
DroNet: Efficient Convolutional Neural Network
Detector for Real-Time UAV Applications

Christos Kyrkou, George Plastiras,
and Theocharis Theocharides

KIOS Research and Innovation Center of Excellence
Department of Electrical and Computer Engineering

University of Cyprus
Nicosia, Cyprus

{kyrkou.christos,gplast01,ttheocharides}@ucy.ac.cy

Stylianos I. Venieris and Christos-Savvas Bouganis
Department of Electrical and Electronic Engineering

Imperial College London
{stylianos.venieris10,christos-savvas.bouganis}@imperial.ac.uk

Abstract—Unmanned Aerial Vehicles (drones) are emerging as
a promising technology for both environmental and infrastruc-
ture monitoring, with broad use in a plethora of applications.
Many such applications require the use of computer vision
algorithms in order to analyse the information captured from an
on-board camera. Such applications include detecting vehicles
for emergency response and traffic monitoring. This paper
therefore, explores the trade-offs involved in the development
of a single-shot object detector based on deep convolutional
neural networks (CNNs) that can enable UAVs to perform vehicle
detection under a resource constrained environment such as in
a UAV. The paper presents a holistic approach for designing
such systems; the data collection and training stages, the CNN
architecture, and the optimizations necessary to efficiently map
such a CNN on a lightweight embedded processing platform
suitable for deployment on UAVs. Through the analysis we
propose a CNN architecture that is capable of detecting vehicles
from aerial UAV images and can operate between 5-18 frames-
per-second for a variety of platforms with an overall accuracy
of ∼ 95%. Overall, the proposed architecture is suitable for UAV
applications, utilizing low-power embedded processors that can
be deployed on commercial UAVs.

I. INTRODUCTION

Deep learning (DL) has gathered significant interest recently
as an Artificial Intelligence (AI) paradigm, with success in a
wide range of applications such as image and speech recog-
nition, autonomous systems, self-driving cars, cyber-physical
systems, and many more. Among the most promising systems
that can utilize deep learning are Unmanned Aerial Vehicles
(UAVs) which are becoming an attractive solution for a wide
range of applications. In particular, Road Traffic Monitoring
(RTM), and Emergency Response (ER) systems constitute
a domain where the use of UAVs is receiving significant
interest. Under the above deployments, UAVs are responsible
for searching, collecting and sending, in real time, vehicle
information either for traffic regulation purposes or to aid
search and rescue in emergency response.

In traffic monitoring applications, UAVs can perform vehicle
identification, without the need for embedded sensors within

The dissemination of this work is being supported by the European Union’s
Horizon 2020 research and innovation programme under grant agreement No
739551 (KIOS CoE).

cars and can be deployed in an area of interest at no additional
cost; while for emergency response applications they greatly
enhance remote sensing and situational awareness capabilities.

A key challenge in the deployment of the above capabilities
is the computing platform of a UAV is required to (1) consume
minimal power, in order to minimize its effect on the battery
and flight time of the system and (2) process the input
data from its sensors with a low latency in order to make
critical decisions, such as object avoidance and navigation,
in real-time. Conventional on-board computing infrastructure
consists mainly of general purpose machines, such as multi-
core CPUs and low-power microcontrollers. The high compu-
tational workload of novel computer vision algorithms, such
as convolutional neural networks, has led to the introduction
of massively parallel architectures, with the prominence of
Graphics Processing Units (GPUs), as accelerators [1]. To
reach high performance, GPUs require the processing of
inputs in batches in order to amortize the communication
cost between the GPU and its external memory and achieve
high throughput. Despite achieving high throughput, batch
processing results in the deterioration of latency which makes
GPUs inappropriate, in most cases, for the latency-sensitive
tasks of a UAV. Moreover, the high power consumption of
modern GPUs provide a high overhead that can be prohibitive
for low power UAVs.

An alternative to on-board processing are cloud-centric se-
tups. In this scenario, the UAV collects data via its sensors and
transmits them to a base server for analysis. Despite the fact
that this case enables the UAV to save energy by off-loading
compute intensive operations, the wireless transmission of a
video feed can add significantly to the latency of the system.
In latency- and security-sensitive tasks, the high latency and
security risk of cloud computing may not be tolerated and
thus local, on-board processing is necessary. Furthermore,
in remote areas where there is no internet connection the
detection process cannot be offloaded.

The high computational cost of video processing poses a
challenge in mapping modern deep learning-based algorithms
on low-cost, low-power computing platforms. Hence, in this
paper we are concerned with adapting algorithms based on



deep learning for detecting vehicles, to make them efficient
and suitable for real-time UAV applications running on embed-
ded hardware platforms. We explore the parameter space in the
design of convolutional neural networks as well as previously
proposed models to identify an efficient architecture that can
perform vehicle detection on images faster than previous
works (40× speed-up) and at high accuracy (∼ 95%). The
final proposed model is referred to as DroNet and can be used
as a starting point for developing UAV-based object detectors
for various applications.

II. BACKGROUND AND RELATED WORK

A. Related Work on UAV-based Vehicle Detection

Object detection aims to find instances of objects from
known classes in an image. This task typically yields the
location and scale of the object in terms of a bounding box
together with a probability on its class. UAV object detection
has been extensively studied in the literature and traditional
techniques utilize background subtraction [2] to perform traffic
estimation from static UAVs, or use Haar Cascade classifiers
to detect vehicles [3]. The latest state-of-the-art techniques
rely on deep convolutional neural networks (CNNs) [4]. For
example a CNN is utilized in [5] as a classifier to detect
vehicles in grayscale images. However, such approaches need
to process thousands of search windows and are thus inefficient
for UAV platforms with limited hardware capabilities that need
to operate near real-time. A more recent example is shown in
[6] where the authors utilize a deep learning framework that
performs scene analysis of aerial images to first segment the
image into various regions, and then extract the regions that
correspond to vehicles and classify them into subcategories.
The proposed network involves stacked deep neural networks
for encoding and decoding the input image into segments
and runs off-line on an NVIDIA Tesla GPU, which makes
it unsuitable for a lightweight and low power UAVs.

Contrary to existing work, in this work we target on-board
processing on a UAV platform which may not be equipped
with such high-end hardware. To this end, we propose a
lightweight CNN architecture capable of running efficiently
on embedded processors. Recent advances in object detection
frameworks utilize deep learning and cast detection as a
regression problem where the goal is to predict the location of
bounding boxes in the image. Nevertheless, such techniques
have not yet been exploited in UAV applications. In this work,
we employ such techniques and tailor a custom single-shot
CNN, that is trained on image data specifically for top-view
vehicle detection, and is optimized to run on an embedded
platform on-board a UAV. The next section outlines the basic
principles of convolutional and single-shot detectors.

B. Convolutional Neural Network Detectors

Convolutional neural networks (CNNs) are biologically in-
spired hierarchical models that can be trained to perform a
variety of detection, recognition and segmentation tasks [6].
CNNs are neural network architectures composed of multiple
layers, with higher layers built on top of lower ones and

capturing more abstract representations of the input data. The
structure of a CNN typically comprises a feature extractor
stage followed by a classifier. In the last decade, a lot of
progress has been made on CNN-based object detection.
Numerous object detectors have been proposed by the deep
learning community, including Faster R-CNN [7], R-FCN [8],
YOLO [9] and SSD [10]. The main emphasis of these designs
is placed on improving (1) the detection accuracy and (2) the
computational complexity of their methods in order to achieve
real-time performance for mobile and embedded platforms
[11]. The CNN-based object detectors can be taxonomized
into two categories with respect to their high-level structure: 1)
region-based detectors, usually consisting of a region-proposal
stage followed by a classifier, and 2) single-shot detectors,
which employ a single CNN to perform end-to-end object
detection.

1) Region-based Detectors: Region-based detectors sepa-
rate the prediction of the bounding box position from the ob-
ject class prediction. A prominent example of such a classifier
is Faster R-CNN [7], which divides its processing pipeline
into two stages. The first stage, called the Region Proposal
Network (RPN), employs the feature extractor of a CNN
(e.g. VGG-16, ResNet, etc.) to process images and utilizes
the output feature maps of a selected intermediate layer in
order to predict bounding boxes of class-agnostic objects on
an image. In the second stage, the box proposals are used to
crop features of the same intermediate feature maps and pass
them through a classifier in order to both predict a class and
refine a class-specific box for each proposal. With typically
hundreds proposals per image passed separately through the
classifier, Faster R-CNN remains computationally heavy and
poses a challenge in achieving high performance in embedded
platforms.

2) Single-Shot Detectors: This class of detectors aims to
avoid the performance bottlenecks of the 2-step region-based
systems. The YOLO [9] framework casts object detection to
a regression problem and in contrast to the RPN + classifier
design of Faster R-CNN, employs a single CNN for the whole
task. YOLO divides the input image into a grid of cells
and for each cell outputs predictions for the coordinates of
a number of bounding boxes, the confidence level for each
box and a probability for each class. Compared to Faster
R-CNN, YOLO is designed for real-time execution and by
design provides a trade-off that favours high performance
over detection accuracy. In addition, the open-source released
version of YOLO has been developed using the C- and CUDA-
based Darknet [12] framework, which enables the use of both
CPUs and GPUs and is portable across a variety of platforms.

SSD [10] is a single-shot detector aims to combine the
performance of YOLO with the accuracy of region-based
detectors. SSD extends the CNN architecture of YOLO by
adding more convolutional layers and allowing the grid of
cells for predicting bounding boxes to have a wider range
of aspect ratios in order to increase the detection accuracy for
objects of multiple scales. Despite the high detection accuracy
and performance, the open-source released version of SSD has



been developed using the Caffe framework.
In this work, we focus on single-shot detectors due to their

high performance and applicability to mobile and embedded
systems. To this end, we select YOLO as our basis detection
framework because the portability of its C-based release
enables us to explore detection across diverse computing
platforms.

III. PROPOSED APPROACH

A. Data Collection

The training of the UAV-based single shot detector involves
the collection of appropriate image data. To compile the
training set, images were collected using a variety of methods
including cropping of satellite images, retrieving images from
the world-wide-web, and collecting urban traffic video footage
from a UAV. By employing a variety of acquisition methods
we were able to construct a dataset that captures vehicles under
different conditions with regards to illumination, viewpoint,
occlusion, color and type. In this way, after training, the
detector would learn to identify vehicles in a variety of
scenarios. Overall, a total of 350 images where collected with
a total of ∼ 5000 vehicles captured.

B. Training Process

The produced image database was used to train the networks
under consideration. The training process involved annotating
all vehicles in the images. We annotated only vehicles with
50% of their body visible within the image. A number of
CNN models were designed and trained using the Darknet
framework on an NVIDIA Titan Xp GPU. The different
models varied in terms of number of layers, filter sizes and
input image size. All models were trained using the loss
function defined in [9] to jointly predict whether vehicles were
detected together with the bounding boxes of vehicles in the
image.

C. CNN Models

While there has been extensive investigation on reducing
the complexity of well studied CNN models in the form
of parameter compression and quantization [13], there has
been limited effort on developing specialized CNN designs
for UAVs which need radical changes due to highly resource-
constrained environment both in computer power and memory
bandwidth. As such, in this work we focus on designing an
efficient and lightweight network from the beginning rather
than adapt an existing network. The main objective of our
design is to accelerate the execution of the model with minimal
compromise on the achieved accuracy. The Tiny-YOLO, model
is a smaller model of YOLO detection that is fast and works
efficiently on the GPU [9]. We adapted this basic model
to detect only one class, in our case top-view vehicles. We
explore the impact on performance by changing the structure
of the network such as the number of filters, the number of
layers, the image size, the number of convolution and the
pooling layers. We design different structures (SmallYoloV3,
TinyYoloVoc, TinyYoloNet, and DroNet) all shown in Fig. 1,

with different parameters including the layers and the type of
each layer (conv,maxpool,detection) together with the config-
uration of the layers in terms of the number of filters, the size
of filters in each layer and the input and the output size of the
feature maps. The overall design approach is as follows:

1) Number and Size of Filters: We use the structure of
Tiny-YOLO model [9] as a baseline and decrease the number of
filters in each layer in order to get a smaller network which can
lead to a faster detection. To reduce the amount of operations
per input, we reduced the number of filters by decreasing the
number of filters per layer and coarsely pruning whole layers.
For the convolutional layers we gradually increase the number
of filters up to a point as the net gets deeper so that we keep the
compute requirements low. In total there are 9 convolutional
layers in the models shown in Fig. 1, with the max-pooling
layers ranging between 4− 6.

2) Input Image Size: The size of the input image that is
processed by the network is a factor that can affect both
accuracy and performance. On the one hand, larger images
often lead to higher detection accuracy by the inclusion of
more information. Nevertheless, larger images also lead to
larger feature maps that have to be processed in the network
and hence greater computational and memory load. In our
experiments, we varied the image size in both the training
and testing stages from 352 to 608.

D. Application Level Optimizations

When the UAV platform is capable of providing altitude
information we can incorporate this into the detection process
by restricting the possible sizes of detected objects. For
example, vehicles can appear within a certain range based on
the UAV altitude; any objects that are not within this range
can be discarded as false detections, based on their size and
feasibility with respect to the UAV altitude and real object
size.

IV. EVALUATION AND EXPERIMENTAL RESULTS

In this section, we present a comprehensive quantitative
evaluation of TinyYoloVoc, TinyYoloNet, SmallYoloV3 and
DroNet which are CNN-based vehicle detectors. The ba-
sic network models are trained for various input sizes and
compared on the constructed vehicle dataset. Throughout the
experiments, three platforms were targeted: (1) an Intel CPU
i5-2520m at 3.20 GHz having two cores with two hardware
threads per core and 3 MB cache, (2) an Odroid UX4 with
an octacore Samsung Exynos-5422 CPU at 2GHz with 2 GB
of RAM and (3) Rasperry Pi 3 containing a quad-core ARM
Cortex-A53 at 1.20 GHz with 1 GB of RAM.
Metrics: To evaluate the performance of each model, we
employ the following four metrics:

1) Intersection over Union (IoU): In the context of object
detection, the IoU metric captures the similarity between the
predicted region and the ground-truth region for an object
present in the image. This metric is defined as the size of the
intersection of the predicted and ground-truth regions divided
by their union.



Layer Type Filters Size Stride Layer Type Filters Size Stride Layer Type Filters Size Stride Layer Type Filters Size Stride

0 Conv 16 3x3 1 0 Conv 4 3x3 2 0 Conv 4 3x3 2 0 Conv 16 3x3 2

1 Max-Pool 2x2 2 1 Max-Pool 2x2 2 1 Max-Pool 2x2 2 1 Max-Pool 2x2 2

2 Conv 32 3x3 1 2 Conv 8 3x3 1 2 Conv 8 3x3 1 2 Conv 4 1x1 1

3 Max-Pool 2x2 2 3 Max-Pool 2x2 2 3 Max-Pool 2x2 2 3 Max-Pool 2x2 2

4 Conv 64 3x3 1 4 Conv 16 3x3 1 4 Conv 16 1x1 1 4 Conv 8 3x3 1

5 Max-Pool 2x2 2 5 Max-Pool 2x2 2 5 Max-Pool 2x2 2 5 Max-Pool 2x2 2

6 Conv 128 3x3 1 6 Conv 32 3x3 1 6 Conv 32 1x1 1 6 Conv 16 1x1 1

7 Max-Pool 2x2 2 7 Max-Pool 2x2 2 7 Max-Pool 2x2 2 7 Max-Pool 2x2 2

8 Conv 256 3x3 1 8 Conv 64 3x3 1 8 Conv 32 3x3 1 8 Conv 32 1x1 1

9 Max-Pool 2x2 2 9 Conv 128 3x3 1 9 Conv 64 1x1 1 9 Conv 64 3x3 1

10 Conv 512 3x3 1 10 Conv 256 3x3 1 10 Conv 64 1x1 1 10 Conv 128 1x1 1

11 Max-Pool 2x2 2 11 Conv 512 3x3 1 11 Conv 32 1x1 1 11 Conv 256 1x1 1

12 Conv 1024 3x3 1 12 Conv 30 1x1 1 12 Conv 30 1x1 1 12 Conv 30 1x1 1

13 Conv 1024 3x3 1 13 Detect-Decode 13 Detect-Decode 13 Detect-Decode

14 Conv 30 1x1 1

15 Detect-Decode

TinyYoloVoc TinyYoloNet SmallYoloV3 DroNet

Fig. 1. Baseline Network Structures

DECODE

16@3x3

4@1x1

8@3x3
16@1x1

32@1x1

64@3x3

128@1x1

256@1x1

30@1x1

2x2 max pooling with stride 2

Fig. 2. Architecture of the DroNet single shot CNN detector for top-view vehicle detection. It is comprised of 3 × 3 and 1 × 1 convolutional layers and
max-pooling layers that reduce the feature maps size by 2×

2) Sensitivity: This metric is defined as the proportion of
true positives that are correctly identified by the detector. This
metric is calculated by taking into account the True Positives
(Tpos) and False Negatives (Fneg) of the detected cars as given
by (1).

Sensitivity =
Tpos

Tpos + Fneg
(1)

3) Precision: This metric is a widely used metric by the
object detection community and is defined as the proportion
of True Positives among all the detections of the system as
captured by (2).

Precision =
Tpos

Tpos + Fpos
(2)

4) Frames-Per-Second (FPS): The rate at which an object
detector is capable of processing incoming camera frames.
Score: In order to capture the overall performance of each
detector, we define a composite metric under the name score.
This metric consists of a linear combination of IoU, Sensitivity
and Precision together with the achieved FPS on a particular

platform. We parameterize the score with respect to a vector
of weights w ∈ [0, 1]4 as given by (3),

Score(w) = w1 × FPS +w2 × IoU (3)
+w3 × Sensitivity +w4 × Precision

subject to
4∑

i=1

wi = 1

where each weight captures the application-level importance
of each metric. Considering that in our case we target real-time
applications we assigned weights on these metrics to capture
the best trade-off between a fast detector and good accuracy.
We prioritized FPS with a weight of 0.4 over the other three
accuracy-related metrics, which were equally weighted with
0.2. Hence, the model with the highest overall score will be
the one that is best suited for our application demands and
platform constraints.

A. Parameter Space Exploration on CPU Platform

In this section, we present the effect of modifying the ar-
chitectural parameters of the underlying networks on detection
accuracy and performance on a CPU platform. The networks
vary with respect to their topology and the configuration of the
layers. The presented results are normalized, between CNNs
by first dividing them with the maximum value of each metric



across all CNNs, in order to lie in the range [0, 1]. Thus making
it easier to compare and contrast the different models and their
trade-offs.

1) Number and Size of Filters: Fig. 3 shows the perfor-
mance comparison between the four models. In our test set,
with 386 × 386 as image size, TinyYoloNet achieved 10×
higher performance than TinyYoloVoc with decreased detection
sensitivity and precision by 20% and 10% respectively and a
drop in IoU of 0.11. The network SmallYoloV3, with 386×386
as image size achieved the highest frame-rate among all
network designs with 23 FPS. Nevertheless, the substantial
reduction in the number of weights led to a decrease in
sensitivity which was 53% lower, which prohibits us from
using it for robust vehicle detection.

(a)

(b)

(c)

(d)

Fig. 3. Normalized performance metrics for basic model configurations for
different input image sizes: (a) TinyYoloVoC (b) SmallYoloV3 (c) SmallY-
oloV3 (d) DroNet.

Fig. 3 shows the significant performance gains starting from
TinyYoloVoc to TinyYoloNet followed by SmallYoloV3 and then

Fig. 4. Combined metric results for the best models using the weighted Score
metric.

to DroNet. For example, comparing these models for the same
input size, 386, the performance of DroNet is 30× faster
compared to TinyYoloVoc with a minimal drop of 0.08 on the
IoU. Moreover, the detection sensitivity and precision were
also affected in a limited manner with a decrease of 2% and
6% respectively. With respect to the weighted score metric,
DroNet achieved a 3% increase over TinyYoloVoc due to its
large speed up. Furthermore, we observe a slight increase in
false detections of DroNet. This is a symptom of the loss of
information during training that was caused by the decrease
in the size and number of layers.

2) Input Image Size: By increasing the input image size,
TinyYoloVoc demonstrated an increase of 0.17 in the IoU
and 10% in the sensitivity at the cost of 3× slower perfor-
mance. TinyYoloVoc with increase size of input images was
the model configuration with the highest accuracy on our
test set, reaching 97%. Fig. 3 presents the effect of different
input image sizes in the range 352 to 608 on the metrics
of our faster models. By using images of larger size, the
detection sensitivity is increased by an average of 1.28×
across the models. Conversely, the larger input size deteriorates
performance with an average of 0.81× across the models. A
trade-off between higher detection accuracy and acceptable
performance can be reached by applying inputs with a size
between 416 and 544. In this range, the accuracy gain is higher
than the penalty on detection speed.

Fig. 4 shows the best performance of each one of the models
on our dataset. In this context, based on the explored design
space, a size of 512×512 maximizes the weighted score metric
of the DroNet model and therefore we select it for use on
the UAV platform.

B. DroNet on UAV Platform

In this section we implement the DroNet model on a
DJI Matrice 100 UAV by interfacing it with two different
computing platforms.

1) Odroid-XU4: To map our proposed model on Odroid-
XU4 platform we used Darknet [12] to implement our net-
work structure. We first install Darknet for Odroid-XU4 with
OpenMP and loaded the pretrained DroNet weights. We use
the on board camera to retrieve real time video feed and



(a)

(b)

Fig. 5. Evaluation on UAV Platform: (a) Detection results on images acquired
from a UAV and from aerial databases. (b) Odroid board attached on DJI
Matrice 100 UAV.

pass it frame by frame to the processing board where the
vehicles are detected (5). Detection results of the DroNet
model from the UAV are shown in Fig. 5. Odroid performance
was around 8− 10 FPS with the accuracy maintained around
95%. The performance was decreased due to the fact that the
detection was spread uniformly across all cores with 50%
utilization for each one. This was a problem that we were
facing with Darknet implementation but it may be possible
to optimize implementation and employ the use of all CPU
cores with 100% usage in the future, which may result in
further improvement of performance. It is worth noticing that
the proposed DroNet model was 40× faster than TinyYoloVoc
performance which achieved only 0.1 FPS on Odroid.

2) Raspberry Pi 3 - Model B: Moreover, we also imple-
mented our proposed model on Raspberry Pi 3. The accuracy
was maintained again around 95% but the performance was
only 5 − 6 FPS this time mainly due to the less capable
chipset on this platform. However, for certain applications
which exhibit slow varying dynamics this option can be a
viable one.

V. CONCLUSION & FUTURE WORK

This paper presented an exploration of different single-shot
convolutional neural network detectors for UAV-based vehicle
detection. Specifically, a dataset was constructed and different
models were trained and evaluated for different configurations
and metrics. The resulting CNN referred as DroNet is capable
of 5 − 18 FPS on different platforms while achieving 95%
detection accuracy. Potential future work includes the perfor-
mance improvements by applying finer-level optimizations to
reduce bitwidth precisions. Finally, we also aim to significantly
enhance the training set with additional images and object
classes (e.g., pedestrians, motorbikes, etc.) suitable for UAV
applications such as emergency response.

ACKNOWLEDGMENT

Christos Kyrkou gratefully acknowledges the support of
NVIDIA Corporation with the donation of the Titan Xp GPU
used for this research.

REFERENCES

[1] L. Cavigelli, M. Magno, and L. Benini, “Accelerating Real-Time
Embedded Scene Labeling with Convolutional Networks,” in Design
Automation Conference (DAC). ACM, 2015, pp. 1–6.

[2] A. De Bruin and M. J. Booysen, “Drone-based traffic flow estimation
and tracking using computer vision,” 2015.

[3] C. L. Azevedo, J. L. Cardoso, M. Ben-Akiva, J. P. Costeira,
and M. Marques, “Automatic vehicle trajectory extraction by aerial
remote sensing,” Procedia - Social and Behavioral Sciences, vol.
111, pp. 849 – 858, 2014, transportation: Can we do more
with less resources? ? 16th Meeting of the Euro Working
Group on Transportation ? Porto 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877042814001207

[4] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for
object detection,” in Advances in Neural Information Processing
Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2013, pp.
2553–2561. [Online]. Available: http://papers.nips.cc/paper/5207-deep-
neural-networks-for-object-detection.pdf

[5] X. Chen, S. Xiang, C. L. Liu, and C. H. Pan, “Vehicle detection in
satellite images by parallel deep convolutional neural networks,” in 2013
2nd IAPR Asian Conference on Pattern Recognition, Nov 2013, pp. 181–
185.

[6] N. Audebert, B. Le Saux, and S. Lefvre, “Segment-before-detect:
Vehicle detection and classification through semantic segmentation of
aerial images,” Remote Sensing, vol. 9, no. 4, 2017. [Online]. Available:
http://www.mdpi.com/2072-4292/9/4/368

[7] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 6, pp. 1137–1149, 2017.

[8] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object Detection via Region-
based Fully Convolutional Networks,” in NIPS, 2016, pp. 379–387.

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single Shot MultiBox Detector,” ECCV, pp. 21–37,
2016.

[11] G. D. T. N. Subarna Tripathi, Byeongkeun Kang, “Low-complexity
object detection with deep convolutional neural network for embedded
systems,” Proc.SPIE, vol. 10396, pp. 10 396 – 10 396 – 15, 2017.
[Online]. Available: http://dx.doi.org/10.1117/12.2275512

[12] J. Redmon, “Darknet: Open Source Neural Networks in C,”
http://pjreddie.com/darknet/, 2013–2016.

[13] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural Networks,”
ECCV, pp. 525–542, 2016.


