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The magnetic field structure in a Polywell device is studied to understand both the

physics underlying the electron confinement properties and its estimated performance

compared to other cusped devices. Analytical expressions are presented for the mag-

netic field in addition to expressions for the point and line cusps as a function of

device parameters. It is found that at small coil spacings it is possible for the point

cusp losses to dominate over the line cusp losses, leading to longer overall electron

confinement. The types of single particle trajectories that can occur are analysed in

the context of the magnetic field structure which results in the ability to define two

general classes of trajectories, separated by a critical flux surface. Finally, an expres-

sion for the single particle confinement time is proposed and subsequently compared

with simulation.
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I. THE POLYWELL CONCEPT

The Polywell fusion reactor is a hybrid device that combines elements of inertial elec-

trostatic confinement (IEC)1–3 and cusped magnetic confinement fusion4,5. In IEC fusion

devices two spherically concentric gridded electrodes create a radial electric field that acts

as an electrostatic potential well6–10. The radial electric field accelerates ions to fusion rel-

evant energies and confines them in the central grid region. These gridded systems have

suffered from substantial energy loss due to ion collisions with the metal grid. The Polywell

concept11–16 aims to replace the physical cathode with a virtual cathode that is formed by

trapping energetic electrons in a magnetic cusp arrangement.

The Polywell’s unique magnetic field configuration is created by pairs of opposing current

loops, each creating a cusp. In the cube configuration each pair of loops is centred on a

cartesian axis such that each loop sits on a face of the cube. The opposing contributions

from each current loop cancel out in the centre of the device creating a magnetic null point.

The resulting field acts like a magnetic well and a proportion of the electron population is

confined by the magnetic mirror effect17,18.

By using a virtual cathode there is no longer a loss surface embedded within the plasma.

The outer grid that contains the magnetic field coils is effectively isolated by the magnetic

field it creates14. The field lines circulate around the coils and will deflect electrons from

direct collisions. Instead they will tend to follow the field lines and re-circulate back into

the device. The re-circulation mechanism may reduce the loss rate and improve the overall

efficiency.

The cusp geometry utilised in the Polywell is known to be inherently magnetohydrody-

namically stable because the field lines are everywhere convex toward the plasma19. However

it may not be immune to kinetic instabilities such as the loss cone instability. The major

energy loss mechanism is anticipated to be collisional scattering and direct propagation of

electrons through the confining cusps.

The aim of this paper is to characterise the spatial structure of the magnetic field as

a function of loop current, radius and loop spacing, in such a way that allows a detailed

understanding of its underlying confinement properties. The trajectories of single electrons

in this field structure will be analysed as representative of the confinement behaviour in a

low-beta plasma where single particle behaviour may dominate. This information allows the
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formation of a general model of confinement in the Polywell including predicted loss rates,

and general guidelines for the construction of future experimental devices. Additionally,

this model can be compared with other cusp systems as an indicator of relative performance

and capability. Lastly, we derive an approximate expression for the magnetic fields in a

simplified Polywell system for use in developing a more detailed theory.

II. SIX POLYWELL CURRENT LOOPS

The full magnetic field in the Polywell can be obtained from the superposition of the

contributions from each single current loop. For a single current loop centred on the origin

of the z axis in cylindrical coordinates, the radial ρ and z axis components are21,22

Bρ =
µ0Iz

2π

√
m

4aρ3

[
2−m

2− 2m
E(m)−K(m)

]
(1)

Bz =
µ0I

2π

√
m

4aρ3

[
ρK(m) +

am− ρ(2−m)

2− 2m
E(m)

]
(2)

where

m =
4aρ

z2 + (a+ ρ)2
(3)

The current in the loop is I, and a is the radius of the current loop. The functions E(m)

and K(m) are the complete Elliptic integrals of the first and second kind respectively21.

The full magnetic field in the Polywell can be obtained from the superposition of the

contributions from each loop. Since we are neglecting the higher order polywell geometries

and limiting the analysis to the cube configuration we can make further use of the underlying

symmetry in the device. Because each cartesian axis is orthogonal, each pair of loops centred

on the same axis will contribute one of the Bρ or Bz terms in a given cartesian coordinate,

but never both. In a higher order geometry this would not be true and both terms would

need to be considered. This can be shown by considering the six loop contributions to the

total magnetic field in the x̂ coordinate. Each coil has the two field contributions Bρ and

Bz, where Bz is now aligned with the axis on which each loop is centred. For the two loops

centred on the x̂ axis, each loop contributes a Bz term to the total field in the x̂ direction.

The radial Bρ components of these two x̂ axis loops are always perpendicular to the x̂ axis,

hence they make no contribution to the total field in the x̂ direction.
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The four off-axis loops (i.e. the two loop pairs centred on the ŷ and ẑ axes) have Bz

contributions that are always perpendicular to the x̂ axis and hence are not included in

the x̂ direction calculation. However each loop will have a Bρ contribution to the x̂ axis.

Consequently, Bρ must be converted into cartesian coordinates. For example, the radial

coordinate, ρxz, in the xz plane is given by ρxz =
√
x2 + z2 which is used when obtaining

the Bρ contribution due to the loops on the ŷ axis. Therefore, in any given coordinate we

expect to see two Bz terms from the two loops on the same axis, and four Bρ terms from

the four off axis loops. Thus, the equation for the Polywell field in the x̂ direction is

~Bx =

(
Bz(ρyz, x− S) +Bz(ρyz, x+ S) (4)

+Bρ(ρxz, y − S)
x

ρxz
+Bρ(ρxz, y + S)

x

ρxz

+Bρ(ρxy, z − S)
x

ρxy
+Bρ(ρxy, z + S)

x

ρxz

)
~̂x

where Bz(ρyz, x − S) means the expression for Bz in Equation 2, with ρyz and x − S in

place of the ρ and z coordinates respectively. The parameter S is the loop spacing parameter

shown in Figure 1. The general expression for the overall magnetic field can be expressed as

~B = Bx
~̂
i+By

~̂
j +Bz

~̂
k (5)

where By and Bz are generated by cyclically permuting the coordinates in Bx, Equation

4.

III. B FIELD STRUCTURE AND SINGLE PARTICLE TRAJECTORIES

The resultant magnetic field structure consists of field lines that enter through well defined

point cusps in the loop faces and leave in the gaps between the loops. The magnetic field lines

in the xy plane are shown in Figure 2. Note that the magnetic field is everywhere convex

towards the centre of the device, making it inherently MHD stable11. Figure 3 shows the

absolute value of ~B in the xy plane, revealing its magnetic well structure. The magnitude

of the magnetic field near the null point varies as r3 where r is the radius measured from

the magnetic null point.
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In principle electrons are confined by reflection from the point cusps if they are outside

the loss cone14. However the motion is significantly complicated by the presence of the

null point, which scatters the electrons’ magnetic moment4. A sample electron trajectory

is shown in Figure 4 where the electron is started in the centre of the device. Initially

it is reflected from a point cusp in one of the faces but is then scattered around the null

region in a chaotic way before eventually returning to its starting point. Figure 5 shows the

superposition of 10 such trajectories with randomised starting positions and calculated until

they leave the cube region defined by the six Polywell loops.

The motion shown in Figures 4 and 5 is only a slightly more complicated version of the

motion in the comparatively simpler biconic cusp. Theories of biconic cusp confinement

are based on the hypothesis that there exists a critical flux tube separating an outer region

of completely adiabatic orbits from an inner region where every field line passes through

a distinctly non-adiabatic region5,23,24. Orbits guided by magnetic field lines of the latter

type consist of segments of adiabatic motion near the reflection points, separated by a

non-adiabatic portion which randomises the magnetic moment. This hypothesis and the

underlying confinement theory derived from it can be extended to apply to the Polywell

magnetic field geometry.

The motion of electrons originating in the centre can be understood by examining the

behaviour of the electron gyroradius as a function of radius from the central null point. In

the vicinity of the null point the gyroradius changes rapidly. Over a distance of half the

device radius, the gyroradius rg can change from ∞ to ≈ 1cm. This leads to almost straight

trajectories in the centre of the magnetic well until the electron is turned around at a region

of high field where rg approaches 10% of the device radius.

Electrons will be reflected inside the low field region until they eventually enter a point

cusp where the magnetic field is directed radially outwards. As a consequence of this change

in field geometry, the electrons follow the field lines out of the device. Additionally, there is

a transition to a region where the magnetic field changes slowly compared with the electron

gyroradius and the magnetic moment, µ, becomes an adiabatic constant of motion. At this

point the electron motion is completely adiabatic and is reflected if the peak magnetic field

Bpeak > kinetic energy/µ18. The magnetic moment of the electron will be scattered each

time it passes through the non-adiabatic region. Consequently, no electron with this class

of trajectory will be confined indefinitely because it will eventually be scattered into a loss
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cone.

The boundary that separates adiabatic and non-adiabatic segments of motion is described

by the condition for adiatic invariance of the magnetic moment18:

rg|
∇B

B
| � 1 (6)

This transition is not sharply defined, but occurs over a finite distance. However for

the purposes of this analysis, we have chosen to approximate the transition region by the

contour of rg = 0.1R, where R is the device radius.

The critical flux tube is defined as the set of magnetic field lines that have their minimum

magnetic field point on the adiabatic boundary23,24, which is shown as the gray contour in

Figure 6. A sample trajectory is shown for the case where the electron is started inside the

critical flux tube. It has clearly defined segments of adiabatic and non-adiabatic motion.

For electrons started outside this flux surface, the motion is completely adiabatic and the

electron will be confined to a given field line. If the peak magnetic field along the field line

is Bpeak > KE/µ, the electron will be confined indefinitely. Because the magnetic field is

not uniform the electrons will drift on the same flux surface around the point cusp. This

drift motion is shown in Figure 7.

IV. POINT AND LINE CUSPS

Despite having favourable MHD stability properties, the major disadvantage of open-

ended minimum B geometries is the rapid loss of plasma through their loss gaps. The biconic

cusp geometry has two point cusps along the central axis and a wide ring cusp in the central

plane of symmetry4. Some mirror devices utilise Joeffe bars to create a cusp that stabilises

the interchange instabilities25. However the cusp in this type of device has wide linear loss

gaps between the bars. It has been found that linear loss gaps, here referred to as line

cusps, considerably reduce the effectiveness of plasma confinement and form the dominant

loss mechanism from the device26. Various attempts to plug the line cusp have included

electrostatic repeller plates, RF power, and simultaneous injection of plasma through the

line cusp27. However none of these attempts have succeeded in adequately reducing the rate

of loss from the line cusps.

The high-order spherical multipole was developed as a minimum B field configuration
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that eliminates the line cusps and consists only of point cusps26. Experimental studies

compared a multipole field consisting of 30 point cusps with a conventional spindle cusp

and found that the confinement time was 2.5 times longer in the multipole field28. Although

the experiment succeeded in eliminating the line cusps, the overall loss rate is proportional

to the number of individual point cusps, and hence only led to a marginal improvement

in overall confinement. The unique field geometry in the Polywell appears to solve both

problems.

The point cusps in each face of the Polywell can be analysed with the conventional

theory of cusp losses. However the structure of the loss region between the coils is far

more complicated and was referred to by Bussard as the “funny cusp”14. By analysing the

magnitude of the magnetic field at two crucial points we will show that this region can be

treated as eight separate point cusps if the loop spacing, S, is less than a critical distance.

The simplest starting point is the case where the current loops are all in contact, S = a.

The peak magnetic field in the face point cusp is given by taking the limit of Equation 4 as

y & z = 0, and S & x = a.

lim
y,z→0
S,x→a

Bx =
µ0I

(
(
√
5− 25)π + 20

√
5(3E(4

5
)−K(4

5
))
)

50aπ

∴ Bface ≈
0.286µ0I

aπ
(7)

This equation is similar to the standard equation for the field due to a current loop20,

except with an additional constant term that effectively describes the field reduction due to

the superposition of the other adjacent current loops. Let us now express the loop spacing

in terms of the loop radius, a, through a dimensionless parameter s, where S = sa. If the

spacing parameter s is now allowed to vary, we expect that Bface must have the same form as

equation 7 but multiplied by a function of s that describes the changing superposition of the

other loop components. We have found from numerical methods that it can be approximated

by a log dependence on s.

Bface(s) =
0.286µ0I

aπ
2 log[10.56(s− 0.85)] (8)

By similar analysis the corner cusp is expressed as

Bcorner(s) =
µ0I

aπ

(
1

5.7(s− 0.88)

)
(9)
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The field in the edge line cusp is dominated by the two closest loops. When these are

almost in contact, we can approximate them as two infinitely straight wires. The expression

for the field due to a straight wire is20

Bstright(r) =
µ0I

2πr
(10)

where r is the distance from the wires. In the geometry of the polywell, it can be shown

that

r =
a(s− 1)√

2
(11)

We have found that Equation 10 approximates the numerically calculated data, providing

allowance is made for an extra fitted geometrical factor, which takes into account the field

reduction due to cancellation with the four more distant current loops.

Bedge(s) =
µ0I

2π

√
2

a(s− 1)
0.81 (12)

Figure 8 shows the variation of Bface, Bcorner and Bedge as a function of the spacing

parameter s. The underlying trend of field variation with spacing is dominated by the be-

haviour of the nearest coil components. For example, the Bface field is substantially reduced

due to cancellation with the fields produced by the adjacent coils, and this effect is strongest

at small spacings. In contrast, both Bcorner and Bedge originate from the constructive addi-

tion of the adjacent coil components and result in an increase in field strength with reduced

spacing.

At small loop spacings the magnetic field in the centre of the line cusp, Bedge, is almost an

order of magnitude larger than the field in both types of point cusps. Consequently, in the

region of small loop spacing the losses due to the point cusps will dominate, while ignoring

the more complicated line cusp components. Instead the loss rate can be modeled with 14

point cusps - 6 due to the faces and 8 due to the corners. This point is reinforced in the

heat map of magnetic field strength in Figure 9, revealing “the funny cusp” region can be

modeled as a point cusp.

The fact that the line cusp component can be neglected indicates that the Polywell mag-

netic field geometry might result in a greater confinement time than the conventional biconic

cusp. In the biconic cusp, the situation is reversed and the line cusp losses dominate26. Fig-

ure 10 shows contour plots for the magnetic field in the xy plane of both devices. The
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biconic cusp has a wide linear loss region in the central plane of rotation. Here the field is

substantially lower than the point cusp, and when revolved in 3D, the loss area is very large.

By comparison, because the line cusps can be ignored in the Polywell, the point cusp losses

dominate and we expect the loss rate is substantially lower. Consequently confinement times

should be longer in the Polywell field geometry.

V. CENTRAL MAGNETIC FIELD APPROXIMATION

In order to assess the future of the Polywell concept as a fusion energy device and fur-

ther improve our understanding of its limitations we seek a model system that sufficiently

captures the essential physics of the Polywell, while simultaneously being simple enough to

make theoretical calculations tractable. For example, in order to carry out an analysis of

the electron confinement time in the central region of the Polywell, we need to obtain an

unsophisticated analytical expression in closed form for the magnetic field in this region.

For situations of high cylindrical symmetry, the axial magnetic field components of a

single loop, Bρ and Bz, can be approximated near the axis of symmetry in terms of the field

along the z axis only29,

Bρ(ρ, z) = −ρ

2
B′

z(z) +
ρ3

16
B′′′

z (z)− . . . (13a)

=
∞∑
n=1

(−1)nB2n−1
z

n!(n− 1)!

(ρ
2

)2n−1

Bz(ρ, z) = Bz(z)−
ρ2

4
B′′

z (z) + . . . (13b)

=
∞∑
n=0

(−1)nB2n
z

(n!)2

(ρ
2

)2n
Hence, the contributions due to the two loops centred on a single cartesian axis can be

described by their superposition along that axis only. The magnetic field along the axis of

a single coil is20,22

Bz(z) =
µ0Ia

2

2(a2 + z2)3/2
(14)

and thus the contributions to the field by these two coils are the sum of two Bz(z) axial

equations centred on offsets of ±S. In the interests of simplicity let us limit the analysis to
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the case where adjacent coils are in contact, S = a (or equivalent to s = 1), and expand

these axial terms in a Taylor series about the point z = 0. To avoid a non-trivial solution

we need to take terms to third order. This results in

Bz(z) ≈
µ0Iz(24a

2 + 5z2)

32
√
2a4

(15)

This series approximation converges very well in the region ±a/2, thus the simplified

model system will only accurately reflect the field structure in the core of the Polywell.

Substituting Equation 15 into Equations 13a and 13b, and using the results in Equations 4

and 5 yields

~B =
35µ0I

128
√
2a4

(
(−2x3 + 3x(y2 + z2))~̂x (16)

+ (−2y3 + 3y(x2 + z2))~̂y + (−2z3 + 3z(x2 + y2))~̂z

)
The resultant field lines in the xy plane are shown in Figure 11. Bussard’s original field

approximation, B ∝ r3, can be recovered by setting y = z = 0 in Equation 16, which gives

the field along the ~̂x axis, Bx ∝ x3.

Future analysis of plasma dynamics within the Polywell may require closed form expres-

sions of the magnetic vector potential ~A. This can be obtained by using the same methods

shown here for the magnetic field, ~B, by using the same on-axis approximation for two loops

with opposing currents. Zworykin29 presents an approximation for ~A derived from Stoke’s

theorem and Maxwell’s equations. In the special case of two loops centred on the same axis

with high cylindrical symmetry, ~A only has components in the direction of
~̂
θ.

Aθ(ρ, z) =
ρ

2
Bz(z)−

ρ3

16
B′′

z (z) + . . . (17)

=
∞∑
n=0

(−1)nB2n
z

n!(n+ 1)!

(ρ
2

)2n+1

Using Equation (15) in the approximation for ~A gives:

Aθ(ρ, z) = −µ0Iρz(96a
2 + 20z2 − 15ρ2)

256
√
2a4

(18)

Summing the contributions from each axis and using similar geometric arguments gives

the expression for the total ~A.
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~Ax = Aθ(ρxy, z)
y√

x2 + y2
− Aθ(ρxz, y)

z√
x2 + z2

(19)

Using the two loop approximation (Equation 15) we find the ~̂x axis term,

~Ax =
35µ0Iyz(y

2 − z2)

256
√
2a4

(20)

The other components of ~A can be generated by cyclically permuting the cartesian coor-

dinates in Equation 20. In Figure 12 a sample flux surface is shown by plotting the region

~A = constant. The adiabatic trajectory shown in Figure 7 is constrained to a flux surface

like the example shown in this figure.

VI. APPROXIMATE LOSS RATE AND CONFINEMENT TIME

The simplified expressions for ~B in Equation 16 can be used to create and test an ap-

proximate model of electron confinement in the Polywell. These equations apply to the limit

of small spacing where the loops are in contact, and the contributions of the line cusps can

be ignored. The fraction of the electron population inside the loss cone of a single point

cusp is well established18,30. Bussard argued that this fraction can be modified by a factor

of n for a system of n point cusps that do not have overlapping loss cones31 given by

L =
n

2

(
1−

√
1− B0

Bm

)
(21)

In this case there are n = 14 point cusps (6 due to the faces and 8 from the corners). The

magnetic field, B0, is the minimum field from which the magnetic moment is conserved and

occurs at the radius r0. The peak magnetic field in the device is Bm. For the population of

electrons inside the critical flux surface, the loss fraction can be interpreted as the probability

of escape after each successive random scattering event inside the central non-adiabatic

region. Therefore, by ignoring the influx of electrons from external sources, the loss rate of

electrons escaping from the magnetic well can be expressed as

dN(t)

dt
= − LN

τtrans
(22)

∴ N(t) = N0e
−Lt

τtrans (23)
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where N(t) is the number of electrons remaining after a time t of being introduced into

the central region.

The average transit time τtrans can be approximated by considering both the adiabatic

and non-adiabatic components of the electron trajectories. The non-adiabatic components

consist of approximately straight trajectories that are randomly scattered about the well

until they enter a point cusp. As an order of magnitude estimate, we have assumed without

further analysis an average of 10 scattering events before entering a loss cone. This assump-

tion is only based on observing the statistics of the numerically calculated trajectories.

The transit time along a point cusp in the adiabatic mirror region can be found by

considering the change in parallel velocity as the electrons move into stronger field regions30.

The velocity component parallel to the magnetic field, v‖, can be expressed in terms of the

initial velocity v0 and the mirror ratio B(z)/B0 as

v‖ = v0

√
1− B(z)

B0

sin2 θ0 (24)

where θ0 is the angle between the velocity vector and the magnetic field at B0. Since

v‖ =
dz
dt
, it can be shown that

t =
1

v0

∫ √
1− B(z)

B0

sin2 θ0dz (25)

Therefore, the total transit time in the Polywell between adiabatic reflections is the sum

of the transit times on either side of the critical flux tube.

τtrans =
2

v0

∫ √
1− B(z)

B0

sin2 θ0dz + 2
10r0
v0

(26)

This model was tested in the Simion charged particle optics package32. The starting

position of 10,000 electrons were randomly distributed in a central spherical region inside

the critical flux surface. Hence only electrons with two-component trajectories were studied.

Other parameters were chosen to match previous33 or planned experimental studies. All

electrons had an initial energy of 100eV, and the current in the loops was 10kA. The current

loop radius was set at 0.025m. The electron trajectories were calculated until they left the

cube region defined by the Polywell coils, i.e. a cube with side length 0.05m centred on the

origin. The confinement time of each electron was recorded and the resulting distribution is
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shown in Figure 13.

The simulation was compared with the model predictions in Equation 26 and the magnetic

fields were calculated directly with the simplified central well Equation 16. Hence the model

was tested against the simplest magnetic field case. The minimum magnetic field at which

the magnetic moment is conserved, B0, was calculated from the critical flux tube where

rg = 10%R. The angle with the deepest penetration in to the cusp field was used for θ0. All

other parameters were as given above in the simulation.

The fit to the simulated data (solid line) and the theoretical calculation (dashed line) is

found to be in good agreement. The exponential decay of the simulated data confirms that

a statistical scattering model is relevant inside the critical flux tube. The simulated data

was found to have a mean confinement time of τ0 = 0.129µs, compared with a theoretically

calculated value of τ0 = 0.163µs. It is worth pointing out that no effort has been made to

adjust the input parameters to optimise the confinement time. The input values used only

represent a single case used to test the applicability of conventional point cusp theory.

VII. ELECTROSTATIC PLUGGING OF POINT CUSPS

The prospect of the Polywell as a fusion energy device has to be examined within the

context of a sub-microsecond confinement time. For example, a litre of 100eV electrons at a

density of 1019m−3 would require ≈ 400kW of input power to sustain the energy lost by the

electrons with τ0 ≈ 0.15µs. However the model developed in this paper is only intended to

accurately describe the low beta case (such as during startup) and at higher densities other

plasma effects are anticipated to increase the confinement time.

Space charge limited flow could occur along the critical flux tube, effectively plugging the

point cusps. Each point cusp can be treated as an isolated flux tube and modeled like a

vacuum diode with the Child-Langmuir law. The electron current leaking from the polywell

along a point cusp in Figure 12 is similar to the electron current emitted by the cathode in

a vacuum diode. The Child-Langmuir law for space charge limited current is

j =
4

9
ε0

√
2e

me

V 3/2

h2
(27)

where V is the voltage applied to plane electrodes separated by a distance h34. In the

case of a virtual cathode forming in the middle of the polywell, the anode to virtual cathode
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voltage may be ≈ 100V for 100eV electrons. Taking a worst case scenario approach, the

point cusp leakage area can be estimated as roughly the geometric size of the critical flux

tube, giving a radius on the order of 0.5cm. After taking into account the total leakage

area for all 14 point cusps and assuming h ≈ 0.5cm, we find I ≈ 0.1A or equivalently 10W

of power lost. Obviously this calculation is far too simplistic to be accurate because space

charge effects have been neglected, but it does demonstrate the concept of electrostatically

plugging the cusps. These effects could be included in future studies by consulting Dolan’s

review aricle on electrostatic cusp plugging15.

VIII. CONCLUSIONS

The magnetic field structure of the Polywell has been analysed in its complete form, as

well as areas of interest such as the point and line cusps, and the central well approximation.

It has been found that at small spacings it is possible for point cusp losses to dominate over

line cusp losses, allowing the application of conventional point cusp theory to the Polywell.

The dominance of point cusp losses may prove beneficial in terms of providing a lower overall

loss rate when compared with other devices such as the biconic cusp.

The types of trajectories that can occur have been analysed in terms of their adiabatic-

ity. It was found that the two component trajectories described in models of biconic cusp

confinement can be adapted to the Polywell. The resulting model describes a critical flux

surface separating the two types of trajectories, and also defines the minimum field, B0,

needed for a simple scattering model of confinement.

The simplified scattering model was found to be in reasonable agreement with a sim-

ulation with parameters matching our current experimental parameters. The central well

approximation was used to calculate magnetic fields for the model and simulations, but the

correlation between these and experimental results will be left for future work. Future stud-

ies should address the question to what degree confinement in the Polywell is determined

by the parameters of the central well field, and whether the central well approximation

can be used to study other aspects of Polywell plasma physics. Furthermore, the model of

point cusp loss needs to be extended for the high beta case where electrostatic plugging is

anticipated to have a favourable effect on the overall electron confinement time.
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FIGURES
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FIG. 1. A diagram of the cube polywell configuration. The coil radius a and coil spacing S are

marked. Vectors have been used to indicate the positions of the Face, Corner and Edge regions.
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FIG. 2. The magnetic field lines in the xy plane intersecting four of the six coils. In this plane

there are four point cusps, one centred on each coil face. These have been labeled as face cusps.

Also present are four line cusps, one in each corner in the spacing between the coil windings. These

have been labeled as edge cusps.
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FIG. 3. The magnitude of the magnetic field in the same xy plane as in Figure 2. It is clear from

this structure that the Polywell creates a magnetic well.
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FIG. 4. A sample isolated electron trajectory. The electron was initialised at the centre of the

device with an energy of 100eV and a randomised velocity vector. The current loops are not drawn

in the background so as to clarify the different types of motion present. The electron has a clearly

defined magnetic moment in three places where it is reflected from a high field region. In the

central region it has smoother trajectories.
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FIG. 5. A superposition of 10 different electron trajectories. Each electron has a starting energy

of 100eV and a randomised position and directed velocity. The trajectories are plotted until the

electrons reach the coil’s cube surface, at which point they are considered lost.
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FIG. 6. The critical flux surface separating the two types of trajectories is shown as the thick

gray line. The dashed line is the contour where the gyroradius is 10% of the device radius. Other

example field lines are shown as dotted lines. Trajectory (a) is inside the critical flux surface and

consists of regions of adiabatic motion separated by random scattering in the central non-adiabatic

region. Trajectory (b) is completely adiabatic and is confined indefinitely.
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FIG. 7. A 3D isometric view of the single trajectory shown in Figure 6 (b). The motion is

completely adiabatic and will be confined indefinitely. Because the magnetic field is not completely

uniform the electron drifts on a constant flux surface around the point cusp. When the motion is

projected into the xy plane (as in Figure 6) the trajectory is clearly confined to a constant set of

field lines.
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FIG. 8. The field strength in the face, corner and edge cusps plotted together. The approximate

equations for these different field regions described in the text are shown as solid lines, compared

with numerically calculated data points. It is significant that at small loop spacings, the line cusp

field is almost an order of magnitude larger than the point cusp components.
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FIG. 9. (Color) The relative magnitude and sign of the radial magnetic fieldBr
~̂r on the cube surface

containing the current loops. Only 1/8th of the surface is shown to reveal the smallest symmetrical

element in detail. Blue and purple areas of the surface indicate where the field diverges radially and

reveal the point cusp structure of the face cusps. The yellow and red areas show radial convergence

of the field and hence reveal the “funny cusp” region described by Bussard. However, since the

strongest field is present in the edge cusp near the current loops, this region can be neglected.

Instead the funny cusp region can be modeled by only considering the corner cusp component as

a point cusp.

26



FIG. 10. (Color online) A comparison of a biconic cusp (top) and the Polywell (bottom) magnetic

fields. Both plots show contours of magnetic field strength in the xy plane. Eight contours are

plotted ranging from 0.025T to 0.2T in steps of 0.025T. The darkest contour shading represents

the region of lowest magnetic field, through to white for the highest field region. The current in

the biconic cusp has been adjusted so that the peak field in the face point cusp of both devices is

equal, allowing comparison of the two confining magnetic field structures. In the biconic cusp, the

field in the circular line cusp is clearly much weaker than in the point cusp. The line cusp losses

dominate both because the field is weaker in this region, and also because the loss area is much

larger when revolved around the symmetry axis. In the Polywell, this situation is reversed and the

point cusps exhibit the weakest magnetic field.
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FIG. 11. The fieldlines generated by Equation 16. This field closely approximates the interior

magnetic field of the Polywell.
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FIG. 12. The flux surface generated from plotting ~A = constant. A slice through the centre plan

of this surface reproduces the critical flux lines shown in Figure 6. In the limit where the coils are

touching, only point cusps are present. As the spacing is increased, the edge cusps span out to the

corner cusps and form wide linear loss regions.
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FIG. 13. The distribution of confinement times for 10,000 electron trajectories simulated in the

Simion charged particle optics software. The data points have been fitted for the mean confinement

time. The theoretical result is shown as the dashed curve.

30


