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ABSTRACT
Active Smart Camera Networks (SCNs) have a wide range
of applications in areas such as banks, airports and under-
ground terminals, where it is necessary to monitor open plan
spaces reliably and robustly. However, the monitoring effi-
ciency in such environments is affected by various factors
which are stochastic in nature, such as the target move-
ment and arrival times, as well as the capabilities of the
on-board camera detection module. This paper presents a
modelling framework and a subsequent optimization-based
solution towards the optimal reconfiguration of the camera
network in order to minimize the expected number of unde-
tected targets under uncertainties. The proposed solution is
applicable to a variety of scenarios and does not require to
have a full view of the area. Simulation results indicate that
the proposed solution is robust to varying conditions and is
able to achieve good monitoring performance with only a
few cameras.
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1. INTRODUCTION
Smart Camera Networks (SCNs) of actively controlled

pan-tilt cameras with advanced sensing and processing capa-
bilities, are progressively being deployed in the monitoring
of public and private open plan spaces such as airport and

underground terminals, government and military premises
[12],[2]. As the size and complexity of camera networks
increase, there is a need for improved robustness, reliabil-
ity, scalability, adaptability, and reduced human interven-
tion especially with regards to actively controlled cameras
(e.g., pan-tilt capabilities) [7]. One of the most important
challenges faced towards achieving these goals is related to
the stochastic nature of the monitored environment such as
the arrival time and trajectory of targets of interest. In
addition, there are also uncertainties in the camera object
detection modules, which if not considered may result in
undetected targets 1 especially when considering low-cost
embedded smart cameras with limited processing capabili-
ties. Hence, it is necessary to develop intelligent algorithms
to actively control the cameras to collaboratively and au-
tonomously monitor the whole area and to detect as many
targets as possible under uncertainties. Furthermore, it is
often the case that cameras may not be able to offer ade-
quate coverage of the whole monitored area at once. Hence,
it is also important to develop exploration methods for the
observation of new targets that enter the monitored area.

This work presents a novel modelling framework that con-
siders the stochastic nature of target movement and arrival
times, to represent the expected number of targets over
space in the monitored area. Using this framework, a novel
optimization-based approach is further developed to obtain
the configuration of each camera (i.e., pan and tilt angles)
that minimizes the miss–detection probability of each target
over time, hence, maximizing the expected number of tar-
gets detected at least once. The proposed solution leverages
on a probabilistic model that captures the detection perfor-
mance of cameras as a function of distance that we proposed
in [1]. The modelling framework and corresponding solu-
tion approach are evaluated through simulations based on
the specifications derived from a Raspberry-Pi-based pan-

1In this research we consider a target observed by the net-
work if it has been detected by the camera network at least
once.



tilt camera, and is compared to the ideal case where the
target positions are a-priori known, demonstrating compa-
rable detection performance and better execution time.

The rest of this paper is structured as follows. Section 2
outlines some key areas of emerging research related to this
work. In Section 3 we formally introduce the problem as well
as assumptions for the visual sensors, targets, and the pro-
posed framework. In Section 4 we formulate an optimization
algorithm that utilizes detection probability information in
order to identify new camera configurations that maximize
the overall target detection probability. In Section 5 we
present the evaluation results for the proposed framework
through simulations. Finally, Section 6 provides concluding
remarks and directions for future work.

2. RELATED WORK
A large body of research in SCNs relevant to our work

concerns area and target coverage [7]. In the former case
the main objective is to fully cover an observed area and
monitor the activity within it. In the latter case the main
objective is to cover some particular PoI that correspond
to targets with known positions [9],[4],[13]. In such works
the cameras are assumed to be able to monitor a spheri-
cal sector and change their horizontal orientation to observe
different areas by selecting a pan angle from a discrete set.
In this setting a target is either covered or not covered by
a camera, hence, the notion of the camera detecting and
extracting target information is not present. To the best
of our knowledge, there is no relevant study that addresses
the same problem of maximizing the detection performance
of SCNs for moving targets under uncertainty. However, to
highlight our contributions we provide an overview of related
works and discuss the main differences with our approach.

In [6] a particle swarm optimization technique is used to
optimize the coverage both locally for targets and globally
for the area. The local coverage is based on a quality of view
metric which is characterized as a Gaussian distribution that
depends on the distance of a target from the camera, while
only zoom and pan are controllable parameters. We go be-
yond this work by accounting for the actual detection perfor-
mance of cameras, which can vary for different targets and
distances, instead of static targets. In addition, we identify
activity areas where new targets may appear and hence, we
do not need to constantly view the whole area. The work
in [8], addresses the problem of covering each target by a
minimum number of cameras in a balanced way as to ensure
adequate monitoring in the presence of faults or blocked line-
of-sight, however, they do not examine detection aspects. In
our case we impose no limits on the number of cameras, as we
use the actual detection performance of the available cam-
eras (which can also encapsulate the presence of occlusions).
In [9] a Centralized Force-Directed Algorithm is proposed to
maximize the number of targets covered. This work solves a
basic instance of the problem with static targets so that the
movement and discovery of new targets are not considered.
A study on full-view coverage, where the targets need to be
viewed with the least number of cameras but from differ-
ent viewpoints, is presented in [5]. Even though it is a very
important problem the work considers only cameras which
can change their pan orientation and do not investigate the
computer vision parameters. Natarajan et al. [10], tackle
the problem of target tracking by a hybrid network of active
and static cameras, through a Markov Decision Process. In

contrast, no static cameras are used to provide target posi-
tions in our work. Instead, we exploit the stochastic nature
of target generation and motion to build an activity map
[11] within the area, and then use the probabilistic camera
model to maximize the detection performance over time as
new targets enter the area.

3. MODELLING
In this paper we investigate how to maximize the detec-

tion of multiple targets in the area using only active cameras,
without any additional sensors or static cameras to provide
their location. To tackle this problem we model various as-
pects in the environment such as entrance/exit points, tar-
get mobility and arrival rates, the area under surveillance,
and camera sensing and detection algorithms. We utilize
the modeling framework to develop an exploration algorithm
and a suitable optimization algorithm that together can di-
rect the active cameras in monitoring locations where unde-
tected targets are most probable to appear.

3.1 Entrance/Exit Points and Paths
We assume that the monitored area has a total of NE

entrance/exit points. Each entrance/exit point r is located
at position (xEr , y

E
r ), where r ∈ E = {1, . . . , NE}. A target

can enter from point r1 and exit from point r2, r1 6= r2; such
that this pair of points defines path pl, with P(l) = {r1, r2}.
The rate at which targets arrive at point r1 and subsequently
exit from point r2 is characterized by a Poisson distribution
P (µ) with parameter µ = λl×τ where λl is the mean number
of arrivals per time step for path l, and τ is an interval of
time.

3.2 Targets
Each target j ∈ T that enters the area moves with a

constant speed uj generated from a Gaussian distribution
with mean µu and variance σ2

u, uj ∼ Gaussian(µu, σ
2
u). In

our modelling framework we assume that each target moves
along the shortest path between its entrance and exit point,
which is a straight line formed by the points r1, r2} when
there are no obstacles and is characterized by an inclination
angle θl. However, the true target trajectory can deviate
from the straight line. Each target is characterized by a
position vector Xj in the field (xTj , y

T
j ) and has a distance

dij from each camera i. It is assumed that a target enters
the area at time taj and departs at time tdj , hence, the total

time that the target is present within the field is tj = tdj−taj .
We assume that target j is traversing the field according to
the dynamic discrete-time linear model

Xj(t) = Xj(t− 1) + uj∆t[sin(θl); cos(θl)] + ωj(t), (1)

where ωj(t) ∈ R2×1 ∼ N (0, σ2
j ), is the motion noise vector,

and ∆t is the time-step of the discrete-time model.

3.3 Camera and Sensing Model
We consider a set of active camera nodes i ∈ C with two

degrees of-freedom (DoF), the pan and tilt angles. The po-
sition of each camera i in an area is denoted by (xCi , y

C
i ),

whereas its configuration and possible FoVs that it can view
are determined by the tuple (ΘP

i ,Θ
T
i ,Θ

V
i ,Θ

H
i , Hi) which

are the pan and tilt angles, the vertical and horizontal view-
ing angles, and the height that it is located at. We as-
sume that Hi,θ

V
i , and θHi are fixed, so that the local FoV
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Figure 1: Sensing and detection model for down-
wards looking cameras.

fi is determined using only θPi and θTi . The whole area
that a camera can monitor with its whole range of angles
is Fi. These angles are adjusted by the corresponding mo-
torized pan-tilt stage on which the camera is mounted and
are bounded as follows: 0 ≤ ΘPmin

i ≤ ΘP
i ≤ ΘPmax

i ≤ 360

and 0 ≤ ΘTmin
i ≤ ΘT

i ≤ ΘTmax
i ≤ 90. By projecting the 3D

visual sensing camera model of camera i onto the 2D field,
the camera FOV can be approximated by a trapezoid shape,
as shown in Fig. 1, determined by (θPi , θTi ). Each pair of
angles defines a different configuration k from all possible
configurations Kit that camera i can have at time t, which
can change over time depending on the activity in the area.

3.3.1 Sensing Model
The sensing model, first introduced in [1], attempts to

capture how different parameters such as the proximity of
a point of interest that we want to monitor from the cam-
eras, the noise, viewpoint of each camera, and the proba-
bilistic nature of the underlying machine learning algorithms
impact the performance of object detection algorithms and
subsequently the monitoring efficiency. In this description
we assume that the point of interest is the actual target but
the approach is also applicable when we want to monitor lo-
cations of interest for potential targets, as discussed in Sec.
3.4. The model can be summarized as follows: The total
area Fi that can be monitored by camera i is segmented
into NZ zones Zim,where m = 1, · · ·, NZ where NZ is the
last zone that is located further away from the camera. Each
Zonem is the locus of points within the global FoV of camera
i with distance between DZ

i(m−1) and DZ
im from the camera’s

origin, as shown in 1. For each configuration that a camera
can have it views a subset of the m zones which belong to its
local FoV fi(θ

T
i , θ

P
i ). Each zone is characterized by different

detection probabilities that depend on the sensitivity of the
machine learning algorithm to the visibility of the features,
illumination changes, and noise. However, it is assumed that
each zone is characterized by a single constant detection
probability which is the average of the different probabili-
ties within that zone. Hence, when a target is in zone Zim
of camera i it is assumed that on average is detected with
probability PZim. Note that the detection probability PZim of
zone m is not given by a specific equation but is inherent to
the probabilistic nature of the machine learning algorithm
used for object detection. A camera can determine Zim that
a target j is detected in through trigonometry using the pan
and tilt angles (θPi , θ

T
i ) and height Hi.

In each time step t, camera i monitors targets located in
its FoV based on the aforementioned model. We can evalu-
ate how well a camera performs as follows: The FoV corre-
sponding to its current configuration k ∈ Kit contains a set
of targets Sikt, where each target j in the set is detected
with non–zero detection probability Pijkt = PZim, where
DZ
im−1 ≤ dij ≤ DZ

im,m = 1, . . . , NZ . It follows that the
miss–detection probability of target j from camera i using
configuration k can be defined as Qijkt = 1−Pijkt. When a
target j is observed by multiple cameras the overall proba-
bility P oj with which j is detected at least once in the entire

time horizon H is given by2:

P oj = 1−
∏
t∈H

∏
i∈C

∏
k∈Kit

Qijkt (2)

3.3.2 Camera Configurations
Given a set of PoI (e.g. targets or locations in an area),

we are interested in finding the best possible configuration
k for each camera i that meets the given constraints for
detection performance. To do so, firstly all possible con-
figurations Kit for a camera with corresponding detection
probabilities for each point must be found. To avoid the
brute force approach, a systematic procedure for each cam-
era i is performed that involves generating a finite number of
configurations. This procedure is executed by each camera,
and takes as input the position coordinates of the points
to be monitored. The output of this process is a list of
possible configurations for each camera with the respective
miss–detection probabilities for each point. This list will
be used as input to the optimization algorithm in order to
find the overall best configuration for each camera in or-
der to minimize the miss–detection probabilities. In case of
moving PoI then the set of possible configurations Kit will
change over time; however, when the points are static then
it is only necessary to find it once. A camera can deter-
mine the corresponding detection probabilities by forming
different FoVs around anchor points which determine unique
configurations and a corresponding FoV. This procedure is
repeated for each target/point in the area to generate the
configurations for a specific camera.The reader is referred to
[3] for more details.

3.4 Area and Path Segments
In order to model the expected number of undetected tar-

gets in the area we first segment the monitored area into a
grid of cells g ∈ G = {1, · · · , Ng}, where Ng is the amount
of cells, with cell g centered at (xGg , y

G
g ). Furthermore, given

that a target is moving with mean velocity uj we can esti-
mate its position in the path at future time-steps. Hence,
we divide each path l into a total of Ns

l segments, such
that each cell contains a number of segments for a particu-
lar path. We denote the index of the cell that each segment
s of path l is located in as gl(s). We assume, without loss of
generality, that the miss–detection probability of a target at
time t located anywhere in cell g is equal to that of the cell
center denoted as Qgt. It follows that the miss–detection
probability Qslst of a target on segment s of path l at time t
is equal to Qgl(s)t, as segment s of path l is in cell gl(s)

3.

2Assuming that detections from multiple cameras are un-
correlated.
3Miss–detection probabilities can be modelled at a finer



Algorithm 1 Estimation of area activity and Cell
miss-detection performance

1: At t = 0 initialize Els0 = 0; ∀ l, s
(1) Propagate the expected number of targets

2: for (l = 1 : Nl) do
3: for (s = 2 : Ns

l ) do
4: Elst = El(s−1)t

5: end for
6: El1t = λl
7: end for

(2) Update cell weights

8: for (l = 1 : Nl) do
9: for (s = 1 : Ns

l ) do
10: Wgl(s)t = Wgl(s)t + Elst
11: end for
12: end for

(3) Update cell miss–detection probabilities

13: for (g ∈ G) do
14: Qgt =

∏
c∈C

∏
k∈Ki

(Qikt)
ζikt

15: end for
(4) Update segment Miss–detection probabilities

16: for (l = 1 : Nl) do
17: for (s = 1 : Ns

l ) do
18: Qslst = Qgl(s)t
19: end for
20: end for

(5) Update the expected number of detected targets

21: for (l = 1 : Nl) do
22: for (s = 2 : Ns

l ) do
23: Elst = El(s−1)t ×Qslst
24: end for
25: end for

4. OPTIMIZATION AND RECONFIGURA-
TION ALGORITHM

We utilize the modeling framework in Section 3 to de-
velop a solution to the problem of maximizing the number
of targets to be detected at least once. The solution relies
on predicting the likelihood of undetected targets occurring
at a specific region in the area which depends on the paths
followed by the targets, the target arrival rates and the sub-
sequent camera detection performance. Through appropri-
ate optimization the cameras can then be reconfigured to
increase the prospect of detecting those targets.

4.1 Area Activity Estimation
The expected activity within a cell is determined by the

activity propagating from all paths that go through that
cell. We model this via a data vector for each path that
maintains parameter Elst representing the expected num-
ber of undetected targets along segment s of path l at time
t. This structure can be thought as a First-In-First-Out
(FIFO) queue, with length equal to the number of segments
in the path Ns

l , that propagates the expected number of
undetected targets per time step along each path. By ag-
gregating the contribution from different Elst values asso-
ciated with cell g we can find a weight for that cell, Wgt,
which represents the expected number of undetected tar-
gets. Combining this with the miss–detection probabilities

granularity within a cell.

at those cells we can quantify the potential for the detection
of new targets within different cells, which is used to decide
on the best reconfiguration of the cameras.

Algorithm 1 shows how to update the expected number of
undetected target at each cell segment Elst and weight cell
Wgt. At time 0 in line 1 Elst is initialized to zero. The first
step is to simulate the propagation of undetected targets
within the area by shifting the values of Elst as shown in
line 4. At the same time we initialize the first segment of
each path with the arrival rate per time step for that path
λl as shown in line 6. The second step is to update the cell
weights by summing the contributions of each cell segment
as shown in line 10 to give the total number of estimated
undetected targets per cell. After this step the optimization
algorithm outlined in Sec. 4.2 is executed to reconfigure the
cameras with the new cell weights. The new configurations
result in updated miss–detection probabilities for each cell
which are computed in line 14. Accordingly, in line 18,
we also update the per segment miss–detection probabilities
which correspond to the cell gl(s) that the segment s belongs
to. The final step is to also update the expected number of
undetected targets per segment in line 23. This is done by
multiplying the expected number of targets in that cell with
the cell overall miss–detection probability, resulting in a new
expected number of undetected targets.

4.2 Optimization problem
In order to maximize the expected number of detected

targets we want to direct the cameras to monitor cells with
a high probability of containing undetected targets which is
expressed by Wgt. This problem is equivalent to minimiz-
ing the weighted overall miss-detection probability for each
cell. Recall from Section 3 that the overall miss-detection
probability for a point of interest is equal to the product
of miss-detection probability of all cameras that cover it.
Hence, we formulate the following optimization problem to
find a solution.

min
∑
g∈G

Wgt

∏
t∈H

∏
i∈C

∏
k∈Ki

Q
ζikt
gkt (3a)

s.t.
∑
k∈Ki

ζik = 1, i ∈ C, (3b)

ζikt ∈ {0, 1}, i ∈ C, k ∈ Ki (3c)

Notice that the objective of (3) is nonlinear and solution
with standard solvers is not possible. Nonetheless, we are
able to transform the problem into a mixed-integer linear
program, which can be solved with standard optimization
software, using an appropriate problem reformulation and
subsequent piece-wise-linear approximation approach. More
details can be found in [3], where the approach was first
introduced for the case that Wgt = 1, ∀ g, t.

5. EVALUATION RESULTS
To evaluate the proposed framework we developed a sim-

ulation environment in Matlab which incorporates all the
modelling aspects introduced in Section 3. We simulate a
square area of 20× 20m2 where 12 entrance/exit points are
generated. Four cameras are employed to monitor the area
one at the center of each side. Different paths are formed be-
tween the points and targets enter from each point with dif-
ferent rates. The camera runs a pedestrian detection module
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Figure 2: Percentage of missed targets versus noise
in target position.

1  1.5 2  2.5 3  3.5
Velocity

0

2

4

6

8

10

12

14

P
er

ce
nt

ag
e 

of
 ta

rg
et

s 
M

is
se

d 
(%

) Oracle
Proposed Algorithm

Figure 3: Percentage of missed targets versus the
target velocity.

for which we use the model established in [3], which is a 5-
zone model with probability values (0.2,0.5, 0.8, 0.5, 0.2),
resulting in a bell-shaped probability distribution, with an
effective capturing distance of 3 to 9 metres for each camera.

We run a total of 200 different simulation scenarios and
record the number of targets missed, and how performance is
affected from various parameters such as the noise in target
position, arrival rate, number of paths, and target velocity.
In addition, since there are no related works that tackle the
same problem we compare the performance of our approach
to an ideal case scenario, labeled as oracle, where the target
positions are known and the cameras reconfigure through
optimization to improve the detection performance. Since
the oracle knows all target locations and does not have to
discover new targets as in our case it is expected to perform
better. However, it serves as a benchmark which indicates
how close is the developed approach to the optimal solution.

The results are illustrated in Fig. 2-6. First, Fig. 2 shows
the percentage of missed targets with respect to noise on the
position, or in other words the deviation of their position
from their intended path. As expected the oracle performs
better, having a value of around 3% compared to 6-9% for
the proposed algorithm. However, notice that our approach
maintains steady performance even if the target trajectories
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Figure 4: Percentage of missed targets versus the
rate of target arrivals.
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Figure 5: Percentage of missed targets versus num-
ber of paths in the monitored area.

deviate significantly from a straight line. Fig. 3, indicates
that as the velocity of targets increases the performance of
our approach deteriorates; this is because as the speed of
targets increases it reduces the time units that a camera
views the targer and so it has less chance to detect a new
target. This can be improved by adding more cameras to
increase the chances of detection. On the contrary, there is
only a slight deterioration on the performance of the oracle
algorithm as the target positions are always known. In Fig.
4, we can see that as the rate of target arrivals increases, the
performance of the algorithm remains steady at 5-6%. This
is because through the proposed approach the cameras keep
covering important hot-spots in the area and thus keep up
with the increasing arrival rate. On the other hand, the ”or-
acle” performance deteriorates in this case as the algorithm
has to choose between covering different targets. Finally, in
Fig. 5 we observe that as the number of paths in the area
increase the performance of the oracle deteriorates while for
the proposed approach the performance maintains some reg-
ularity at 5-6%. This is again because in the oracle case the
cameras have to choose between targets while in our case
we monitor areas with high probability of undetected tar-
gets passing through. We also perform experiments with
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Figure 6: Execution time versus the number of paths
in the monitored area.

regards to the execution time of the optimization for the
two approaches with regards to the number of paths. As
it is illustrated in Fig. 6, the proposed approach is almost
constant at 0.05 sec since it depends on the number of cells
which is constant, while the oracle execution time increases
when more targets need to be considered in the optimiza-
tion.

6. CONCLUDING REMARKS
This paper introduced a framework that considers stochas-

tic parameters in the environment such as the camera de-
tection performance and target movement to dynamically
adjust the pan and tilt angles of active cameras to cover
different regions, thus maximizing the expected number of
unique targets detected over a time horizon. Overall, one
of the main conclusions from the simulation results is that
by incorporating known statistical information such as entry
rates and known path trajectories can greatly improve the
monitoring efficiency of SCNs. The proposed approach man-
ages to perform close to the optimal solution and at the same
time remain computationally independent from the num-
ber of targets, without having to keep a view of the whole
area. Future research will utilize the actual camera detec-
tions rather than theoretical values as feedback, to improve
the estimation of the location of undetected targets. Within
our immediate plans is to also model more complex scenar-
ios (target trajectories, no knowledge of arrival rates, etc.).
Another direction of work is to experimentally evaluate the
system under real-world conditions to gain more insight into
the overall performance and implementation challenges.
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