well size.

If we can assume that the difference between the two probes is indicative of the overall

change in the potential well depth we can obtain a relationship for the scaling of potential

well with B. The analysis has been restricted to data in the domain of > 15 mT because

it is unclear if a potential well has formed for fields at lesser magnitudes. A plot of the

potential difference between the two probes is shown in Fig. 13 and scales approximately

linearly with magnetic field B. However, a greater measurement range would be needed to

confirm this relationship, and also a more detailed study is required to determine how best

to characterise the change in well depth with B.

In another experiment the magnetic field was held constant at Bmax ' 0.16 T while

15



the Polywell bias voltage was varied from Vbias = 93 V to 122 V, the data is shown in

Fig. 14. Although changing the bias voltage effectively changes the injection energy of

the electrons, it also changes the injection current, and hence affects the ultimate electron

density ne obtained in the well. It was not possible to separate these two effects because they

have an opposite effect on the results. An increase in the electron density, with increasing

injection current, leads to a linear increase in the potential well depth, Vwell, given in Eqn.

13. Increasing the extraction voltage gives an exponential increase in the current emitted

from the filaments, but does not necessarily mean an exponential increase in the current

entering the Polywell since this is a complex function of the geometry and is space charge

limited.

By comparison, increasing the energy of the electrons leads to a decrease in the electron

confinement time because a higher energy electron population needs a higher magnetic field

to achieve the same degree of adiabatic mirror confinement. However, this effect is at a

maximum when the adiabatic flux surface becomes larger than half the device radius, beyond

which the degree of mirror confinement decays rapidly. Fig. 15 supports this hypothesis since

it shows the potential well scales linearly with injected current until the injected electron

energy is sufficiently large such that competing effects are introduced.

VIII. CONCLUSIONS

Biased Langmuir probes have been used to characterise potential well formation as a

function of a number of Polywell parameters, such as magnetic field strength and injection

energy. Orbital Limited Motion theory was used to measure and confirm the EEDF of

injected electrons. This information was combined with knowledge of the types of possible

electron trajectories15,17 to propose an EEDF for the electron population in the magnetic

null. The proposed EEDF Iµ(V ) is in good agreement with the collected data.

The proposed Iµ(V ) was used to study the spatial change of the plasma potential Vp

across the device, and confirmed a potential well had formed. However the shape of the

potential well did not agree with the simple parabolic shape predicted by Poisson’s equation

and previously measured by Krall13. Potential well formation was found to scale linearly

with increasing magnetic field and injection current, in good agreement with the currently

proposed confinement models. Dependence on injection energy was also measured, but
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obscured by the competing effect of injection current scaling.

The proposed Iµ(V ) provides a powerful diagnostic for studying Polywell physics provid-

ing fµ(vr) is an accurate representation of the underlying EEDF. To confirm the interpre-

tation of the I(V ) is correct, the biased probe technique discussed in this paper should be

combined with another probe technique that is less dependant on the shape of the EEDF.

If the Vp’s of the two techniques are in agreement, then all other derived parameters from

Iµ(V ) can be considered accurate. One such technique is the capacitive probe technique

used previously on the HEPS experiment13. Additionally, emissive probes have been shown

to allow uncomplicated analysis of the Vp through the deviation potential in electron only

plasmas30,31.
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FIGURES
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FIG. 1. The magnitude of the magnetic field B plotted in the x-y plane intercepting four of the six

field coils. The fieldlines are superimposed over the field’s magnitude plot to reveal the underlying

magnetic cusp structure of the Polywell12,17.
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FIG. 2. A diagram of the experimental setup showing the key biased probe positions.
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experiment the probe was placed in the centre of the coil nearest to the single filament being tested.

No magnetic field was present for the test. The Polywell was biased to a voltage of 150 V drawing

a current of 4.5 mA.
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FIG. 5. A plot of the mean energy isotropic distribution fµ(vr) in one quadrant of a 2D Cartesian

plane. When σ → 0 this plot becomes a slice through a sphere. In this plot, the function fµ(vr)

has not yet been normalised, such that integration over all v yields 1. Note that this plot is a slice

in a Cartesian plane, and distinctly different from the projection of fµ(vr) in to the 2D plane at

right angles to the probe, which is plotted in Fig. 6.
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FIG. 6. Convergence of Eqn. 11 f(vx, 0) on the monoenergetic isotropic distribution. The case

shown has vµ = 10eV . As σ → 0 the result converges on 1/ cosφ which is the analytical result for

the monoenergetic isotropic case23.
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FIG. 7. A plot of the velocity distribution f(vx, 0) from simulated data. The commercial OOPIC

code was used to simulate an electron plasma with conditions approximating our experiment. The

particle data was sampled in a number of spatial locations along the coil face axis. This plot

shows reasonable agreement with the predicted function shown in Fig. 6 and thus supports the

theoretically proposed Iµ(V ).
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FIG. 8. The two magnetic field test cases, both measured on Probe A in the centre of the device.

The fitted parameters for the two data sets with their respective I(V ) characteristic models are

given in Table I.
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FIG. 9. Four example I(V ) datasets from the high magnetic field radial profile experiment. Each

dataset has been taken at a different spatial location along the coil axis.
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data shows a potential well has formed in the middle of the device.
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Probes A and B is shown over a range of relatively low peak magnetic field values. As the field

increases, the potential difference between the probes eventually becomes inverted and becomes

progressively larger with increasing magnetic field strength.

31



14 16 18 20 22 24 26 28
0

5

10

15

20

Peak Magnetic Field Bmax HmTL

P
o

te
n

ti
a

l
W

el
l

D
ep

th
H

V
L

FIG. 13. Potential well scaling with B. For each data point in Fig. 12 with Bmax > 15 mT the

difference in the two probe potentials is taken to be indicative of the change in overall potential

well depth. The resulting trend is approximately linear.
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33



0 1 2 3 4 5 6
0

10

20

30

40

50

Electron Injection Current I beam HmAL

P
o

te
n

ti
a

l
W

el
l

D
ep

th
H

V
L

FIG. 15. Potential well scaling with the injected electron current Ibeam. Here the potential differ-

ence between the two probes in Fig. 14 is assumed to be indicative of the overall change in well

depth, and plotted as a function of the injected beam current.
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TABLES
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Dataset B = 0 B = 15mT

Model Beam Iso. Beam

Vp 87.2 V 22.9 V 56.1 V

Vd,Vµ 65.5 eV 23.7 eV 49.7 eV

Vth 1.3 eV 1.1 eV 0.72 eV

ne 1.7× 108 cm−3 1.4× 108 cm−3 1.7× 108 cm−3

TABLE I. Fitted parameters for the two data sets shown in Figure 8. For the case of B = 15 mT,

fits to both models have been listed.
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