

The Role of Open-source Network Optimization Software in the SDN/NFV World

^{1,2} Pablo Pavón Mariño

^{1,3} Miquel Garrich¹ Francisco Javier Moreno Muro

¹ Universidad Politécnica de Cartagena, (Spain)
 ² E-lighthouse Network Solutions, Spain (<u>www.e-lighthouse.com</u>)
 ³ Optical Technologies Division, CPqD, Brazil

OFC 2018. Tutorial Th1D.1

Pablo Pavón Mariño

Full Professor, Technical University of Cartagena Head of GIRTEL research group http://girtel.upct.es

Dr. Francesc Burnell i Mestres Assisciate Professor (Titular de Encuela Universitaria: Email francesc burruk@uplct es Phone +14 968335365 Petronial with page

tosé huan Pedroñ M.St./Ph.D. Stut Unvertigador FP RCD) Enait Josei ped Phone: +34.98 Petconal only p

contratada)

Martínez

investigación)

José Luis Romero Gârquer

PhD Statient (Investigador

Email post remembly upd as

César Francisco San Nicolas

M.Sc. Student (becario

Email christ@stiapcles

Phone +34 968338849

Personal web page

Phone +34 968338548

Demonial web class

Dra. Mª Victoria

Bueno Delgado

Associate Prefessor

(Contratado Dector)

Enail

Entil[®]

Jorge San

(investigación)

M.Sc. Student (becario

Email peylógials upches

Phone: +34 001338946

Flena Martin Sepane

M.Sc. Student (becieta)

ems0(balu.upct.es

Partonal web trade

Phone: +34 (H111094)

investigación)

Email.

Pathonal well nade

Villataire

mviztoria bueno@upit.er Phone: +34 968326505

Dra. Nina Skorin-Kapov Associate Professor Academy

GIRTEL

Miguel Garrich Alabarce Visiting Researcher / Junior Lecturer Dipartimento di Elettronica a Telecomunicazioni Politecnico di Torino - Torino, Italy Email: miguel.gamich@politp.it Phone: +39 011 090 4226


Carlos Bermidez Carrasen Teleconnication Engineer e-Ighthouse Network Solutions 111. Email charmadau(2+-lphthaus con Phone + 14 000330348 Web page

Academty

Laureano Serminder Climos Associate Professor University Center of Delense at the Spa Email Reubb@eit.rube.ex Phone -34 900109544

Javier López Fernández M.Sc. Stoden (becatio investigación) Email: H20-Galu unches Frine 34 968338946 Parconal web pace

15 years track in research in network optimization

Leader of the Net2Plan open source network planning initiative

net2plan www.net2plan.com

github.com/girtel/net2plan

Co-founder of E-lighthouse Network Solutions

Multilayer network planning software

www.e-lighthouse.com

OFC 2018. Th1D.1. The Role of Open-source Network Optimization Software in the SDN/NFV World

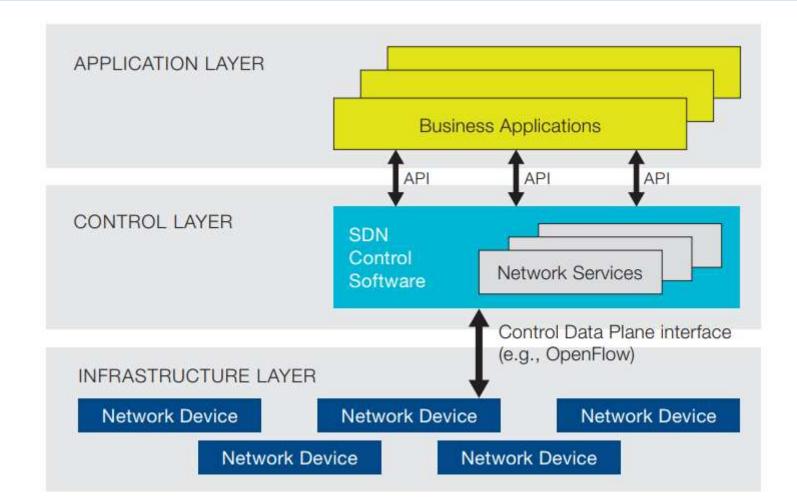
Networks 2018

18th International Telecommunications Networks Strategy and Planning Symposium 10-12, September 2018, Los Alcázares (Spain) networks2018.upct.es

AVAN TRANS THE AVAN

CONTRACTOR OF A DESCRIPTION OF

Agenda

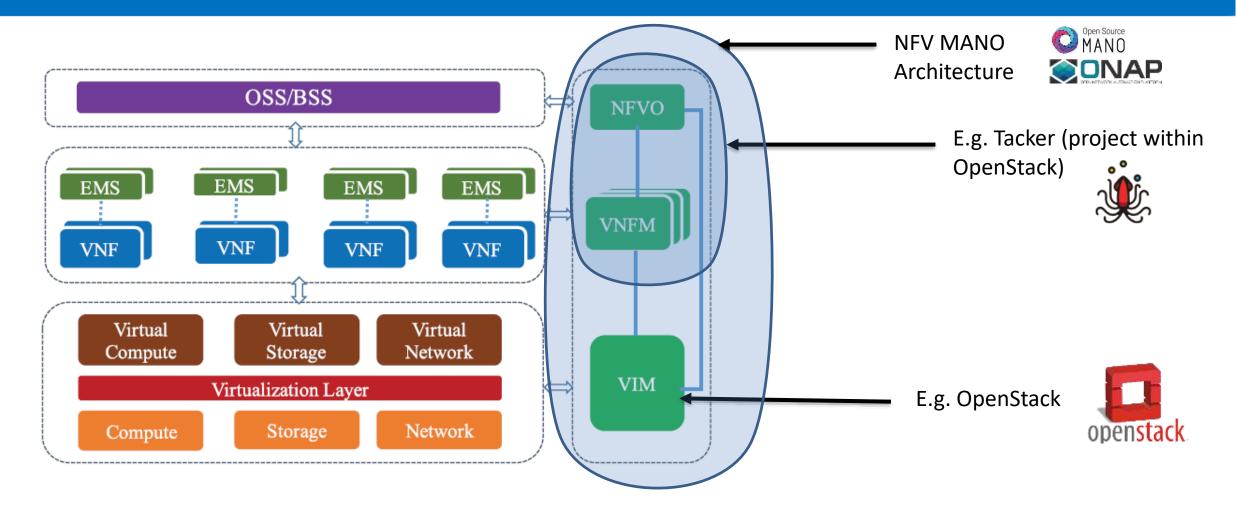

- 1. Introduction
- 2. Use cases
- 3. Theoretical limits, heuristics, solvers
- 4. Network optimization software. Net2Plan
- 5. Wrap up

Agenda

1. Introduction

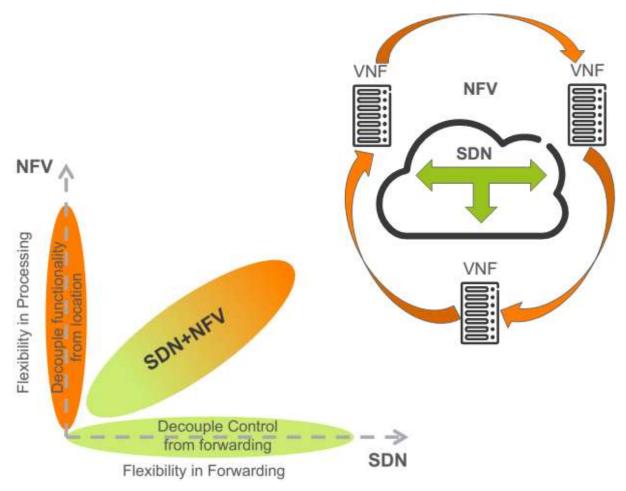
- 2. Use cases
- 3. Theoretical limits, heuristics, solvers
- 4. Network optimization software. Net2Plan
- 5. Wrap up

SDN / NFV introduction


OaaS Optimization-as-a-Service

As an SDN application

Source: ONF. Software-Defined Networking: The New Norm for Networks. White Paper April 13, 2012. [https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf]


OFC 2018. Th1D.1. The Role of Open-source Network Optimization Software in the SDN/NFV World

SDN / NFV introduction

ETSI NFV ISG (NFV White Paper) Oct 2012. Image source: V. G. Nguyen, et al, "SDN/NFV-based mobile packet core network architectures: a survey," IEEE Comm. Surveys & Tutorials, 19(3), 1567-1602.

SDN / NFV introduction

PROGRAMMABLE NETWORK MEANS:

NON-MANUAL DATA ACQUISITIONNON-MANUAL NETWORK CONTROL

WE HAVE MULTIPLE NEW USE CASES FOR OPTIMIZATION IN PRODUCTION NETWORKS...

(that so far existed just in the papers)

Source: Ahmad Rostami (Ericsson Research) [http://www.itc26.org/fileadmin/ITC26_files/ITC26-Tutorial-Rostami.pdf]

Agenda

1. Introduction

2. Use cases

- 3. Theoretical limits, heuristics, solvers
- 4. Network optimization software. Net2Plan
- 5. Wrap up

Use cases: optimization in practical problems

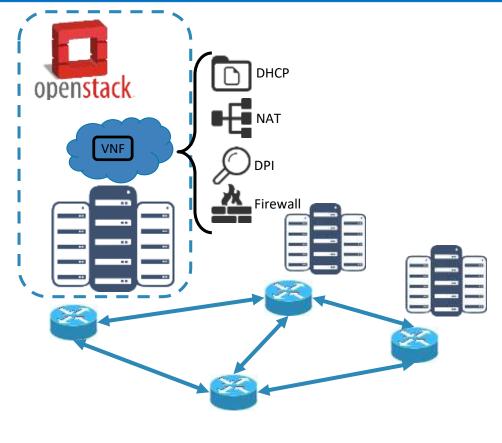
Use cases:

- Single VNF (VM), single OpenStack
 - NOVA: Allocating VMs in computing resources, vertical scaling
- 2. VNF service chain, single OpenStack
 - HEAT: Allocating NSs, optimizing horizontal autoscaling
 - WATCHER: A project centralizing optimization decisions in an OpenStack
- 3. Network orchestration
 - Optimization as a Service (OaaS)
- 4. Network service across multiple OpenStacks connected in a network
 - OSM, TACKER, ONAP and others

10

USE CASES: Optimization problems in SDN/NFV (1/4)

1. Single VNF (VM), single OpenStack

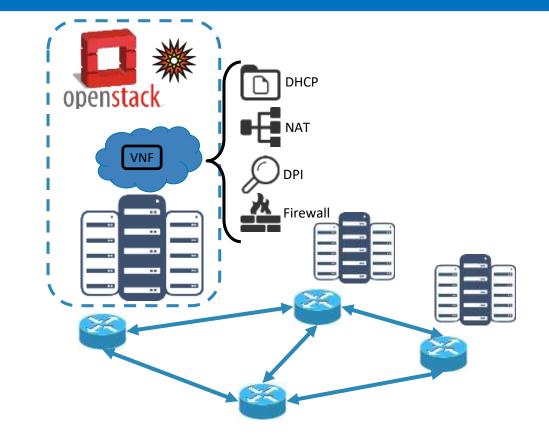

Problem: Allocation of computing resources to VNFs

Input:

- VMs CPU, HD, RAM requisites & EPA info
- Servers: CPU, HD, RAM occup. & EPA info

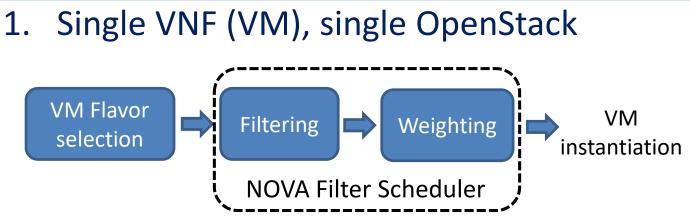
Output:

Allocation of VMs in the servers

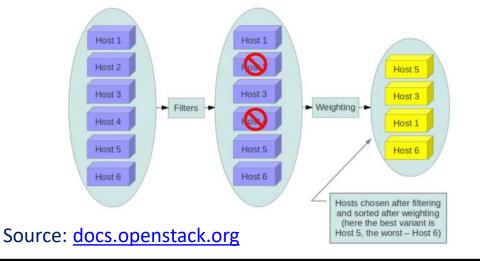


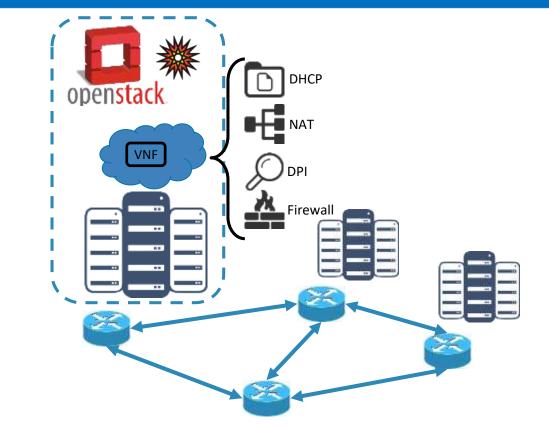
USE CASES: Optimization problems in SDN/NFV (1/4)

1. Single VNF (VM), single OpenStack


<u>VM requisites: OpenStack flavors</u> define the compute, memory, and storage capacity of nova computing instances.

<pre>\$ openstack flavor list +++++++</pre>						
ID		RAM	Disk	Ephemeral	VCPUs	Is_Public
1	m1.tiny m1.small	512	1	0	1	True True
3	m1.medium	4096	40	0	2	True
4	m1.large	8192	80	0	4	True
5 +	m1.xlarge +	16384	160	0 +	8	True ++




USE CASES: Optimization problems in SDN/NFV (1/4)

<u>OpenStack</u> mechanism for tuning the decision. Programmable filters & weighters

Make your allocation algorithm and implement it as a new filter in OpenStack

1. Single VNF (VM), single OpenStack

Make your scheduler... things to play with

• Availability zones (NOVA and NEUTRON). A host can be tagged to be in one availability zone. E.g. Those connected to the same master power supply.

More info:

- <u>https://docs.openstack.org/nova/pike/user/aggregates.html</u>
- <u>https://docs.openstack.org/newton/networking-guide/config-az.html</u>

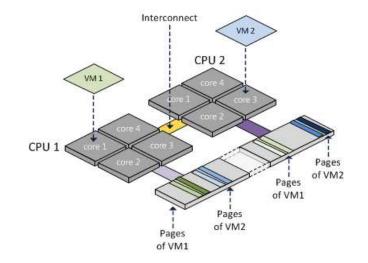
Use the information for allocations with enhanced availability

Single VNF (VM), single OpenStack

Make your scheduler... things to play with

NUMA topology (visible through the hypervisor)

The system memory is divided into cells or nodes that are associated with a particular CPU.


CPU pinning

An instance's vCPU is assigned (pinned) to a particular host CPU.

EPA. Enhanced Platform Awareness

TOSCA VNFD* templates allow specifying VNF requirements such as NUMA topology, SR-IOV, Huge pages and CPU pinning.

Source: https://docs.openstack.org/nova/pike/admin/cpu-topologies.html https://www.stratoscale.com/blog/openstack/cpu-pinning-and-numa-awareness/ https://docs.openstack.org/tacker/latest/user/enhanced placement awareness usage guide.html

latency & performance

1. Single VNF (VM), single OpenStack

M. Scharf, M. Stein, T. Voith, and V. Hilt, "**Network-aware instance scheduling in OpenStack**," IEEE International Conference on Computer Communication and Networks (ICCCN), 2015:

- Extension of the OpenStack scheduler that enables a network-aware placement of instances by taking into account bandwidth constraints between nodes and exterior
- External resource tracker can monitor the allocation of bandwidth

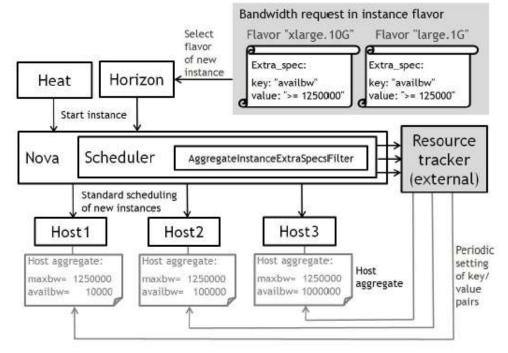
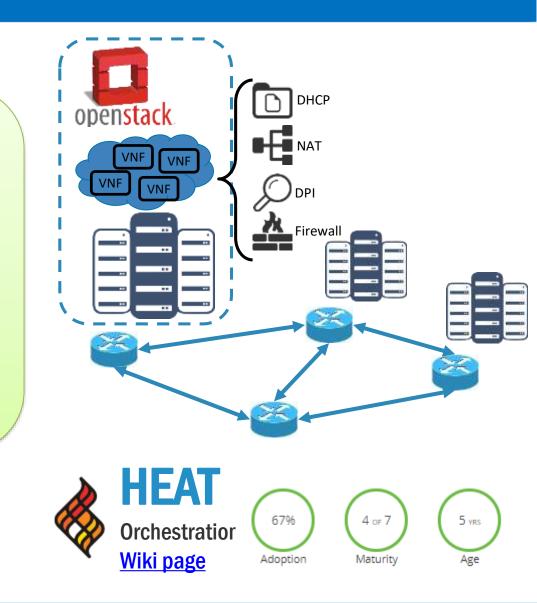


Fig. 4: Design of the host bandwidth awareness prototype

USE CASES: Optimization problems in SDN/NFV (2/4)

2. VNF service chain, single OpenStack

Problem: Allocation of network service


Input:

 Template (e.g. AWS-style, HOT) with set of VNFs, virtual connections and metadata

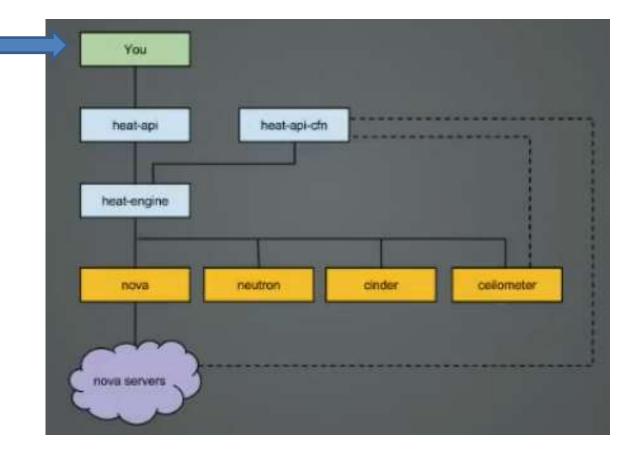
Output:

- Allocation of VMs in the servers
- Configuration of the virtual links between them

Heat: orchestrates the allocation of **network services** defined in templates (HOT templates), to underlying computing & networking infrastructure

USE CASES: Optimization problems in SDN/NFV (2/4)

2. VNF service chain, single OpenStack


Input: HOT template

heat_template_version: 2015-04-30	
description: Simple template to deploy a single compute instance	
resources:	
<pre>my_instance:</pre>	
type: OS::Nova::Server	
properties:	
key_name: my_key	
image: ubuntu-trusty-x86_64	
flavor: m1.small	

Heat Orchestration Template (HOT) structure

- Version
- Description
- Parameters
- (Stack of) Resources
- Output

Heat architecture components

Source: L. Kellog-Stedman, "Deploying with heat", Sept. 2014.

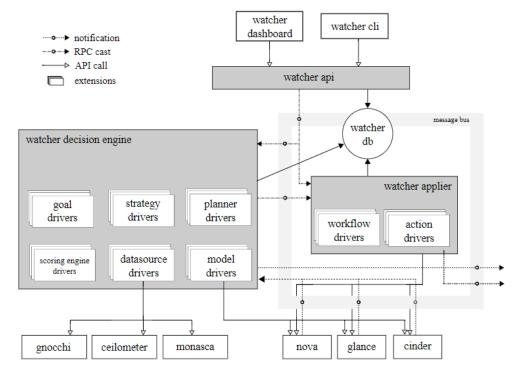
2. VNF service chain, single OpenStack

Heat: we can define an **Autoscaling Group** to create a desired count of similar resources (defined with the resource property in HOT format).

heat_template_version: 2015-04-30
<u></u>
resources:
the_resource:
type: OS::Heat::AutoScalingGroup
properties:
cooldown: Integer
desired_capacity: Integer
max_size: Integer
min_size: Integer
resource: {}
<pre>rolling_updates: {"pause_time": Number, "max_batch_size": Integer, "min_in_service": Integer}</pre>

Dynamically tune the autoscaling thresholds to e.g. avoid unproductive short-lived re-scalings

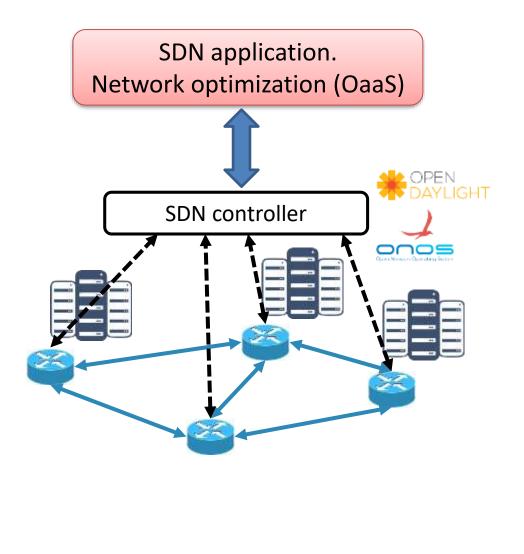
Source: https://docs.openstack.org/heat/pike/template_guide/openstack.html#OS::Heat::AutoScalingGroup


USE CASES: Optimization problems in SDN/NFV (2/4)

2. VNF service chain, single OpenStack

WATCHER Optimization Service Wiki page

- Watcher: A project to ease a complete optimization of the OpenStack
 - Reads monitoring information e.g. from Ceilometer service (e.g., # of vcpus, CPU utilization %, memory used)
 - Permits plugging in optimization algorithms using it


Source: <u>https://docs.openstack.org/watcher/pike/architecture.html</u>

Watcher looks like a good place for capacity planning of computing/network resources in the DC & periodic application of reoptimization algorithms

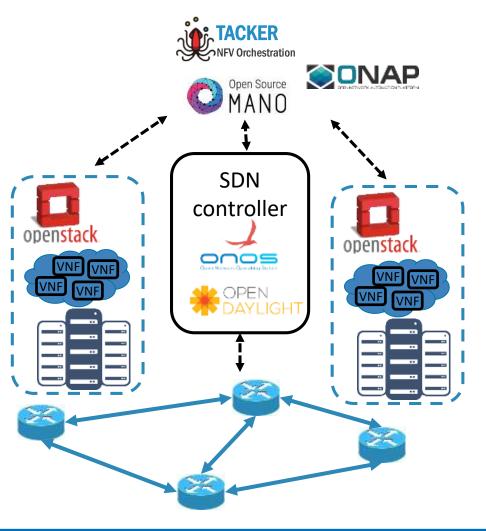
USE CASES: Optimization problems in SDN/NFV (3/4)

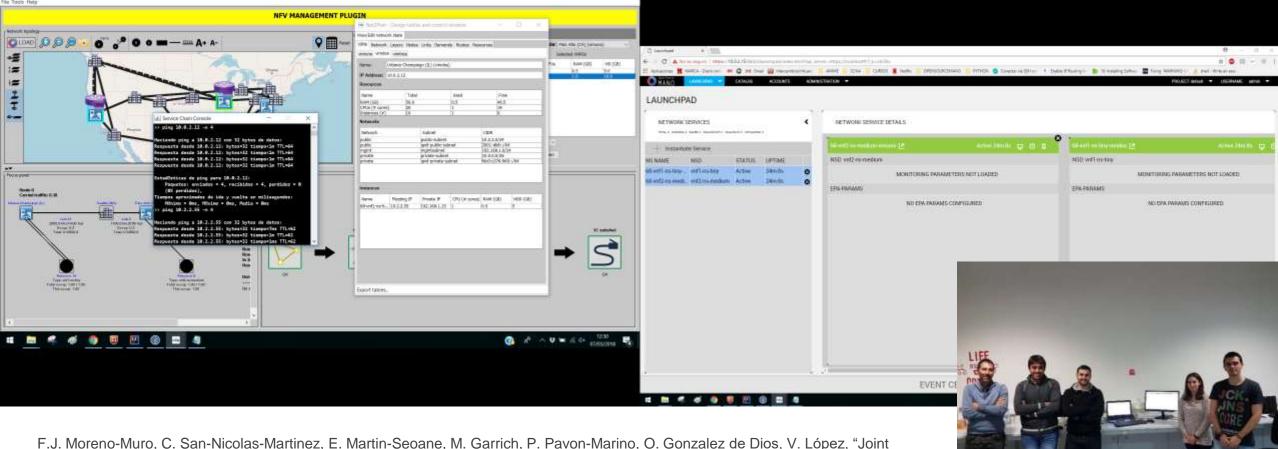
- 3. Optimization of network resources
 - Classical SDN use cases for network optimization:
 - Periodic reoptimization
 - PCE-like path computation for provisioning
 - More options in the scope of OaaS:
 - Capacity planning & long term network planning

Optimization-as-a-Service naturally fits as a NBI application.

USE CASES: Optimization problems in SDN/NFV (4/4)

1. Network service across multiple OpenStacks connected in a network


Problem: Provision network service across multiple-VIMs: network & computing resources are JOINTLY allocated


Input:

• Template (e.g. AWS-style, HOT) with set of VNFs, virtual connections and metadata

Output:

- Allocation of VMs in the servers
- Configuration of the virtual links between them
- Allocation of network resources

F.J. Moreno-Muro, C. San-Nicolas-Martinez, E. Martin-Seoane, M. Garrich, P. Pavon-Marino, O. Gonzalez de Dios, V. López, "Joint Optimal Service Chain Allocation, VNF instantiation and Metro Network Resource Management Demonstration", OFC 2018 (SDN/NFV Demo Zone)

- Net2Plan and SDN/NFV
 - OFC 2018 SDN/NFV Demo zone. Connection of Net2Plan to OpenStack & OSM for making optimized allocations of service chains in multi-VIM environment
 - Demonstrating joint allocation of IT (CPU, RAM, HD) and network resources

Agenda

- 1. Introduction
- 2. Use cases

3. Theoretical limits, heuristics, solvers

- 4. Network optimization software. Net2Plan
- 5. Wrap up

Theoretical limits to algorithm performances

Message: There are theoretical limits to algorithm performaces Most problems in this context are proven to be **INAPPROXIMABLE** (Assuming $\mathcal{P} \neq \mathcal{NP}$)

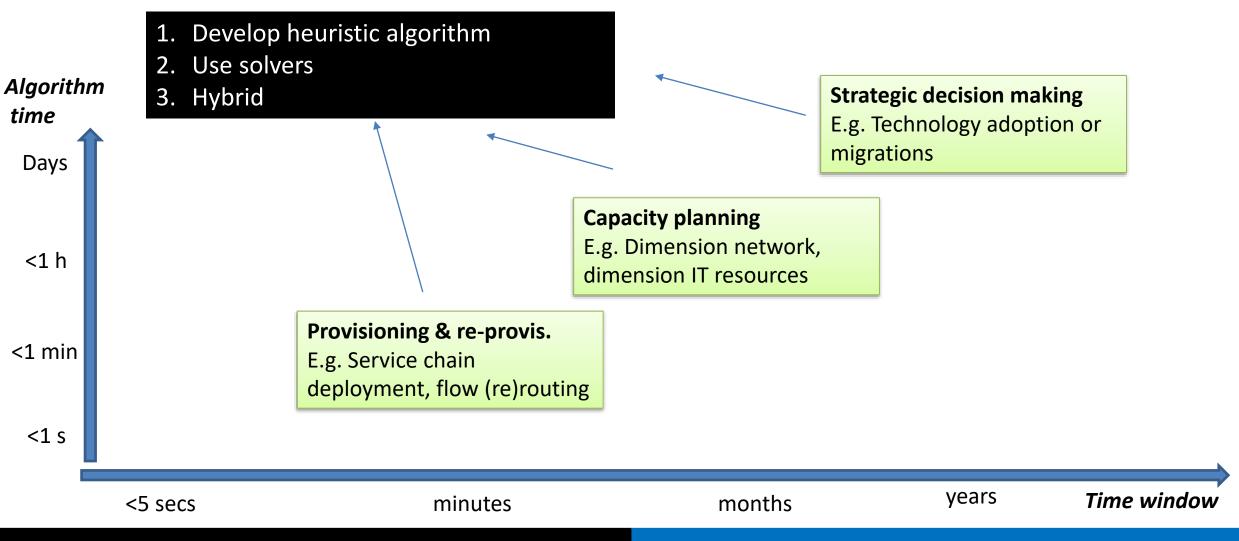
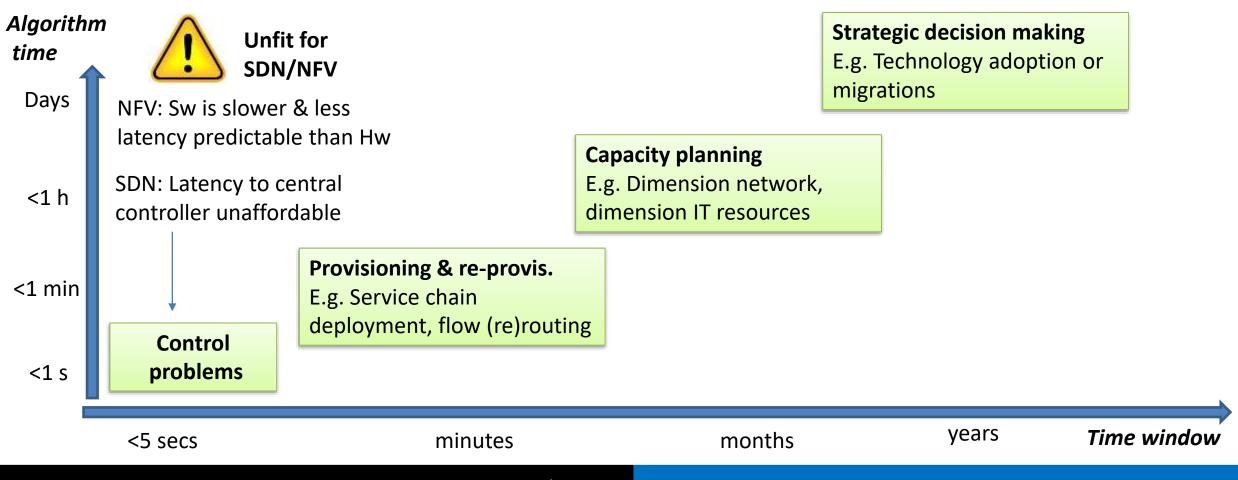
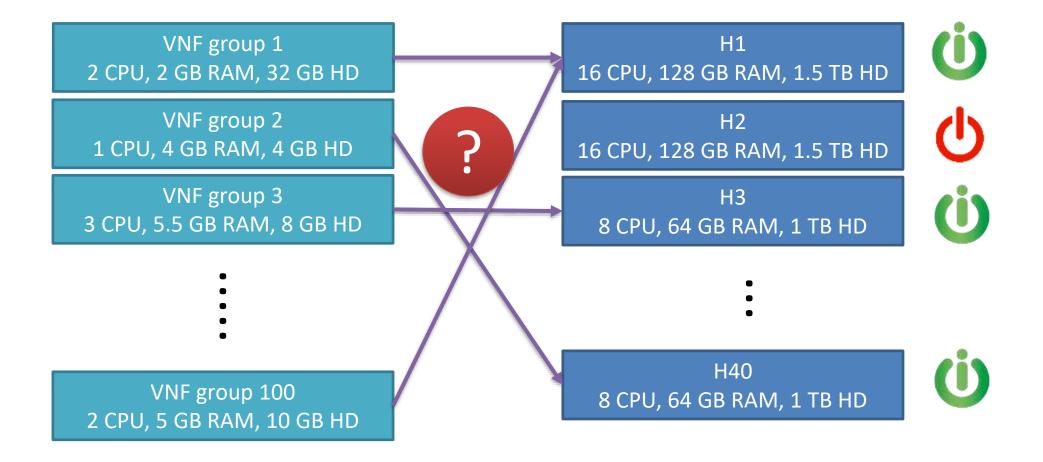

Name	Description	Complexity
Conv	General convex programs	Polynomial (\mathcal{P})
ILP	General integer linear programs	\mathcal{NPO} -complete
BLP	General binary linear programs	\mathcal{NPO} -complete
Min-kMST	k-minimum cost spanning trees	Polynomial (\mathcal{P})
Min-kSP	k-minimum cost paths	Polynomial (\mathcal{P})
Min-kSP	k-minimum cost paths	Polynomial (\mathcal{P})
Min-Ste	Min cost multicast tree (Steiner tree)	0.55-approx., APX-complete
Max-Clique	Maximum size clique	\mathcal{NPO} -complete
Min-TSP	Min cost ring	\mathcal{NPO} -complete
Min-NonBif	Min congestion non-bifurcated routing	2.23-approx., APX-complete
Max-IntegralFlow	Max integral k multicommodity flow on trees	1-approx., APX-complete
Min-NodeLocation Min cost node location, no connectivity		1.4-approx., APX-complete

Table C.2 Complexity of some optimization problems of interest in network design.

Source: P. Pavon, "Optimization of computer networks. Modeling and algorithms. A hands-on approach", Wiley 2016.


E.g. NPO-complete = No **POLYNOMIAL** algorithm exists that guarantees giving a solution at most X% worse than the optimum (for any "X")

Choose the right optimization technique


Choose the right optimization technique

Message: SDN & NFV. Choose the right optimization technique

Example

Example: Reoptimize VNF grouping assignments to servers in the DC, minimizing **energy costs** and **avoiding excessive migrations**

Example

Example: Reoptimize VNF grouping assignments to servers in the DC, minimizing **energy costs** and **avoiding excessive migrations**

$$\begin{array}{ll} \min & \sum_{h} a_{h} + \alpha \sum_{vh} c_{vh} x_{vh} \quad \text{subject to:} & & & \\ & \sum_{v} CPU(v) x_{vh} \leq CPU(h) a_{h}, \quad \forall h \in \mathcal{H} & & \\ & & & \\ & \sum_{v} RAM(v) x_{vh} \leq RAM(h) a_{h}, \quad \forall h \in \mathcal{H} & & \\ & & & \\ & \sum_{v} RAM(v) x_{vh} \leq RAM(h) a_{h}, \quad \forall h \in \mathcal{H} & & \\ & & & \\ & \sum_{v} HD(v) x_{vh} \leq HD(h) a_{h}, \quad \forall h \in \mathcal{H} & & \\ & & & \\ & \sum_{v} x_{vh} = 1, \quad \forall v \in \mathcal{V} & & \\ & & & \\ & & All VNF \text{ groups are allocated} \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & &$$

Example. Heuristic vs formulation

Algorithmic options

Heuristic algorithms

- Ad-hoc developed algorithms for a purpose, no approximation guarantees
- Creative combination of different metaheuristic techniques, e.g. genetic algorithms, tabu, greedy approaches, ...

Program logic

- 1. Receive the input data
- 2. Apply the heuristic
- 3. Return the results to the business logic

(Mixed) Integer formulations

- The formulation is built using a MODELER, passed then to an external SOLVER
- Solver is configured with a MAXIMUM RUNNING TIME
- Fancy callbacks can be used to drive the solver

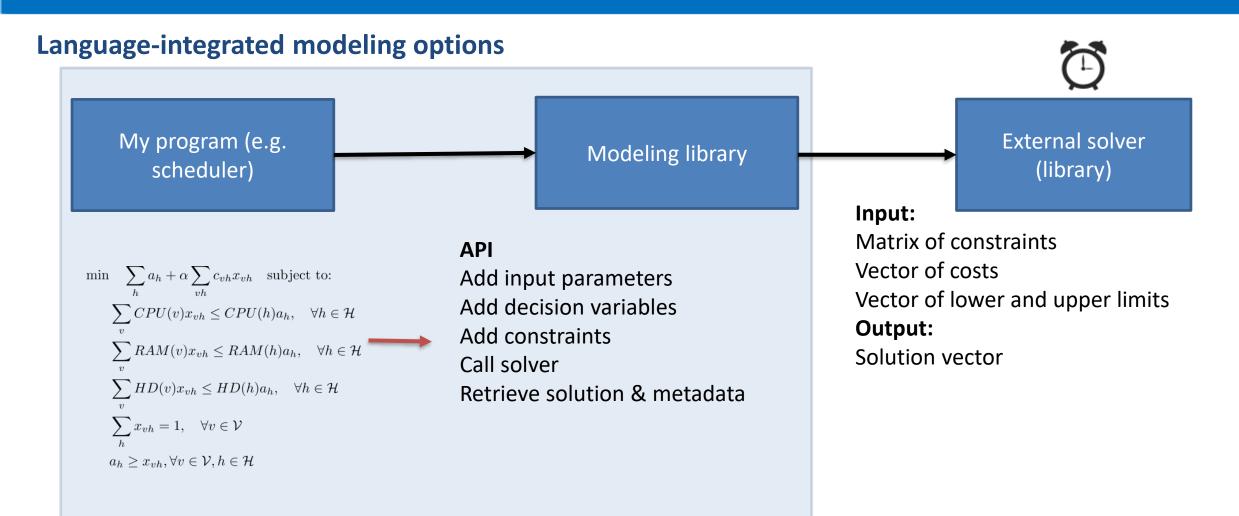
Program logic

Receive the input data
 Build the model
 Call the external solver, and wait for answer
 Build the response to return

Optimization tools. Solvers

Optimization tools. Modelers

External modelers – Specific modeling languages


- Provide easy interaction with the most popular solvers
- Proprietary front-ends, interaction with your program not always easy nor fast •••

			http://www.ampl.com	Commercial
## Example Two - Model with sets		STREAMLINED MODELING FOR REAL OPTIMIZATION		
set P;		🚰 G A M S	http://www.gams.com/	Commercial
<pre>param t; param p{i in P};</pre>				
param r{i in P};		AIMMS	http://www.aimms.com	Commercial
<pre>param m{i in P};</pre>	STREAMLINED MODELING FOR REAL OPTIMIZATION	LINGO	http://www.lindo.com	Commercial
<pre>var paint{i in P};</pre>				
<pre>maximize profit: sum{i in P} p[i]*paint[i]; subject to time: sum{i in P} (1/r[i])*paint[i] <= t; subject to capacity{i in P}: 0 <= paint[i] <= m[i];</pre>		MPL	http://www.maximalsoftware.com	Commercial
		OPTIMIZATION	http://www.tomopt.com/	Commercial

Other front-ends (some free): CMPL (COIN-OR modeling language), GMPL (open-source AMPL clone), R (RSymphony plugin), CVX (from Stanford spinoff, for Matlab), ...

OFC 2018. Th1D.1. The Role of Open-source Network Optimization Software in the SDN/NFV World

Optimization tools. Solvers

Optimization tools. Modelers

Language-integrated modeling options (free)

Python

- Pyomo. <u>http://www.pyomo.org/</u>
- PuLP. <u>https://pythonhosted.org/PuLP/</u>
- CyLP. <u>https://github.com/coin-or/CyLP</u>
- yaposib. https://github.com/coin-or/yaposib

► C++:

– FLOPC++. <u>https://projects.coin-or.org/FlopC</u>++

<mark>⊫ Java</mark>

JOM (Java Optimization Modeler). <u>http://www.net2plan.com/jom</u> , <u>https://github.com/girtel/JOM</u>

Optimization tools. Solvers

Solvers

- Upically, commercial solvers incorporate libraries for calling from Java, C++, Python...
- Eree solvers not always do that... rely on external modelers... or not model at all...

Watch out! Not all the suites solve all the problem types

Name	Туре
CPLEX (IBM)	Commercial
GUROBI	Commercial
XPRESS	Commercial
MOSEK	Commercial
LGO	Commercial
KNITRO	Commercial
SCIP	Free
Google Optimization tools	Free
COIN-OR (IPOPT, CLP)	Free
GLPK	Free
SNOPT	Free
MINOS	Free
LP_SOLVE	Free
MIPCL	Free

MIP: Great grade in the tests! (<u>http://plato.asu.edu/ftp/milpc.html</u>) Around 6 times worse than commercial solvers

An example with JOM

Step 1. Initialization

Create the optimization problem object Set the values of the input parameters (already in your program) Set the decision variables, integer or not, minimum and maximum value

Parameters, variables, and constraints can be N-dimensional arrays, dense or sparse

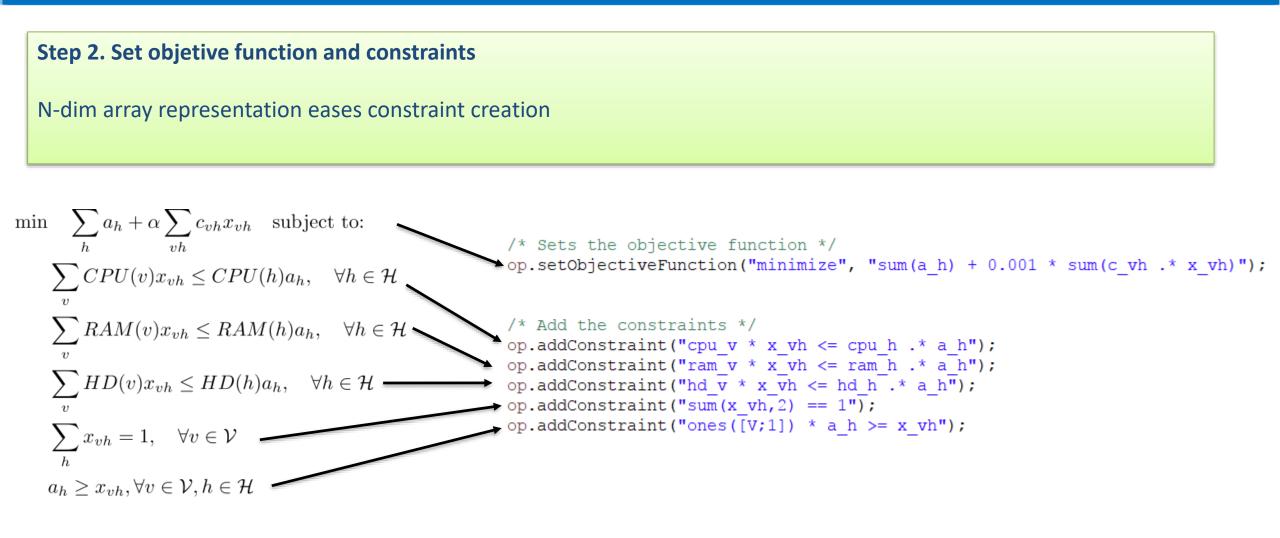
$$\min \sum_{h} a_{h} + \alpha \sum_{vh} c_{vh} x_{vh} \text{ subject to:}$$

$$\sum_{v} CPU(v) x_{vh} \leq CPU(h) a_{h}, \quad \forall h \in \mathcal{H}$$

$$\sum_{v} RAM(v) x_{vh} \leq RAM(h) a_{h}, \quad \forall h \in \mathcal{H}$$

$$\sum_{v} HD(v) x_{vh} \leq HD(h) a_{h}, \quad \forall h \in \mathcal{H}$$

$$\sum_{h} x_{vh} = 1, \quad \forall v \in \mathcal{V}$$


$$a_{h} \geq x_{vh}, \forall v \in \mathcal{V}, h \in \mathcal{H}$$

/* Create the optimization problem object */
OptimizationProblem op = new OptimizationProblem();

```
/* Introduce in the model the values of the input parameters */
op.setInputParameter("c_vh", c_vh);
op.setInputParameter("cpu_v", cpu_v , "row");
op.setInputParameter("ram_v", ram_v , "row");
op.setInputParameter("hd_v", hd_v , "row");
op.setInputParameter("cpu_h", cpu_h , "row");
op.setInputParameter("ram_h", ram_h , "row");
op.setInputParameter("hd_h", hd_h , "row");
/* Add the decision variables to the problem */
```

```
op.addDecisionVariable("a_h", true, new int[] { 1 , H }, 0, 1);
op.addDecisionVariable("x_vh", true, new int[] { V , H }, 0, 1);
```

An example with JOM

An example with JOM

Step 3. Call the solver, wait, and get the results Solvers supported: GLPK (MILP, free), IPOPT (nonlinear, free), CPLEX (MILP, commercial), XPRESS (MILP, commercial) Maximum solver time & solver library location are parameters In non integer problems, gives access to Lagrange multipliers

$$\min \sum_{h} a_{h} + \alpha \sum_{vh} c_{vh} x_{vh} \quad \text{subject to:}$$

$$\sum_{v} CPU(v) x_{vh} \leq CPU(h) a_{h}, \quad \forall h \in \mathcal{H}$$

$$\sum_{v} RAM(v) x_{vh} \leq RAM(h) a_{h}, \quad \forall h \in \mathcal{H}$$

$$\sum_{v} HD(v) x_{vh} \leq HD(h) a_{h}, \quad \forall h \in \mathcal{H}$$

$$\sum_{h} x_{vh} = 1, \quad \forall v \in \mathcal{V}$$

$$a_{h} \geq x_{vh}, \forall v \in \mathcal{V}, h \in \mathcal{H}$$

```
/* Call the solver to solve the problem */
op.solve("glpk" , "maxSolverTimeInSeconds" , 5.0);
if (op.feasibleSolutionDoesNotExist())
    throw new RuntimeException ("A feasible solution does not exist");
/* Print the solution */
final double [] sol_ah = op.getPrimalSolution("a_h").tolDArray();
final double [][] sol_xvh = op.getPrimalSolution("x_vh").view2D().toArray();
/* Your code continues here */
//
//
```

Heuristic & solver combination

Idea: A heuristic iterative method guides the global optimization, solving "Mini"-MILPs in each iteration with time limits

- 🙂 Heuristic in the outer loop smartly diversifies the search
- Solvers are extremely effective and fast in medium-small problems

🔔 We need modelers building the problem also fast! JOM can do that! 🤇

Description	1+1 protection	Shared protection	Restoration	No recovery
Total cost (K\$ / year)	29506.5	28808.7	27710.7	15358.7
Link costs (K\$ / year)	26046.5	25928.7	25928.7	13612.7
Transponder costs (K\$ / year)	3348.0	2772.0	1674.0	1674.0
OADM costs (K\$ / year)	112	108	108	72
Num. links	62	58	58	32
Num. transponders (bid)	1116	924	558	558
Num. degree 2 OADMs	0	1	1	1
Num. degree >2 OADMs	14	13	13	13
Num. GRASP iterations	11	21	21	92
Num. solver calls	1981	9421	9421	16698
Av. solver time (s)	0.241	0.194	0.194	0.052
Av. JOM modeling time (s)	1.55	0.182	0.182	0.159

Table 12.1 Case study results.

SUBSECOND building + solving time for each mini-ILP*

*"Mini" means 1000s of variables and constraints

Source: P. Pavon, "Optimization of computer networks. Modeling and algorithms. A hands-on approach", Wiley 2016.

Agenda

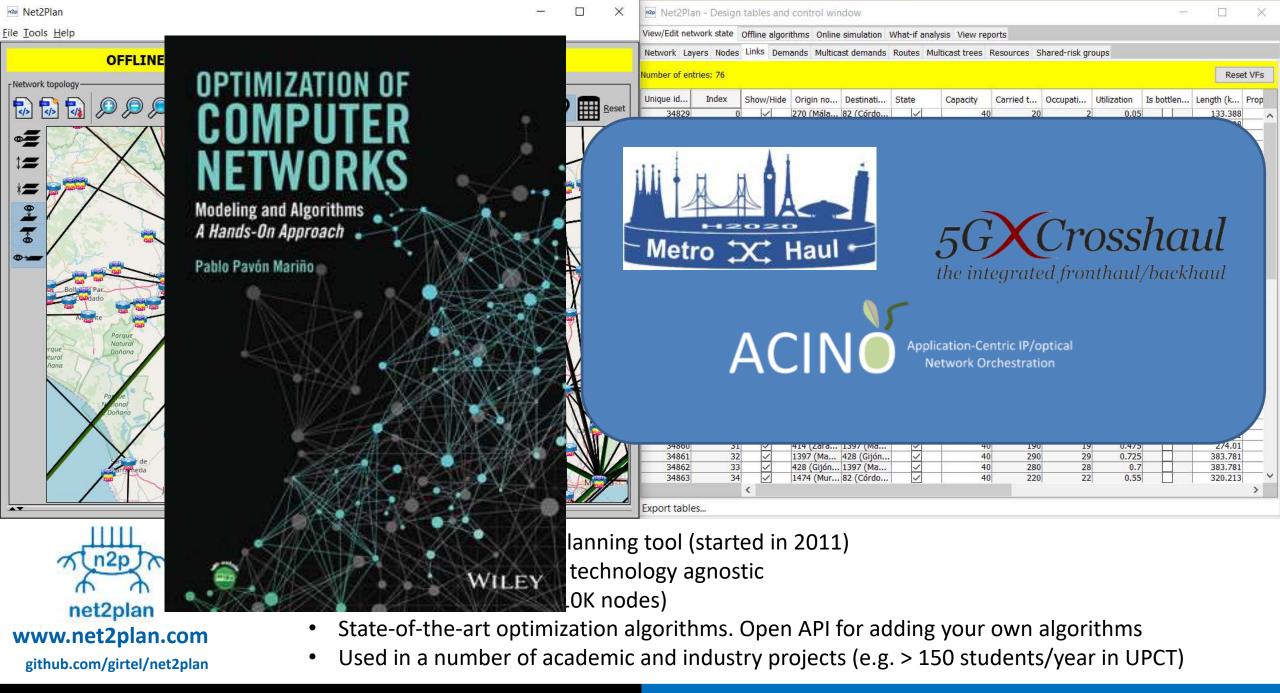
- 1. Introduction
- 2. Use cases
- 3. Theoretical limits, heuristics, solvers
- 4. Network optimization software. Net2Plan
- 5. Wrap up

Network optimization/planning tools

What we do NOT mean with network optimization/planning tools

- Event-driven simulators, suitable for simulating network protocols at the PACKET level
- Network emulators

We are happy to announce the release of OMNeT++ 5.2.1. This is a maintenance release that brings minor bug fixes and improvements, especially in Qtenv, and an update to the C++ Development and Launcher chapters of the User


Network optimization/planning tools

What we DO mean with network optimization & planning open-source tools

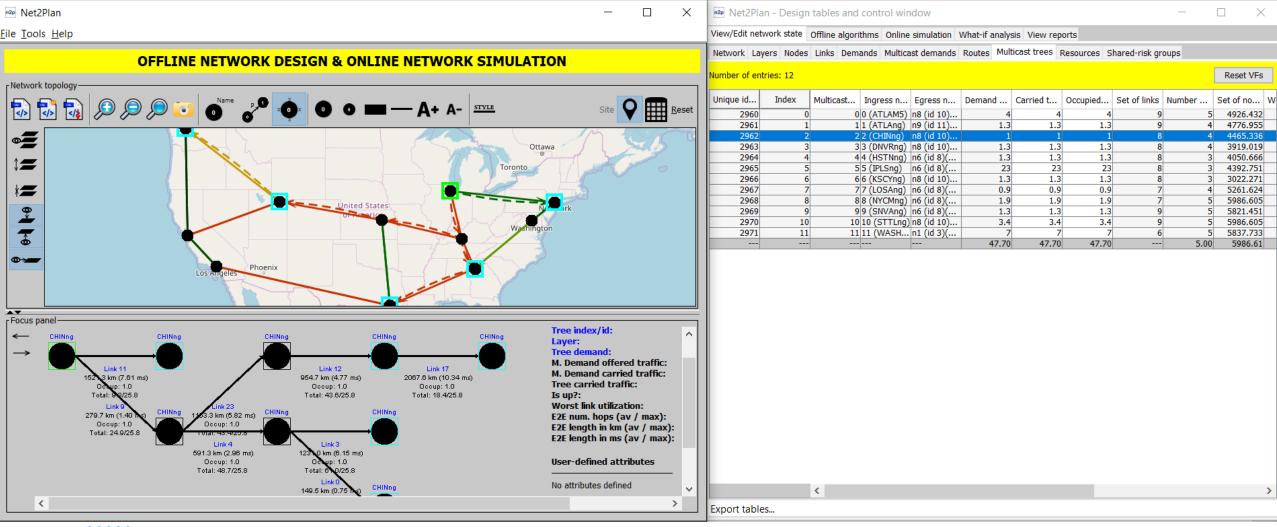
- Open API for developing and plugging-in your own optimization algorithms (planning / provisioning)
- Open source, accessible in usual repositories (e.g. github)
- Some external academic and/or non-academic adoption & development maturity
- Provides CLI and/or GUI for network visualization and manipulation of the data

http://www.net2plan.com http://github.com/girtel/net2plan

Net2Plan – 🗆 🗙	Net2Plan - [Design tal	bles and control wi	ndow				1. 	\Box ×
<u>File Tools H</u> elp	View/Edit network	state Off	line algorithms Online	e simulation	What-if analysis	View reports			
OFFLINE NETWORK DESIGN & ONLINE NETWORK SIMULATION	Network Layers	Nodes Lir	nks Demands Multic	ast demands	Routes Multic	ast trees Resources	Shared-risk g	roups	
OFFLINE NETWORK DESIGN & ONLINE NETWORK SIMULATION	Number of entries:	: 130							Reset VFs
Network topology									
	and the second	SAT SY			Processing and the second second	Carried t Occupied	Call States and a state of the	Sequenc	Number
	259 266	104 111		5 (Málaga) 2 (Valencia)	100	100 1.0	L9 L8,L0	N3,N5 N3,N0,N2	1 ^
Alba	273	118		4 (Zarago	100	100 1.0	L8,L2	N3,N0,N4	2
	279	124	124 3 (Sevilla)		100	100 1.0	L9,L13	N3,N5,N6	2
	186	31	31 4 (Zarago		100	100 1.0	L10	N4,N0	1
	194 202	39 47	39 4 (Zarago		100	100 1.0	L10 L10	N4,N0	1
	202	57	47 4 (Zarago 57 4 (Zarago		100	100 1.0	L10	N4,N0 N4,N0	1
	212	69	69 4 (Zarago		100	100 1.0	L10	N4,N0	1
	232	77	77 4 (Zarago		100	100 1.0	L11	N4.N1	1
	240	85	85 4 (Zarago	0 (Madrid)	100	100 1.0	L10	N4,N0	1
T Parque Natural	250	95	95 4 (Zarago		100	100 1.0	L10,L0	N4,N0,N2	2
	252	97	97 4 (Zarago		100	100 1.0	L11	N4,N1	1
Andulyof	272	117	117 4 (Zarago		100	100 1.0	L10	N4,N0	1
de la seria de la	274 275	119 120	119 4 (Zarago 120 4 (Zarago		100 100	100 1.0	L10,L1 L10,L0,L7	N4,N0,N3 N4,N0,N2,N6	2
Segura Region de	275	120	120 4 (Zarago 122 4 (Zarago		100	100 1.0	L10,L0,L7	N4,N0,N2,N6	
y kas Villas Murcia	206	51	51 5 (Málaga)	0 (Madrid)	100	100 1.0	L12,L8	N5,N3,N0	2
Cardoba	216	61	61 5 (Málaga)		100	100 1.0	L12,L8	N5,N3,N0	2
	230	75	75 5 (Málaga)		100	100 1.0	L12,L8	N5,N3,N0	2
	248	93	93 5 (Málaga)		100	100 1.0	L12,L8	N5,N3,N0	2
Cartagena	256	101	101 <mark>5 (Málaga</mark>)		100	100 1.0		N5,N6,N2,N1	3
	260	105	105 5 (Málaga)		100	100 1.0	L12	N5,N3	1
	268	113 123	113 5 (Málaga)		100	100 1.0	L13,L14	N5,N6,N2	2
	2/8	123	123 5 (Málaga) 126 5 (Málaga)		100	100 1.0	L12,L8,L2 L13	N5,N3,N0,N4 N5,N6	3
	220	65	65 6 (Murcia)		100	100 1.0	L14,L5	N6,N2,N0	2
s Hermann	236	81		0 (Madrid)	100	100 1.0	L14,L5	N6,N2,N0	2
Granada	254	99	996 (Murcia)	1 (Barcelo	100	100 1.0	L14,L6	N6,N2,N1	2
Nacional	262	107		2 (Valencia)	100	100 1.0	L14	N6,N2	1
de juerra de la constance de l	264	109	109 6 (Murcia)		100	100 1.0	L14,L5	N6,N2,N0	2
	276	121	121 6 (Murcia)		100	100 1.0		N6,N2,N1,N4	3
Almeria	280	125 127	125 6 (Murcia) 127 6 (Murcia)		100 100	100 1.0 100 1.0	L15,L12 L15	N6,N5,N3 N6,N5	2
	202	12/	127 0 (Murcia)	5 (Malaya)	13000.00	13000.00 130.00			3.00 ~
		<		Non I	20000.00	2200000120000		1	>
			1			1			
	Export tables								

- Multilayer visualization
 - Abstract MULTILAYER model: Layer, Node, Link, Demand, Multicast demand, Route, SRG...
 - Tables full of technology-agnostic statistics (loads, utilizations, latencies...)
 - **Technology-related information** can be added as ATTRIBUTES, transparent to Net2Plan, but that algorithms can process to create technology-related behaviors

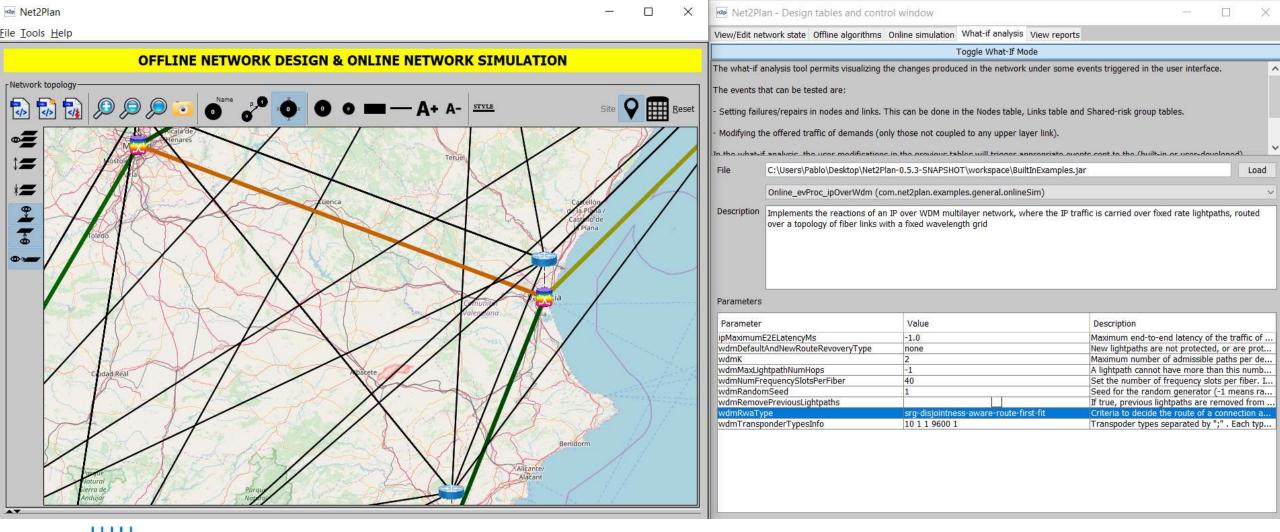
- Failure model: shared-risk-group (SRG) definition
 - SRG: arbitrary set of nodes and/or links that can simultaneously fail
 - Represents a vulnerability (e.g. duct cut)
 - Algorithms can typically try to create designs tolerant to all single-SRG failures

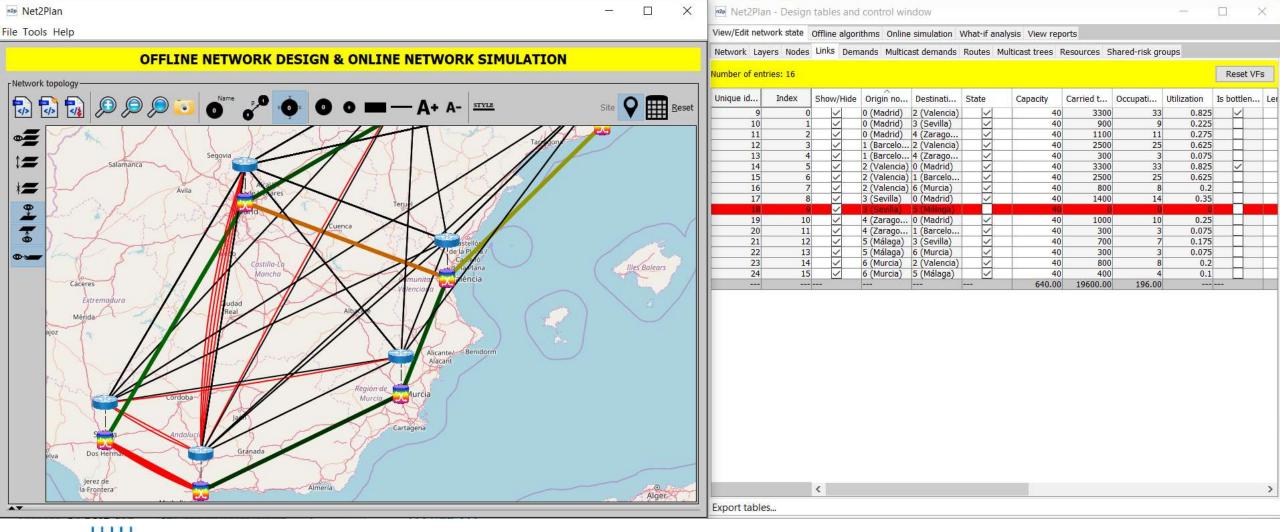

× Net2Plan X Net2Plan - Design tables and control window File Tools Help View/Edit network state Offline algorithms Online simulation What-if analysis View reports Network Layers Nodes Links Demands Multicast demands Routes Multicast trees Resources Shared-risk groups **OFFLINE NETWORK DESIGN & ONLINE NETWORK SIMULATION** List view Traffic matrix view Network topology DNVRng ATLAM5 ATLAng CHINng HSTNng IPLSng KSCYng LOSAng NYCMng SNVAng 🗟 🗟 🛐 🔎 🔎 🧿 🧿 <u>R</u>eset ATLAM5 0.029 0.078 0.01 0.044 0.02 0.016 0.025 0.029 0.006 **A+** A-STYLE O 0 0 ATLAng 0.054 0.154 0.084 1.402 0.227 0.061 1.725 0.22 0.054 0 0.069 0.918 0.784 8.242 0.362 0.843 9.65 0.597 0.09 CHINng 0 4 0.041 0.35 0.192 0.191 0.551 DNVRng 0.086 0.191 0.104 0.154 HSTNng 0.021 0.652 0.323 0.036 0 0.083 0.051 0.411 0.171 0.016 Saint Paul IPLSng 0.05 0.2 0.68 0.269 0.368 0.121 0.559 0.467 0.052 0 12 Wisconsir South Dakota 0.03 KSCYng 0.019 0.05 0.195 0.099 0.072 0.095 0.07 0.096 0 Toront 0.033 1.112 10.624 0.161 4.04 0.298 0.069 0.299 0.573 LOSAng Boise 0 *= NYCMng 0.027 0.45 3.058 0.292 0.825 0.219 0.172 0.854 0.129 0 Milwaukee Wyomine Hamilton 0.016 0.024 0.174 0.072 0.083 0.24 0.136 0 0.128 0.05 SNVAng Detroit 9 0.023 1.033 0.609 0.194 0.739 0.338 0.912 0.654 STTLng 0.187 0.322 lowa WASHng 0.05 0.638 0.865 0.402 0.669 0.251 0.253 1.103 1.002 0.155 Nebraska 10 **Des Moines** 0.403 5.192 17.111 2.453 16.118 2.57 2.078 15.74 3.493 2.311 Total Lincoln Ohio Illinois Columbus Nevadi Utah Kansas City Colorado West Virginia Kansas uisville Kentucki < Filters Fresno Las Vegas Oklaho North Carol Memphis Filter out nodes without links at this layer Albuquerque Arkansas New Mexico Arizona [NO FILTER] Consider only demands between nodes tagged by ... V South Carolina Phoenix Dallas Consider only demands tagged by ... [NO FILTER] V Tijuana Mexicali Texas Traffic matrix synthesis Ciudad Juárez Select a method for synthesizing a matrix Apply ustin \sim Jacksonville Sonora San Antonio Traffic normalization and adjustments Hermosillo Chihuahua Florida Select a method V Apply Coahuila **Ciudad Obregon** de Zaragoza Export tables... ...

• Traffic matrix synthesis, manipulation, normalization

n2p

net2plan www.net2plan.com

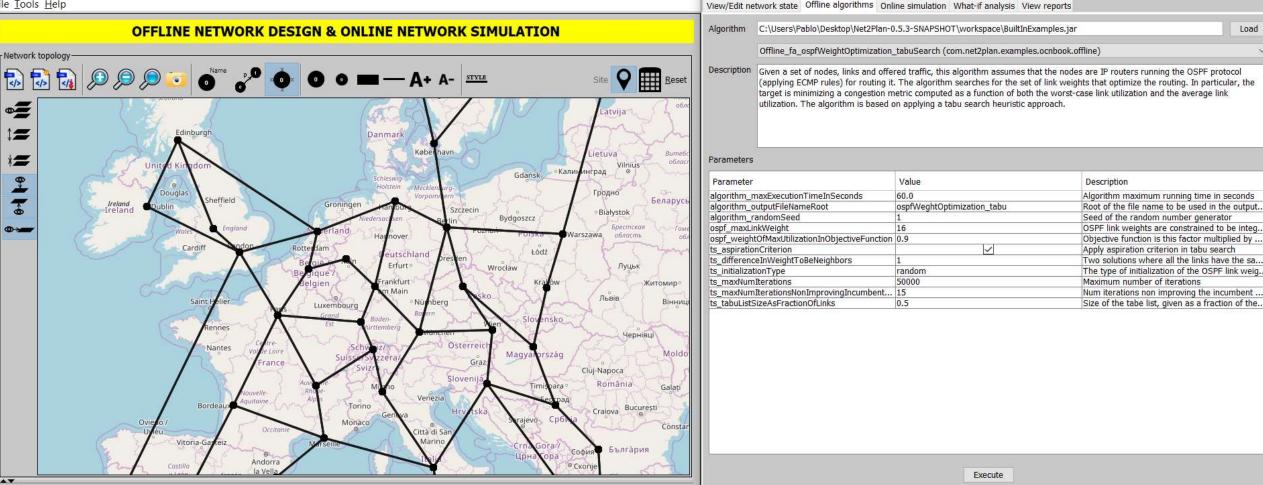

github.com/girtel/net2plan


net2plan www.net2plan.com github.com/girtel/net2plan

- Multicast traffic
 - Includes algorithms for solving the *k* minimum cost multicast problem

OFC 2018. Th1D.1. The Role of Open-source Network Optimization Software in the SDN/NFV World

- net2plan www.net2plan.com github.com/girtel/net2plan
- Multilayer analysis tracking traffic anomalies and failure propagation across layers
 - Plug in your *network behavior algorithm* (or use a built-in one) coding how the network reacts to failures and traffic



- Multilayer analysis tracking traffic anomalies and failure propagation across layers
 - Plug in your *network behavior algorithm* (or use a built-in one) coding how the network reacts to failures and traffic
 - WHAT-IF: Then, manually create failures/repairs and/or traffic shifts, and see the network reaction in all the layers

File Tools Help

Net2Plan - Design tables and control window

Offline algorithms (e.g. for capacity planning)

- Plug in your algorithm (or use a built-in one) that makes network redesigns
- Check the repository of algorithms in the Javadoc!!

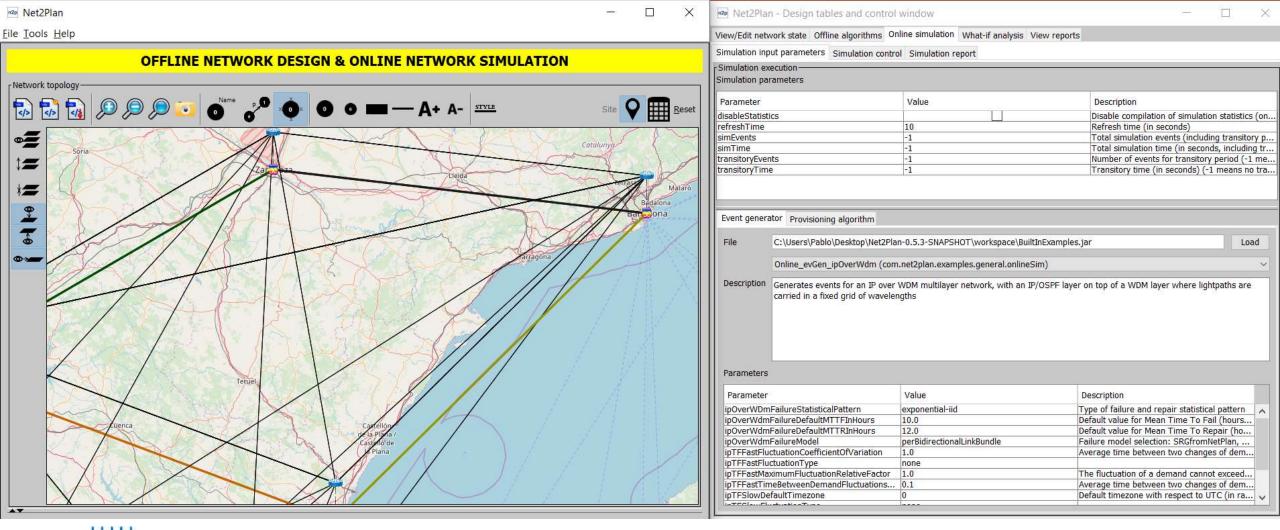
X

🗅 Overview (Net2Plan 0.5.0 🗙			Pablo	_		×
$\leftarrow \rightarrow \mathbb{C}$ (i) net2plan.com/documentation/c	urrent/javadoc/examples/		⊕ ☆		6	
🗰 Aplicaciones 🗋 New Tab 🄀 H.264 encoding - C	CPU <table-of-contents> Subprograma Estatal 🗋 x2d 📙 H2020 📙 🤇</table-of-contents>	GIT 🧾 Lighthouse 🔲 Wiley 🛄 OpenStack 🛄 Docencia 🔜 RedBorder 🔜 METROHAUL				
All Classes	com.net2plan.examples.general.reports	Several example reports				•
Packages	com.net2plan.examples.ocnbook.offline	Examples of offline network design algorithms, corresponding to case studies in this book .				
com.net2plan.examples.general.offline com.net2plan.examples.general.offline.nfv com.net2plan.examples.general.onlineSim	com.net2plan.examples.ocnbook.onlineSim	Examples of online event processors and event generators corresponding for event-driven simulation, or case studies in this book .	orrespoi	nding t	0	
com.net2plan.examples.general.reports	com.net2plan.examples.ocnbook.reports	Examples of reports corresponding to different methods described in this book .				
All Classes						
Offline_ba_numFormulations Offline_ca_wirelessCsmaWindowSize Offline_ca_wirelessPersistenceProbability Offline_ca_wirelessTransmissionPower Offline_cba_congControLinkBwSplitTwolQoS Offline_cba_wirelessCongControlTransmissionF Offline_cfa_modularCapacitiesAndRoutingDualI Offline_cfa_modularCapacitiesAndRoutingDualI Offline_cfa_xpMultiperiodModularCapacities Offline_fa_ospfWeightOptimization_ACO Offline_fa_ospfWeightOptimization_EA Offline_fa_ospfWeightOptimization_GRASP	Link here for searching in the examplesLink here for searching in the examples					
Offline_fa_ospfWeightOptimization_oredy Offline_fa_ospfWeightOptimization_localSearch Offline_fa_ospfWeightOptimization_SAN	OVERVIEW PACKAGE CLASS USE TREE IN	DEX HELP				
Offline_fa_ospfWeightOptimization_tabuSearch Offline_fa_xde11PathProtection	PREV NEXT FRAMES NO FRAMES Copyright © 2017. All rights reserved.					

Offline algorithms (e.g. for capacity planning)

- Plug in your algorithm (or use a built-in one) that makes network redesigns
- Check the repository of algorithms in the Javadoc!!

\leftarrow \rightarrow C (i) net2plan.com/documentation/cum	rent/javadoc/examples/	९ 🕁 🖸	S III	:
Aplicaciones 🗋 New Tab 🄀 H.264 encoding - CPU	🔹 ڏ Subprograma Estatal 🗋 x2d 📃 H2020 📔	📙 GIT 📴 Lighthouse 🔲 Wiley 🛄 OpenStack 🔜 Docencia 🔜 RedBorder 🧾 METROHAUL		
All Classes	OVERVIEW PACKAGE CLASS USE TREE	INDEX HELP		^
Packages	REV NEXT FRAMES NO FRAMES			-1
com.net2plan.examples.general.offline com.net2plan.examples.general.offline.nfv com.net2plan.examples.general.onlineSim com.net2plan.examples.general.reports	Keywords			I
com notOnlan avamplas conhook offling	Keyword	Description		
All Classes	Ant Colony Optimization (ACO)	An example where a heuristic using an ant colony optimization (ACO) algorithmic approach is used		
Offline_ba_numFormulations Offline_ca_wirelessCsmaWindowSize	Backpressure routing	An example where the traffic routing is performed using a backpressure approach.		
Offline_ca_wirelessPersistenceProbability Offline_ca_wirelessTransmissionPower Offline_cba_congControLinkBwSplitTwolQoS	Bandwidth assignment (BA)	An example where the volume of traffic to be carried by each demand, is an algorithm output (that includes congestion control algorithms).		
Offline_cba_wirelessCongControlTransmissionF Offline_cfa_modularCapacitiesAndRoutingDualI	CAC (Connection-Admission-Control)	An example where an algorithm performing the admission control to incoming connection requests is involved.		
Offline_cfa_xpMultiperiodModularCapacities Offline_Example_Algorithm	CSMA	An example where the wireless links are coordinated using a CSMA MAC.		
Offline_fa_ospfWeightOptimization_ACO Offline_fa_ospfWeightOptimization_EA	Capacity assignment (CA)	An example where the capacities in the links are algorithm outputs.		
Offline_fa_ospfWeightOptimization_GRASP Offline_fa_ospfWeightOptimization_greedy	Destination-based routing	An example related to a problem where the traffic routing is destination-based (i.e. like in IP)		
Offline_fa_ospfWeightOptimization_localSearch Offline_fa_ospfWeightOptimization_SAN	Destination-link formulation	An example where a destination-link formulation of the routing is involved.		
Offline_fa_ospfWeightOptimization_tabuSearch Offline_fa_xde11PathProtection	Distributed algorithm	An example where a distributed algorithm (different agents operating more or less independently, coordinated by an import explicit signaling) is involved.	plicit	•

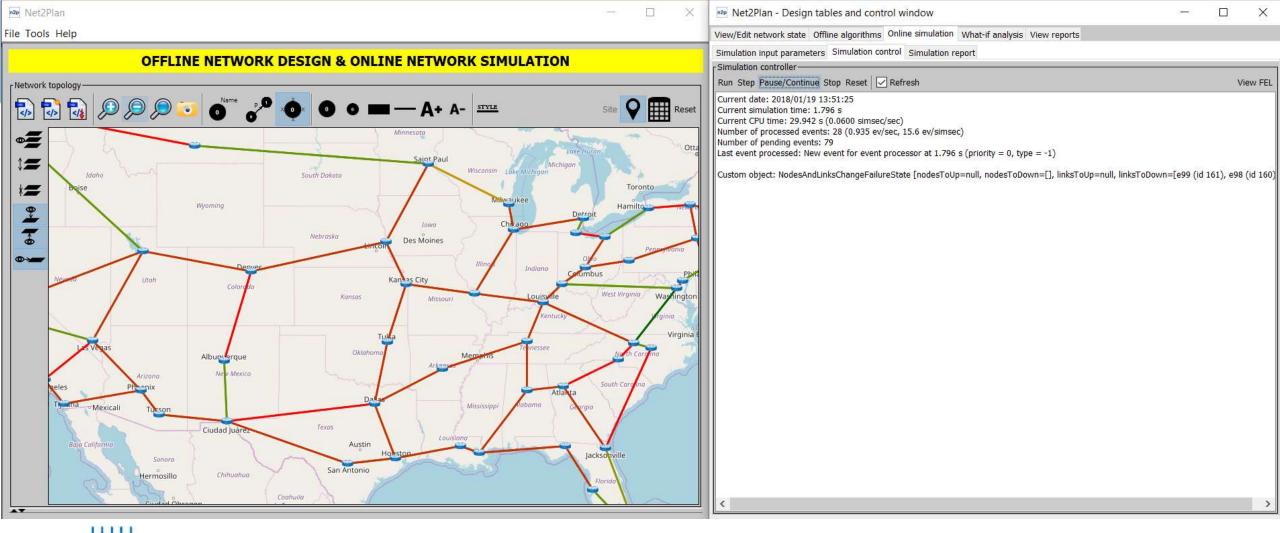

Offline algorithms (e.g. for capacity planning)

- Plug in your algorithm (or use a built-in one) that makes network redesigns ٠
- Check the repository of algorithms in the Javadoc!! •
 - Includes indexing by keyword to search for algorithms ٠

Overview (Net2Plan 0.5.0 ×			Pablo	_		×
← → C ③ net2plan.com/documentation/curre	/ent/javadoc/examples/		⊕ ☆		S 🖽	:
🗰 Aplicaciones 🗋 New Tab 🄀 H.264 encoding - CPU	Subprograma Estatal	🗅 x2d 📑 H2020 📑 GIT 📑 Lighthouse 📑 Wiley 📑 OpenStack 📑 Docencia 📑 RedBorder 📑 METROHAUL				
All Classes Packages com.net2plan.examples.general.offline com.net2plan.examples.general.offline.nfv com.net2plan.examples.general.onlineSim	Exercise 3.8	 Online_evGen_generalGenerator: Generates events to a technology-agnostic network, consisting requests/releases and failures and repairs. Online_evProc_generalProcessor: Implements the reactions of a technology-agnostic network requests under various CAC options, and reactions to failures and repairs under different recovery some set of the set of	k to conne	ection		~
All Classes	Chapter 4					
Offline_ba_numFormulations Offline ca wirelessCsmaWindowSize	Routing Problems					
Offline_ca_wirelessCsmavindowsI2e Offline_ca_wirelessPersistenceProbability Offline_ca_wirelessTransmissionPower Offline_cba_congControLinkBwSplitTwolQoS Offline_cba_wirelessCongControlTransmissionF Offline_cfa_modularCapacitiesAndRoutingDualI	Section 4.2	 Offline_fa_xp11PathProtection: Solves several variants of unicast routing problems with 1+1 proflow-path formulations Offline_fa_xpFormulations: Solves several variants of unicast routing problems, with flow-path 				
Offline_cfa_xpMultiperiodModularCapacities Offline_Example_Algorithm Offline_fa_ospfWeightOptimization_ACO Offline_fa_ospfWeightOptimization_EA Offline_fa_ospfWeightOptimization_GRASP Offline_fa_ospfWeightOptimization_greedy Offline_fa_ospfWeightOptimization_localSearch	Section 4.3	 Offline_fa_xde11PathProtection: Solves several variants of unicast routing problems with 1+1 p flow-link formulations Offline_fa_xdeFormulations: Solves several variants of unicast routing problems, with flow-link Offline_fa_xdeSharedRestoration: Solves several variants of unicast routing problems with flow-link formulations, so that designs are fault tolerant to a set of failure states, using shared restoration 	- ık formula			
Offline_fa_ospfWeightOptimization_localSearch Offline_fa_ospfWeightOptimization_sAN Offline_fa_ospfWeightOptimization_tabuSearch Offline_fa_xde11PathProtection	Section 4.4	 Offline_fa_xteFormulations: Solves severals variants of routing problems in the form of destina formulations. 	ation-linl	k		Ŧ
• C net2plan www.net2plan.com	Plug in ycCheck the	hms (e.g. for capacity planning) our algorithm (or use a built-in one) that makes network redesigns e repository of algorithms in the Javadoc!! udes indexing by keyword to search for algorithms				

- Includes indexing by keyword to search for algorithms ٠
- For book readers: includes links to sections describing the maths behind ٠

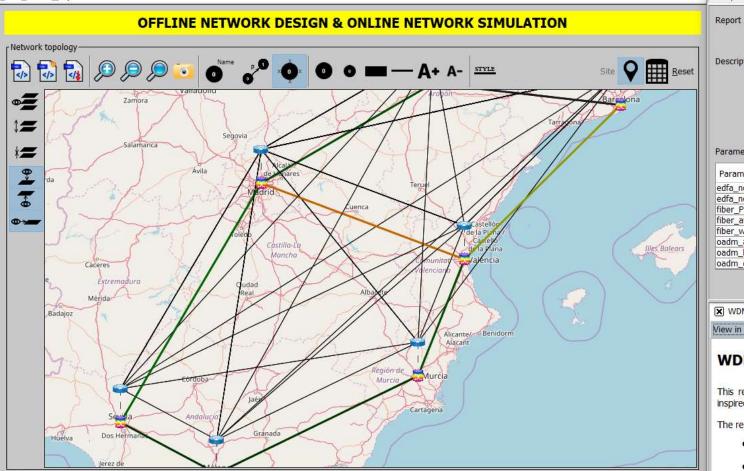
github.com/girtel/net2plan



- Online (provisioning) algorithms for event-driven network simulation
 - Plug in your event generation algorithm (or use a built-in one) that produces traffic shifts, failures and repairs etc.

av Net2Plan -	- 🗆 X	Net2Plan - Design tables and control	ol window	- 🗆 ×
e <u>T</u> ools <u>H</u> elp		View/Edit network state Offline algorithms	Online simulation What-if analysis View repo	rts
OFFLINE NETWORK DESIGN & ONLINE NETWORK SIMULATION		Simulation input parameters Simulation cont	rol Simulation report	
Network topology	î	Simulation parameters		
	e P Reset	Parameter disableStatistics refreshTime simEvents simTime transitoryEvents transitoryTime	Value 10 -1 -1 -1 -1 -1 -1 -1	Description Disable compilation of simulation statistics (on Refresh time (in seconds) Total simulation events (including transitory p Total simulation time (in seconds, including tr Number of events for transitory period (-1 me Transitory time (in seconds) (-1 means no tra
	Badalona Bartelona	Online_evProc_ipOverWdm (co	an-0.5.3-SNAPSHOT\workspace\BuiltInExampl m.net2plan.examples.general.onlineSim) IP over WDM multilayer network, where the I ith a fixed wavelength grid	es.jar Load
Teruel Uenca Uenca		Parameters Parameter ipMaximumE2ELatencyMs wdmDefaultAndNewRouteRevoveryType wdmK	Value -1.0 none 2	Description Maximum end-to-end latency of the traffic of New lightpaths are not protected, or are pro Maximum number of admissible paths per d
Cativilo de Piana		wdmMaxLightpathNumHops wdmNumFrequencySlotsPerFiber wdmRandomSeed wdmRemovePreviousLightpaths wdmRwaType wdmTransponderTypesInfo	-1 40 1 srg-disjointness-aware-route-first-fit 10 1 1 9600 1	A lightpath cannot have more than this num Set the number of frequency slots per fiber Seed for the random generator (-1 means r If true, previous lightpaths are removed fro Criteria to decide the route of a connection a Transpoder types separated by "," . Each ty

- Online (provisioning) algorithms for event-driven network simulation
 - Plug in your event generation algorithm (or use a built-in one) that produces traffic shifts, failures and rapairs etc.
 - Plug in your *network behavior algorithm* coding network reaction (same algorithm as in *what-if*, no need to code a new one!!!)



- Online (provisioning) algorithms for event-driven network simulation
 - Run, step, continue, pause, stop the simulation
 - See the simulation report:
 - Tech-agnostic statistic are automatically computed by Net2Plan
 - User algorithms can create custom (e.g. tech-specific) reports

File Tools Help

lew/Edit net	twork state Offline algorithms O	Inline simulation What-if analysis View	reports
Report	C:\Users\Pablo\Desktop\Net2Plar	n-0.5.3-SNAPSHOT\workspace\BuiltInExa	imples.jar
	Report_WDM_lineEngineering (co	om.net2plan.examples.general.reports)	
Description	This report shows line engineerin	ng information for WDM links in the netw	ork. Further description in the HTML generated.
Parameters			
Parameter		Value	Description
edfa noiseF	FactorMinimumGain dB	5	Noise factor at the EDFA when the gain is in.
	FactorReferenceBandwidth_nm	0.5	Reference bandwidth that measures the noi
	ps_per_sqroot_km	0.4	Polarization mode dispersion per km^0.5 of
	uation_dB_per_km	0.25	Fiber attenuation in dB/km
	ChromaticDispersion_ps_per_n	6	Chromatic dispersion of the fiber in ps/nm/kr
	ChannelNoiseFactor_dB	6	Noise factor observed by add channels
oadm_boos	terPMD_ps	0.5	PMD off OADM booster amplifier
	ChannelNoiseFactor_dB	6	Noise factor observed by drop channels
	e engineering gator Save to file	Show Close all	
		port for lighptath-base	ed networks
This report	t shows line engineering inform the procedures described in the	nation for WDM links in a multilayer 2009 ITU-T WDM manual "Optical fibr	optical network. The impairment calculations are
		k follows the scheme:	

unidirectional fiber links. Fiber link distance is given by the link length. Other specifications are given

net2plan www.net2plan.com github.com/girtel/net2plan

- **Reporting**. Plug in your report algorithm, or use a built-in one. Some interesting built-in reports:
 - WDM line engineering, OSNR (using GN model), PMD, CD, power at link & lightpath level
 - RSA inspector: Spectrum occupation in the fibers
 - Availability analysis: Estimates service level availability (includes error margin)

🕒 WDM line	e engineering in 🗙		
$\in \rightarrow \mathbf{G}$	① file:///C:/Users/Pablo/AppData/Local/Temp/tmp_5054036585432895723.html	☆ 🖸 🕃 🔛	:
Aplicacione	es 🗋 New Tab 🌠 H.264 encoding - CPU 🍇 Subprograma Estatal 🗋 x2d 📙 H2020 📙 GIT 📙 Lighthouse 📙 Wiley 📙 OpenStack 📙 Docencia 📙 RedBorder 📙 METROHAUL		

PER LINK INFORMATION SUMMARY - Signal metrics at the input of end OADM

Link #	Length (km)	# EDFAs	# DCMs	Chromatic Dispersion (ps/nm)	OSNR (dB)	Power per WDM channel (dBm)	Polarization Mode Dispersion (ps)	Warnings
e0 (id 9) (Madrid> Valencia)	301.92	3	3	0	27.64	-19	7.14	
e1 (id 10) (Madrid> Sevilla)	391.43	4	3	0	25.89	-19	8.1	
e2 (id 11) (Madrid> Zaragoza)	272.44	3	2	-0	30.95	-18.11	6.77	
e3 (id 12) (Barcelona> Valencia)	303.36	3	3	0	27.52	-19	7.16	
e4 (id 13) (Barcelona> Zaragoza)	256.51	3	2	0	30.95	-14.13	6.58	
e5 (id 14) (Valencia> Madrid)	301.92	3	3	0	27.64	-19	7.14	
e6 (id 15) (Valencia> Barcelona)	303.36	3	3	0	27.52	-19	7.16	
e7 (id 16) (Valencia> Murcia)	177.19	2	2	0	32.68	-11.3	5.51	
e8 (id 17) (Sevilla> Madrid)	391.43	4	3	0	25.89	-19	8.1	
e9 (id 18) (Sevilla> Málaga)	157.56	1	1	118.36	34.76	-19	5.14	
e10 (id 19) (Zaragoza> Madrid)	272.44	3	2	-0	30.95	-18.11	6.77	
e11 (id 20) (Zaragoza> Barcelona)	256.51	3	2	0	30.95	-14.13	6.58	
e12 (id 21) (Málaga> Sevilla)	157.56	1	1	118.36	34.76	-19	5.14	
e13 (id 22) (Málaga> Murcia)	322.94	3	3	0	25.9	-19	7.38	
e14 (id 23) (Murcia> Valencia)	177.19	2	2	0	32.68	-11.3	5.51	
e15 (id 24) (Murcia> Málaga)	322.94	3	3	0	25.9	-19	7.38	

PER ROUTE INFORMATION SUMMARY - Signal metrics at the transponder

Route #	Length (km)	# EDFAs	# DCMs	Chromatic Dispersion (ps/nm)	OSNR (dB)	Power per WDM channel (dBm)	Polarization Mode Dispersion (ps)	Warnings
r0 (id 155) (Madrid> Barcelona)	605.29	6	6	0	19.96	-19	10.11	

- **Reporting**. Plug in your report algorithm, or use a built-in one. Some interesting built-in reports:
 - WDM line engineering: OSNR (using GN model), PMD, CD, power at link & lightpath level
 - RSA inspector: Spectrum occupation in the fibers
 - Availability analysis: Estimates service level availability (includes error margin)

TIP – Open Optical Packet Transport

TELECOM INFRA PROJECT

http://telecominfraproject.com/

- Photonic Simulation Environment (PSE) Group within <u>Open Optical Packet Transport (OOPT)</u> working on OpenSource Optical Link Emulator:
 - GN model for Non Linear impairment estimation
 - Python code delivery: <u>https://github.com/Telecominfraproject/gnpy/</u>
 - Multi-vendor approach

- Net2Plan incorporates two models for estimating nonlinear impairments, one of them applying a flavor of the Gaussian Noise model (thanks POLITO GN-group, thanks OOPT-PSE group!!)
- Checkout OOPT-PSE GIT repository for a Python-based library for optical quality of transmission estimations!! Great work there!!

	🕒 WDM line	e engineering in 🗙 🗋 WDM Lightpath Ro	uting ×							
Ś	\rightarrow C	i file:///C:/Users/Pablo/AppData/Loca	al/Temp/tmp_260564223	5536216179.html				\$	3	:
	Aplicacione	es 🗋 New Tab 🄀 H.264 encoding - CPU	👔 Subprograma Estatal	🗋 x2d 📙 H2020	📙 GIT 📙 Lighthouse	e 📙 Wiley 📙 OpenStack 📙 Docencia	📙 RedBorder 📙 METROHAUL			
	% of carried t	affic with at least one backup path			0 %					•

PER FIBER INFORMATION SUMMARY

This table shows information for each fiber. In particular, the slots occupied, with a link to the lightpaths occupying it, either for regular lightpaths (L), or lightpaths defined as protection segments (P) that reserve slots:

- Black: The slot number is higher than the capacity declared for the link, and is not assigned to any lightpath.
- White: The slot is within the fiber capacity, and is not assigned to any lightpath.
- Green: The slot is within the fiber capacity, and is occupied by one regular lightpath and assigned to no backup lightpath.
- Yellow: The slot is within the fiber capacity, and is occupied by zero regular lightpaths and assigned to one backup lightpath.
- Red: The slot is within the fiber capacity, and is occupied by more than one lightpath (summing regular and backup), or is outside the link capacity and is assigned to at leastone lightpath.

Fiber #	Origin node	Dest. node	% slots used	Ok?	0	1	2	3	4	5 (5 7	7 8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	3(
0 (id: 9)	<u>n0</u> (<u>Madrid)</u>	<u>n2</u> (Valencia)	0.825	Yes	<u>L0</u>	<u>L2</u>	<u>L4</u>	<u>L6</u>	<u>L8</u>	<u>10</u> L1	2 <u>L1</u>	4 L16	<u>118</u>	<u>L20</u>	<u>L22</u>	<u>L24</u>	<u>L26</u>	<u>L28</u>	<u>L32</u>	<u>L36</u>	<u>L40</u>	<u>L44</u>	<u>L48</u>	<u>L54</u>	<u>L58</u>	<u>L64</u>	<u>L66</u>	<u>L72</u>	<u>L80</u>	<u>L82</u>	<u>L88</u>	<u>L95</u>	<u>L108</u>	<u>L111</u>	<u>L114</u>	<u>L120</u>				
1 (id: 10)	<u>n0</u> (Madrid)	<u>n3 (Sevilla)</u>	0.35	Yes	<u>L34</u>	<u>L42</u>	<u>L50</u>	<u>L52</u>	<u>L60</u>	.62 L7	4 <u>L7</u>	8 <u>L92</u>	<u>L102</u>	<u>L119</u>	<u>L122</u>																	<u>L90</u>			<u>L110</u>					
2 (id: 11)	<u>n0</u> (Madrid)	<u>n4</u> (Zaragoza)	0.275	Yes	<u>L30</u>	<u>L38</u>	<u>L46</u>	<u>L56</u>	<u>L68</u>	.84 L1	<u>16</u>	<u>L9:</u>			<u>L118</u>	<u>L123</u>																	<u>L94</u>							
	<u>n1</u> (Barcelona)		0.625	Yes	<u>L1</u>	<u>L3</u>	<u>L5</u>	<u>L7</u> !	<u>19</u>	11 11	3 <u>L1</u>	<u>5 L17</u>	<u>L19</u>	<u>L21</u>	<u>L70</u>	<u>L25</u>	<u>L86</u>	<u>L29</u>	<u>L98</u>	<u>L37</u>	<u>L100</u>	<u>L45</u>	<u>L128</u>	<u>L55</u>			<u>L67</u>			<u>L83</u>		<u>L90</u>				<u>L115</u>				
4 (id: 13)	<u>n1</u> (Barcelona)	<u>n4</u> (Zaragoza)	0.075	Yes	<u>L76</u>	<u>L96</u>																	<u>L121</u>																	
5 (id: 14)	<u>n2</u> (Valencia)	<u>n0</u> (Madrid)		Yes	<u>L1</u>	<u>L3</u>	<u>L5</u>	<u>L7</u>	<u>L9</u>	11 11	3 <u>L1</u>	<u>5 L17</u>	<u>L19</u>	<u>L21</u>	<u>L23</u>	<u>L25</u>	<u>L27</u>	<u>L29</u>	<u>L33</u>	<u>L37</u>	<u>L41</u>	<u>L45</u>	<u>L49</u>	<u>L55</u>	<u>L59</u>	<u>L65</u>	<u>L67</u>	<u>L73</u>	<u>L81</u>	<u>L83</u>	<u>L89</u>	<u>L90</u>	<u>L94</u>	<u>L109</u>	<u>L110</u>	<u>L115</u>				
6 (id: 15)		<u>n1</u> (Barcelona)	0.625	Yes	<u>L0</u>	<u>L2</u>	<u>L4</u>	<u>L6</u>	<u>L8</u>	<u>10 L1</u>	2 <u>L1</u>	4 L16	<u>L18</u>	<u>L20</u>	<u>L71</u>	<u>L24</u>	<u>L87</u>	<u>L28</u>	<u>L99</u>	<u>L36</u>	<u>L101</u>	<u>L44</u>	<u>L121</u>	<u>L54</u>	<u>L129</u>		<u>L66</u>			<u>L82</u>					<u>L114</u>					
7 (id:		n6 (Murcia)	0.2	Yes	L106	L112													L98		L100					L64			L80				L108			L120				

- **Reporting**. Plug in your report algorithm, or use a built-in one. Some interesting built-in reports:
 - WDM line engineering: OSNR (using GN model), PMD, CD, power at link & lightpath level
 - **RSA inspector**: Spectrum occupation in the fibers
 - Availability analysis: Estimates service level availability (includes error margin)

🗅 WDM line engineering in 🗙 🕒 WDM Lightpath Routing 🗙 🎦 Single-SRG failure analys 🗙	ULERO			
← → C ① file:///C:/Users/Pablo/AppData/Local/Temp/tmp_7920470694323556656.html				
🗰 Aplicaciones 🗅 New Tab 🄀 H.264 encoding - CPU 🎄 Subprograma Estatal 🗋 x2d 📙 H2020 📙 GIT 📙 Lighthouse 📙 Wiley 📙 OpenStack 📙 Docencia 📙 RedBorder 📙 METROHAUL				

Layer WDM, index = 0, id = 1

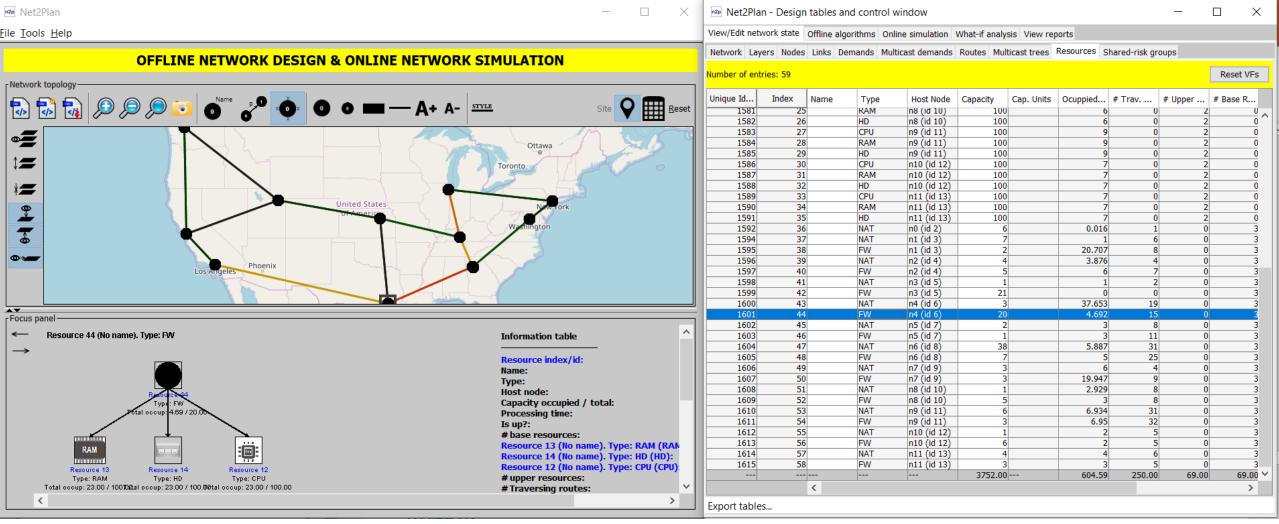
Unicast traffic

SRG Index failed	Offered traffic	Blocked traffic (%)	Offered traffic traversing oversubscribed links (%)	Offered traffic of demands with excessive latency (%)	Total blocked traffic [out of contract] (%)	% of demands fully ok
No failure	13000.000	0.000 (0.000 %)	0.000 (0.000 %)	0.000 (0.000 %)	0.000 (0.000 %)	(100.000 %)
0	13000.000	6600.000 (50.769 %)	0.000 (0.000 %)	0.000 (0.000 %)	6600.000 (50.769 %)	(49.231 %)
1	13000.000	2800.000 (21.538 %)	0.000 (0.000 %)	0.000 (0.000 %)	2800.000 (21.538 %)	(78.462 %)
2	13000.000	2200.000 (16.923 %)	0.000 (0.000 %)	0.000 (0.000 %)	2200.000 (16.923 %)	(83.077 %)
3	13000.000	5000.000 (38.462 %)	0.000 (0.000 %)	0.000 (0.000 %)	5000.000 (38.462 %)	(61.538 %)
4	13000.000	600.000 (4.615 %)	0.000 (0.000 %)	0.000 (0.000 %)	600.000 (4.615 %)	(95.385 %)
5	13000.000	1600.000 (12.308 %)	0.000 (0.000 %)	0.000 (0.000 %)	1600.000 (12.308 %)	(87.692 %)
6	13000.000	1400.000 (10.769 %)	0.000 (0.000 %)	0.000 (0.000 %)	1400.000 (10.769 %)	(89.231 %)
7	13000.000	800.000 (6.154 %)	0.000 (0.000 %)	0.000 (0.000 %)	800.000 (6.154 %)	(93.846 %)

Layer IP, index = 1, id = 285

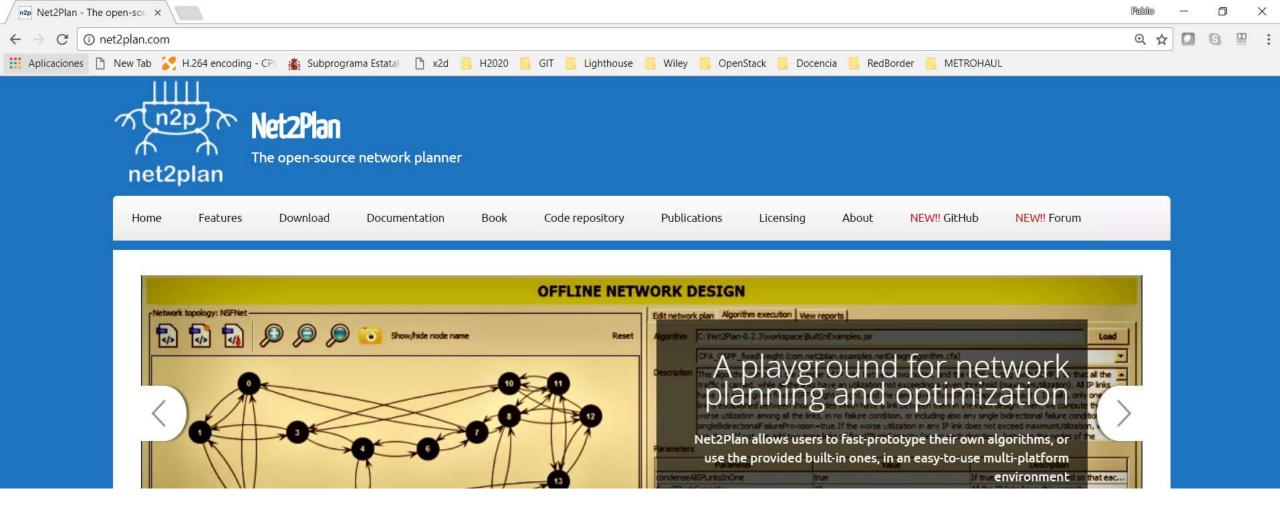
Unicast traffic

SRG Index failed	Offered traffic	Blocked traffic (%)	Offered traffic traversing oversubscribed links (%)	Offered traffic of demands with excessive latency (%)	Total blocked traffic [out of contract] (%)	% of demands fully ok
No failure	10000.000	0.000 (0.000 %)	0.000 (0.000 %)	0.000 (0.000 %)	0.000 (0.000 %)	(100.000 %)
0	10000.000	0.000 (0.000 %)	9320.197 (93.202 %)	0.000 (0.000 %)	9320.197 (93.202 %)	(33.333 %)
1	10000.000	0.000 (0.000 %)	7727.512 (77.275 %)	0.000 (0.000 %)	7727.512 (77.275 %)	(40.476 %)
2	10000.000	0.000 (0.000 %)	5605.399 (56.054 %)	0.000 (0.000 %)	5605.399 (56.054 %)	(61.905 %)
3	10000.000	0.000 (0.000 %)	6503.431 (65.034 %)	0.000 (0.000 %)	6503.431 (65.034 %)	(54.762 %)
				· · · · · · · · · · · · · · · · · · ·		

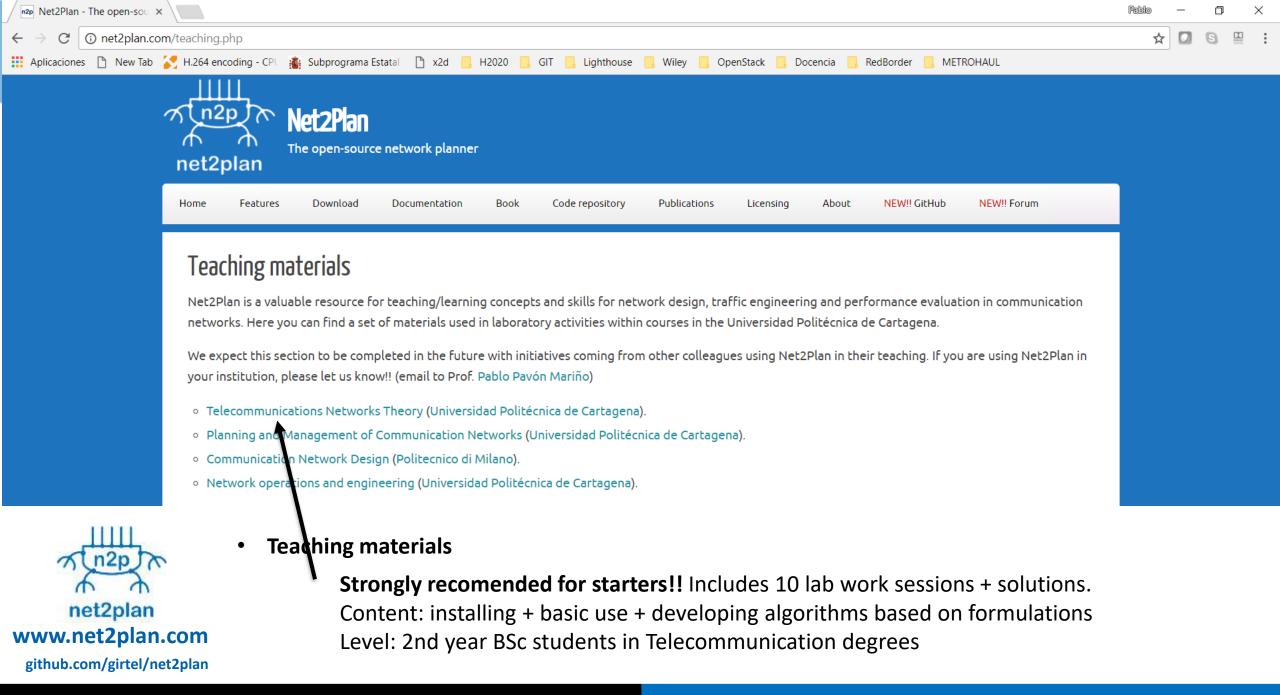


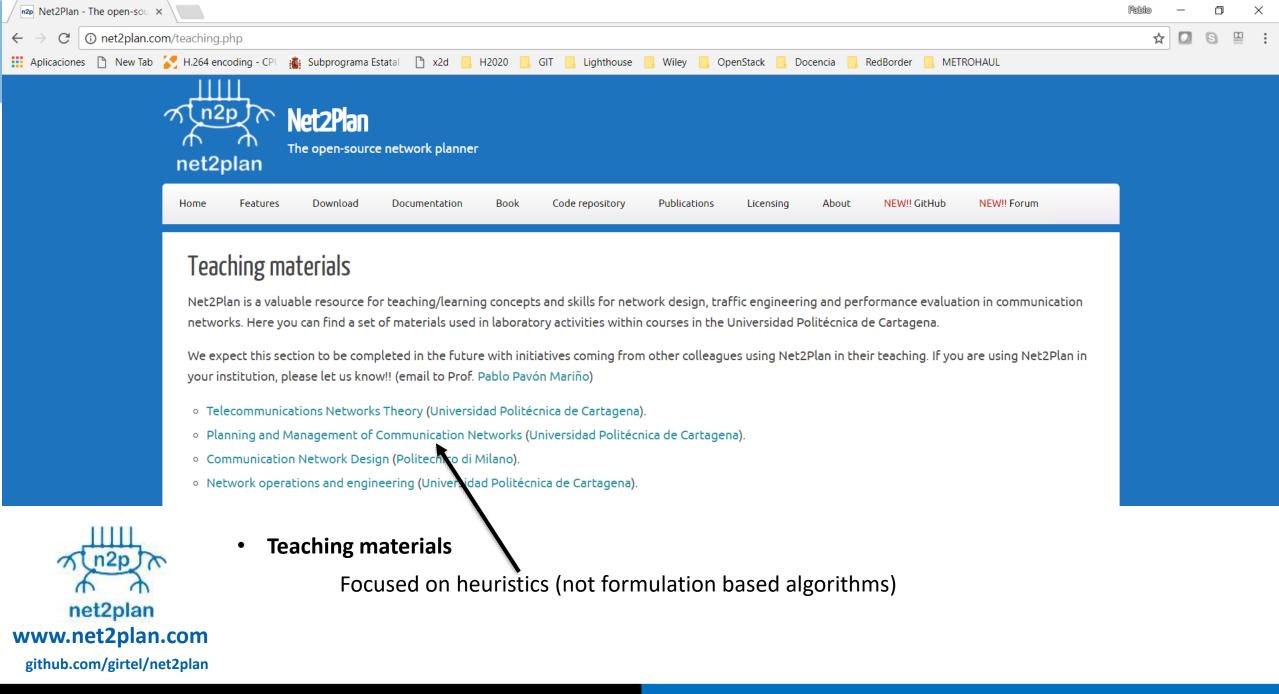
- **Reporting**. Plug in your report algorithm, or use a built-in one. Some interesting built-in reports:
 - WDM line engineering: OSNR (using GN model), PMD, CD, power at link & lightpath level
 - RSA inspector: Spectrum occupation in the fibers
 - Availability analysis: Estimates service level availability (includes error margin)

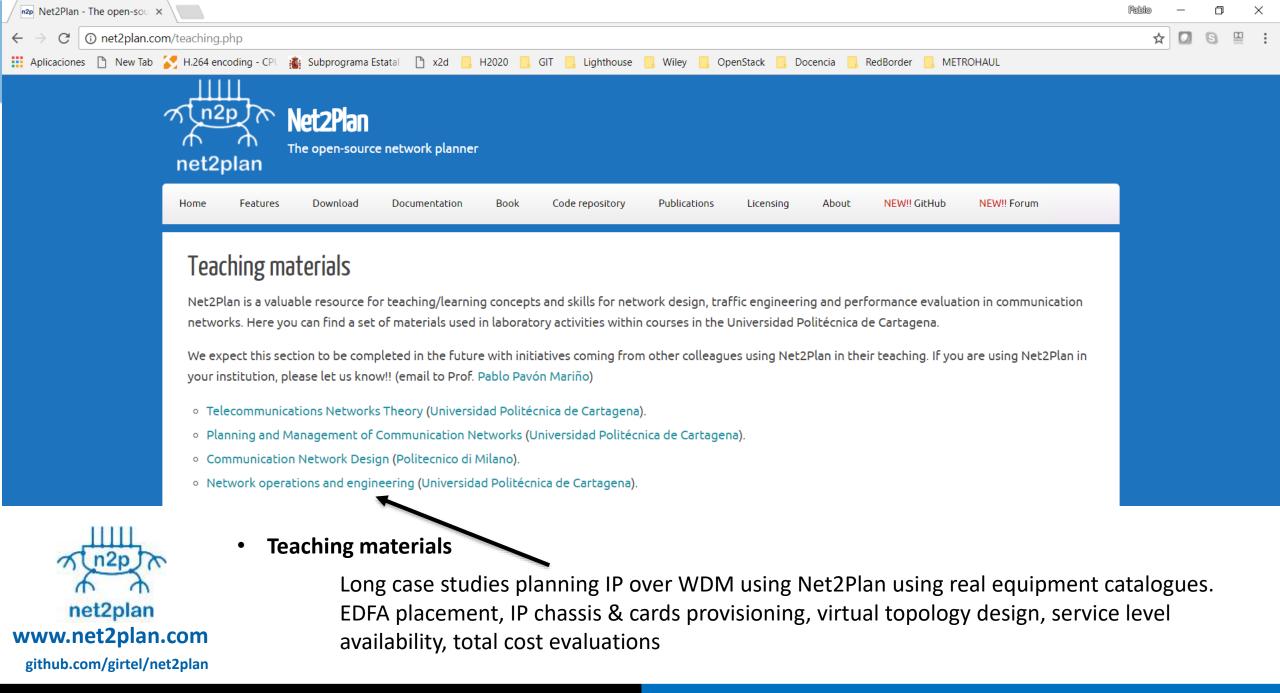
Net2Plan —	× Net2Plan - Design tables and control window -	- 🗆 X
<u>F</u> ile <u>T</u> ools <u>H</u> elp	View/Edit network state Offline algorithms Online simulation What-if analysis View reports	
OFFLINE NETWORK DESIGN & ONLINE NETWORK SIMULATION	Network Layers Nodes Links Demands Multicast demands Routes Multicast trees Resources Shared-risk groups	Death V(Fe
Network topology		Reset VFs
Image: State Image: State	Reset 1617 0 0 5 (IPLSng) 10 (STTLng) 0.089 0.089 0.0895 R46,L23,R N5,(I	
	1651 2 37 (LOSAng) 6 (KSCYng) 0.069	R50),(2 R50), 4
t=	1666 4 5 4 (HSTNng) 7 (LOSAng) 0.411 0.411 0.410925 R44,R43,L21 N4,(1 1676 5 6 5 (IPLSng) 2 (CHINng) 0.68 0.335 0.3350999 L8,R40,R39 N5,N 1678 6 6 5 (IPLSng) 2 (CHINng) 0.68 0.345 0.3445750 R46,R45,L8 N5,(1	2,(R4 1 R46),(1
	1686 7 7 (LOSAng) 10 (STTLng) 0.242 0.242 0.242 L25,R54,R N7,N 1696 8 8 7 (LOSAng) 9 (SNVAng) 0.573 0.573 0.57265 L25,R54,R.S.N7,N 1707 9 93 (DNVRng) 0 0.041 0.0410 L13,R48,R N3,N	9,(R5 1
T Wanington	1740 10 12 2 (CHINng) 3 (DNVRng) 0.784 0.784 0.784075 L9,L23,R4 N2,N 1754 11 13 6 (KSCYng) 8 (NYCMng) 0.096 0.096 0.095575 R48,L22,R N6,(I 1757 12 14 (HSTNng) 5 (IPLSng) 0.083 0.0830.083425 R44,L19,R N4,(I	3 (48),
Phoenix	1766 13 153 (DNVRng) 5 (DrLsng) 0.192 0.192 0.19235 L13,R48,R N3,N 1778 14 16 11 (WASH 8 (NYCMng) 1.002 1.001725 R58,R57,L26 N11, 1792 15 17 6 (KSCYng) 11 (WASH 0.113 0.113 0.112675 L18,R44,L N6,N	6,(R4 2 (R58) 1
	1799 16 18 9 (SNVAng) 8 (NYCMng) 0.136 0.136 0.136175 R54,R53,L N9,(1 1810 17 19 11 (WASH 3 (DNVRng) 0.402 0.402 0.40155 L6,L3,R44, N11,	R54),(5 N1,N4 4
Focus panel	1816 18 20 6 (KSCYng) 10 (STTLng) 0.049 0.049 0.04865 R48,R47,L N6,(1 1826 19 21 3 (DNVRng) 6 (KSCYng) 0.104 0.104 0.104125 L13,R48,R47 N3,N 1841 20 22 5 (IPLSng) 8 (NYCMng) 0.467 0.467 0.4677375 R46,R45,L N5,(1	6,(R4 1
→ Costany mostany filemany Route do Demand	Image: March and the second	11,N8 2
Link 20 Link 20 Link 20 Link 20 Route ci 2570.4 km (12.85 ms) 1231.0 km (6.15 ms) 1060.8 km (6.30 ms) 399.4 km (2.00 ms) Route ci 0ccup: 0.3 0ccup: 0.3 0ccup: 0.3 0ccup: 0.3 Is up?:	1901 24 28 11 (WASH 6 (KSCYng) 0.253 0.253 0.253 0.5325 L6,L5,R46, N11, 1907 25 291 (ATLAng) 11 (WASH 0.929 0.92875 R38,L7,R57 N1,(1907 25 291 (ATLAng) 11 (WASH 0.929 0.92875 R38,L7,R57 N1,(N1,N5 3 R38), 1
Total: 20.1/25.8 Total: 17.5/25.8 Total: 5.0/25.8 Total: 2.6/25.8 Worst fin Worst re Is servic	1928 27 31 6 (KSCYng) 4 (HSTNng) 0.072 0.072 0.072325 L18,R44,R43 N6,N vir 1942 28 32 8 (NYCMng) 7 L0SAng) 0.854 0.854 0.854 0.854 1.854175 L27,L6,L3, N8,N	4,(R4 1 11,N1 4
Route le Route le Is backu	1948 30 33 8 (NYCMng) 2 (CHINng) 3.058 2.791 2.79075 L10,R40,R39 N8,N ku 1959 31 34 10 (STTLng) 4 (HSTNng) 0.194 0.1945 L28,R54,R N10,	2,(R4 1 N9,(R 3
Has bad Resource 50 Resource 43 User-dei	1976 33 36 5 (IPLSng) 6 (KSCYng) 0.121 0.1210.121025 L23,R48,R47 N5,N 1998 34 38 2 (CHINna) 10 (STTLna) 0.127 0.127 0.1275 L9,R46,L2 N2.N	6,(R4 1
Type: FW Type: NAT USEF-del		>

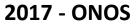


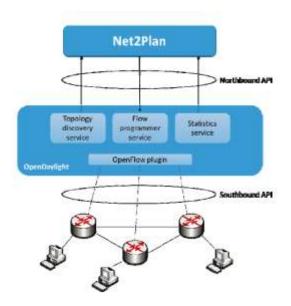
- Support for offline/online algorithms allocating IT & Network resources in NFV context
 - Concept of Resource (e.g. vFirewall) in the nodes, traversable by flows, with a given capacity (e.g. Gbps of traversing flows), consumes other resources (e.g. 1 CPU, 8 GB of RAM, 10 GB HD)
 - Service chain is a route from A to B, that needs to traverse resources of a given type in a particular order (e.g. first vNAT, then vFirewall, then vMonitor)

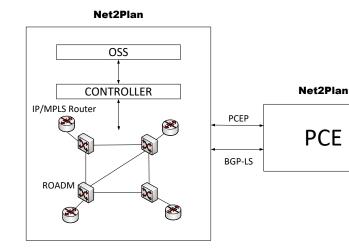


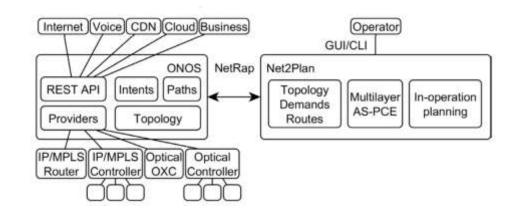

- Support for offline/online algorithms allocating IT & Network resources in NFV context
 - Includes built-in algorithms in this scope
 - Includes a *utils* library with algorithms for solving the *k* minimum cost service chain problem



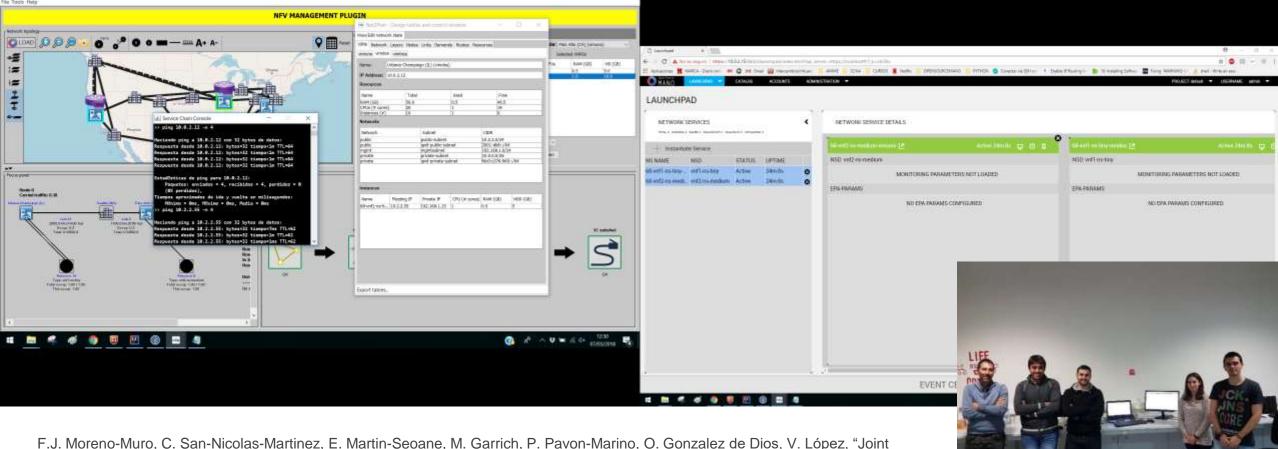

- How to obtain more information for...
 - Using it: Users guide
 - **Developing algorithms:** Javadoc
 - The Math: the book is suited for that



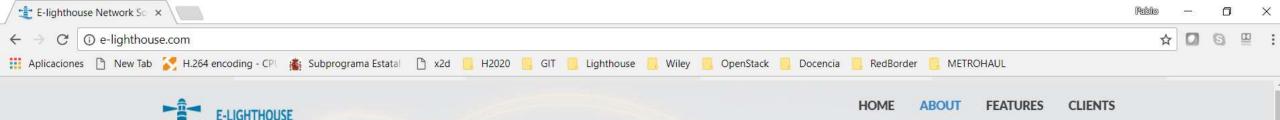




2016 – ABNO



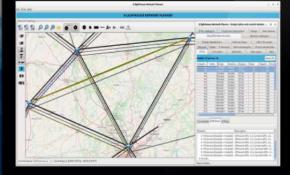
J.-L. Izquierdo-Zaragoza, A. Fernandez-Gambin, J.-J. Pedreno-Manresa and P. Pavon-Marino, "Leveraging Net2Plan planning tool for network orchestration in OpenDaylight", in *SaCoNeT 2014* J.L. Izquierdo-Zaragoza, J.J. Pedreno-Manresa, P. Pavon-Marino, O. Gonzalez-de-Dios and V. Lopez, "Dynamic Operation of an IP/MPLS-over-WDM Network Using an Active Stateful BGP/LS-Enabled Multilayer PCE", in *ICTON 2016* Pontus Sköldström, Ćiril Rožić and Jose-Juan Pedreno-Manresa, "Making powerful friends: Introducing ONOS and Net2Plan to each other," in 19th International Conference on Transparent Optical Networks (ICTON 2017).


- Net2Plan and SDN
 - Several prototypes and PoCs have been made

F.J. Moreno-Muro, C. San-Nicolas-Martinez, E. Martin-Seoane, M. Garrich, P. Pavon-Marino, O. Gonzalez de Dios, V. López, "Joint Optimal Service Chain Allocation, VNF instantiation and Metro Network Resource Management Demonstration", OFC 2018 (SDN/NFV Demo Zone)

- Net2Plan and SDN/NFV
 - OFC 2018 SDN/NFV Demo zone. Connection of Net2Plan to OpenStack & OSM for making optimized allocations of service chains in multi-VIM environment
 - Demonstrating joint allocation of IT (CPU, RAM, HD) and network resources

Networks are multilayer, so we are.


We are born as a **unified multilayer tool** simulating the full E2E interactions **at all the layers**, including IP/MPLS, OTN and PDH/SDH. Multilayer planning is a must to avoid false or hidden redundancies, and all sorts of myopic and expensive planning decisions.

✓ Vendor agnosticism is a must.

Operators' and vendors' interest may be different. Cost evaluations are based on **customer-defined** equipment catalogues and compatibility databases.

Each customer needs are different.

We provide **customized** solutions adapted to customers' OSS/NMS. Ask for tuned functionalities.

- 2017. Founding of E-lighthouse Network Solutions
 - E-lighthouse Network Planner leverages in Net2Plan experience

1. Introduction

- 2. Use cases
- 3. Theoretical limits, heuristics, solvers
- 4. Network optimization software. Net2Plan

5. Wrap up

Conclusions

SDN/NFV means an unprecedented network control, for an unprecedented resource dynamicity

The era of network optimization

Stay focused!! Many use cases appear now in PRODUCTION networks, where optimization is decisive and manual provisioning is unmanageable, let's go for them!

► There are some good open-source resources to exploit, let's use them!

Thanks!!!

Pablo Pavón Mariño (<u>pablo.pavon@upct.es</u>, <u>ppavon@e-lighthouse.com</u>) Miquel Garrich (<u>miquel.garrich@upct.es</u>) Francisco Javier Moreno Muro (<u>javier.moreno@upct.es</u>)

OFC 2018. Tutorial Th1D.1