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Abstract 
Mathematical modeling of biological networks is a promising approach to understand the 
complexity of cancer progression, which can be understood as accumulated 
abnormalities in the kinetics of cellular biochemistry. Two major modeling formalisms 
(languages) have been used for this purpose in the last couple of decades: one is based 
on the application of classical chemical kinetics of reaction networks and the other one is 
based on discrete kinetics representation (called logical formalism for simplicity here), 
governed by logical state update rules. In this short review, we remind the reader how 
these two methodologies complement each other but also present the fast and recent 
development of semi-quantitative approaches for modeling large biological networks, with 
a spectrum of complementary ideas each inheriting and combining features of both 
modeling formalisms. We also notice an increasing influence of the recent success of 
machine learning and artificial intelligence onto the methodology of mathematical network 
modeling in cancer research, leading to appearance of a number of pragmatic hybrid 
approaches.  
To illustrate the two approaches, logical versus kinetic modeling, we provide an example 
describing the same biological process with different description granularity in both 
discrete and continuous formalisms. The model focuses on a central question in cancer 
biology: understanding the mechanisms of metastasis appearance.  
We conclude that despite significant progress in development of modeling ideas, 
predicting response of large biological networks involved in cancer to various 
perturbations remains a major unsolved challenge in cancer systems biology. 
 
 



Introduction 
Biochemistry, as a study of chemical processes and principles in living organisms, is our 
ground basis for understanding life in general and complex diseases such as cancer or 
diabetes in particular. The most efficient scientific approach in biochemistry remains 
reductionism and gradual bottom-up reconstruction of complex processes through 
accumulation of knowledge of elementary facts (chemical transformations). These facts 
need to be properly organized, and mathematical modeling can be used to help reason 
on them.  
 
There has been a long-standing hope that mathematical language can indeed be used to 
make this cognitive effort possible by providing tools for reasoning on and making 
predictions from the knowledge of large and complex biochemical processes driving 
normal life and diseases. Introduction of chemical kinetics as a mathematical modeling 
formalism, more than two centuries ago, is one of the most remarkable examples of 
collaboration between mathematicians and life scientists. It found numerous applications 
in understanding cancer [1–3]. 
 
The representation and description of biological systems reveals a tremendous 
complexity. The nature of this complexity can be seen as “the gap between the laws and 
the phenomena” [4]. The construction of large structural schemas for biochemical reaction 
networks such as global metabolic mechanism in human [5] or the global cancer signaling 
reaction network [6] has proved to be feasible but exploiting this knowledge remains a 
challenge. Using these reconstructions, it is possible to imagine detailed kinetic equations 
for a global reaction network inside a cell but it is more difficult, if not impossible, to find 
reaction rate constants and work with this large system even if it is considered “realistic” 
[4,7]. Thus, the applicability of the pure bottom-up approach becomes questionable in this 
context. 
 
A hope consists in defining an intermediate level of description which would match better 
the granularity of real life data available today. In mathematical biology, for this purpose, 
a number of qualitative modeling methods emerged in the past decades. These 
qualitative approaches focus on the possibility to reason on the complexity of biological 
systems but with much less quantitative details in hand compared to what is required by 
the classical chemical kinetics. In mathematical oncology, one of the most useful 
qualitative mathematical descriptions appeared to be the discrete (logical) formalism with 
an impressive record of applications [8–11]. The reason for this can be the nature of the 
data one usually deals with in cancer research, which frequently represent a set of links 
between a discrete (epi)-genotype (such as deleterious mutation or protein 
overexpression) to a discrete phenotype (life/death decisions of a cell or an organism, 
induction or inhibition of metastases, disease remission or relapse). 



 
In this short review, the aim is not to provide a somehow comprehensive review of existing 
formalisms or published mathematical models in cancer applications. For good reviews 
on this subject, we refer the reader to several references [12–16]. We present here a 
short notice about the current state of the relation between logical modeling formalism 
and the classical chemical kinetics modeling language, in cancer research. We aim at 
showing how, in recent years, these two approaches diverged and converged back, and 
how both of them are influenced by recent success in other fields, namely machine 
learning and artificial intelligence. We use an example of a relatively complex mechanism 
of metastasis induction in epithelial cancers to snapshot two mathematical modeling 
flavors currently used in cancer research. 

Logical formalism as a part of asymptotology of chemical reaction networks 
Kruskal defined asymptotology as “the art of describing the behavior of a specified 
solution (or family of solutions) of a system in a limiting case. [...] The art of asymptotology 
lies partly in choosing fruitful limiting cases to examine” [17]. Various useful asymptotic 
approximations of chemical reaction network equations have been exploited for a long 
time [18]. Different asymptotic approximations (quasi steady-state, rate limiting step 
approximation, piecewise linear, etc.) appeared to be useful according to the types of 
biochemical networks.  
 
In this regard, logical equations, which were used in the late 60s to reproduce the behavior 
of biological networks [19], can be matched to the asymptotic behavior of chemical 
kinetics equations in the limit of infinite enzyme cooperativity. Cooperative action of 
enzymes leads to kinetic rate functions of sigmoidal shape, which can be described by 
the Hill function, with the corresponding Hill coefficient parameter n. In the limit n→∞, when 

sigmoidal kinetic rates become step functions, the dynamics of chemical kinetics 

equations can be exactly mapped to discrete dynamics with asynchronous update 

rules[20–23]. In the simplest special case, it leads to the logical formalism. In this 
formalism, each variable can take values of 0 or 1 (false or true). The phase space of the 
discrete dynamics can be represented as a sparse state transition graph, which can be 
used to determine attractors of two kinds, fixed points or cycling attractors. In the 
asynchronous case, the graph is non-deterministic: many continuations are possible from 
a given discrete state, each being different by the value of one and only one variable. 
 
This approximation was applied for modeling regulatory networks (such as transcription 
regulation network, composed of transcriptional factors and their targets) and signaling 
networks. In these networks, the discrete state of a protein or a gene (active or inactive, 



present or absent) is usually more important than its quantity [22]. Since cancer is 
characterized by profound changes in the functioning of transcriptional and signaling 
networks, many applications of logical modeling formalism were reported in cancer 
biology [8,11,24–26]. 
 

Probabilistic and continuous flavors of logical modeling 
In its pure form, the possibilities of logical formalism are very restrictive in cancer 
applications. It allows predicting appearance and disappearance of attractors and their 
reachability from the analysis of the state transition graph, but in practice, it requires fine 
tuning of predictions at a less coarse-grained level. An important suggestion was to 
consider the state transition graph as a Markov chain, parameterized by probabilities of 
transitions. The probabilities of outgoing transitions associated to each state can be set 
equiprobable, but they can also include information about different switching off/on time 
scales of various variables. In this case, each attractor is assigned a probability of being 
reached from a specified initial state by a random walk, which is qualitatively interpreted 
as a probability of observing a phenotype in an experiment. Using this approach, several 
models related to cancer biology were developed [27,28], simulating probabilistic choice 
between different cell fates (e.g., apoptosis, necrosis, survival) and concluding on how 
these decisions are affected by mutations. 
 
A natural extension of considering random walks on the state transition graphs defined 
by the logical models was the introduction of physical time by continuous time Markov 
modeling [29]. Each variable is explicitly parameterized by the rates of switching on and 
off but remains discrete. The formalism has been applied for predicting appearance of 
metastases in epithelial cancers [8], genetic interactions [30], or mutual exclusivity or co-
occurrence of mutations in bladder cancer [24]. 
 
Alternatively, the logical framework with continuous variable values (limited in [0;1] 
interval) was developed [31]. This flavor of fuzzy logical modeling was successfully 
applied to cancer-related processes [32]. 
 
Interestingly, several studies suggested to “roll back” from logical to ordinary differential 
equations, though not related to chemical kinetics, such as the logic ordinary differential 
equations [33]. In this formalism, the variables are also constrained within [0;1] interval 
and their rates depend on the regulator values transformed through a sigmoidal function. 
The formalism found successful applications in predicting sensitivity of colon cancer cell 
lines to various drugs [34]. 
 



Note that any logical model can be transformed into a fictitious chemical kinetics system 
[35], where each logic variable is associated with a reversible reaction between two 
chemical species, corresponding to the “active” and “inactive” variable states. As such, 
the total amount of each pair of chemical species is conserved and can be set to 1, or 
any other value. The logical regulations are represented by catalyses which might 
enhance (or inhibit) the reaction rate in a specified direction. Goldbeter and Koshland 
derived an equation for such cases [36]. Such chemical kinetics systems might in fact 
mimic quite closely real biochemical signaling cascades based on reversible 
phosphorylation [37]. Degradation and complex formation might be further introduced 
thus gradually reconstructing the initial complete chemical kinetics description, with a 
possibility to stop at any level of abstraction. 
 

“Discretizing” chemical kinetics 
An option in simplifying the analyses of complex chemical kinetics model consists in 
finding approximations of chemical kinetics equations such that they would require much 
less parameters than the complete system descriptions. In some cases, it leads to quasi-
discrete approximations. Historically, the most known approximation approach in systems 
biology is piecewise-linear approximation of chemical reaction rates, which is qualitatively 
equivalent to  a generalized logical description [38]. Such approximation decomposes the 
phase space of the dynamical system into sub-regions such that, in each region, the 
dynamics is driven by linear differential equations. Similarly, the dynamics of nonlinear 
dynamical systems can be decomposed into the action of dominant systems, each of 
which can be described by only few parameters [18]. The dominant systems serve a 
generalization of the notion of rate limiting reaction step for complex reaction networks. 
These dominant systems can have simple analytical solutions but do not have to be linear 
as in the piecewise-linear approximation method. It was also shown that for the networks 
of monomolecular reactions with well-separated kinetic constants, the dynamics is 
described by the left eigenvectors of the kinetic matrix, with coordinates close to 0 or 1, 
and right eigenvectors with coordinates close to 0 or ±1, i.e., the system becomes 
“discretized”. Analysis of dominant systems of chemical kinetics equations appeared to 
be insightful in modeling mechanisms of microRNA action [39,40]. 
  
Non-standard algebraic approaches were suggested to simplify the chemical kinetics 
equations. Discrete sign algebra approach helps derive qualitative conclusions about the 
Jacobian matrix of chemical ordinary differential equations [41,42]. Tropicalization (i.e., 
systematic application of max-plus algebra) of chemical kinetics equations can potentially 
provide an algorithmic basis for decomposing complex reaction network dynamics into a 
finite set of simple dynamical behaviors. In [43], this approach was applied to modeling 
cell cycle, which is a central process in cancer biology. More conceptually, introducing 



qualitative and extremely simplified kinetic system descriptions (such as logical 
equations) might be seen as “dequantization” of continuous kinetics, by analogy with how 
this procedure justifies the application of tropical algebras in real-life problems [44]. One 
can speculate that tropical algebras should be well suited for qualitative solutions of 
complex models in biology because the robust cell fate decisions are made based on 
comparing the orders of magnitudes of biomolecule concentrations rather than on very 
precise values [45]. 

Mathematical modeling vs. machine learning and artificial intelligence 
Like in other fields of model engineering, logical modeling formalism can be considered 
as an approach to artificial intelligence (AI). Indeed, logical equations can help infer 
conclusions from complex biological diagrams, or describe how different molecules inhibit 
or activate each other. Reasoning on such diagrams is a common approach in molecular 
biology. However, a human mind is able to use it only at a relatively small scale. Logical 
modeling formalism automates reasoning on dense diagrams containing few tens of 
elements [46]. 
 
This type of AI, consisting in explicitly specifying “if then” logic statements, is a 
characteristic of early steps in the development of expert systems in various fields, in 
order to help human decisions in complex situations. A current trend in AI consists in 
introducing machine learning approaches where the expert systems are trained on large-
scale datasets, with artificial neural networks (ANN, deep learning. Interestingly, 
mathematical modeling of biological networks has actively borrowed the methodology of 
ANNs. The idea is to treat the structure of biological networks as a scaffold for a sort of 
ANN, and use experimental data to train the parameters of the network. Biological 
molecules are then treated as information processing units (neurons) and regulatory 
relations as synapses in ANN. 
 
One of the first examples of modeling cancer networks was suggested in [47], using 
Hopfield-like ANNs. Genetic and evolutionary algorithms have been used to fit model 
parameters using high-throughput omics datasets [48,49]. Very recently, 
backpropagation of error algorithm - main tool in ANN training - was adapted to fitting 
parameters of mass action-based chemical kinetics equations and applied to modeling 
large networks in cancer [50]. 
 
Of course, when the structure of reaction networks is used as a constraint for applying 
machine learning techniques, the inferred kinetic or logic parameters does not have to 
(and usually do not) reflect the biochemical and physical reality. In this case, such 
mathematical models are closer to statistical models, which can be challenged by the 
standard approaches in machine learning, i.e., checking performance on the training and 



testing datasets, applying cross-validation, etc. The question on how well this approach 
will generalize for completely independent data, and how serious the issue of overfitting 
is, remains open. 
 
All these methods are summarized in Figure 1. 
 

An example of modeling metastasis induction  
In this section, we propose to present a concrete example of a cancer process using 
both logical and chemical kinetics formalisms and show what to expect from both 
approaches.  
 
The formation of metastases is the process by which a cancer cell escapes from its 
primary site to invade a distant site. It involves several steps among which a local 
invasion of the neighboring tissues, intravasation which allows the cancer cells entering 
the blood or the lymph system and being transported to the distant tissue to finally 
colonize a new organ [51]. The initial step of this process requires some important 
events such as the loss of adhesion of cancer cells, and a phenotypic transition called 
the Epithelial to Mesenchymal Transition (EMT) during which the cells change their 
shape. This transition  is believed to be a prerequisite for invasion but has been recently 
raised as a subject of controversies [52].  
 
In 2015, Chanrion and colleagues [53] have engineered transgenic mice with the 
possibility to activate mutations in the gut as a biological model for colorectal cancer 
with a particular emphasis on Notch pathway (a signaling pathway reported to be 
deregulated in many diseases such as cardiac and endocrine development defects, 
cancer, etc.). The authors have showed that when the receptor Notch1 was 
constitutively activated in mice already harboring a deletion of p53, some metastases 
were found in distant organs with the dissemination of EMT-like epithelial cells, but was 
not the case for mice with either mutation alone. Based on some computational 
analyses, a hypothesis involving an interplay between the Notch and p53 pathways 
through the regulation of the main EMT regulators (transcription factors) was proposed 
and later formalized into a complex logical model [8].  
 
A simple logical model of EMT 
Logical models provide a good tool to reason on the topology of the network illustrating 
the biological question, especially when there are no quantitative data available but 
rather some qualitative information such as phenotypical observations.  
 



The main players of the two pathways are selected and assembled into a regulatory 
network where nodes represent species, and edges account for a positive or negative 
effect of one species over the others. The construction of the influence network 
recapitulating the cross-talks between the two pathways shows numerous interactions 
between the members of Notch and the p53 pathways (Figure 2A, see legend for 
details).   
 
To each node, a logical rule is defined (Supplementary material). The model was 
constructed using GINsim [54] and simulated with MaBoSS [55], a tool for simulating 
continuous time Markov processes on the Boolean model. With MaBoSS, it is possible 
to quantify the probability to reach a particular state of the system (Figure 2B and 
Supplementary Figure S1). We focus our analyses on the activity of EMT regulators, 
NICD, and both TP53 and TP63_TP73.  
 
The simulations of five mutant conditions (three single mutations of Notch, TP53, and 
TP63_TP73 and two double mutants) show coherent results with the experimental 
results: only the double mutant NICD++ / TP53-- leads to the activation of the EMT 
regulators (Supplementary Figure S2). The probabilities of MaBoSS outputs correspond 
to the proportions of trajectories that lead to one or the other phenotype. For instance, 
for all mutants besides NICD++ / TP53--, there exist conditions for which apoptosis can 
be reached. For the double mutant, though, no matter the initial conditions, all solutions 
lead to the activation of the EMT regulators.  
 
This approach confirms that the network is in accordance with experimental results. 
However, the framework does not allow the exploration of the effect of timing on the 
mutants (e.g. is a NICD mutation in a TP53 background different than a TP53 mutation 
in a constitutive NICD background?) or the strength of one inhibition or activation. For 
that, a more quantitative approach is needed. 
 
An ODE model of EMT 
For that purpose, we have built a reaction network model corresponding to the influence 
network described above. We have included information about the nature of each 
species. For example, TP53 is a transcription factor, thus, its activity will affect the 
transcription of the genes it controls. We constructed a network of the same players to 
account for the dynamics of the genes, the mRNA and the protein of each of the 
components (Figure 3A). The network was then translated into a set of nonlinear 
ordinary differential equations (Supplementary material).  
 
All genes are assumed to be present (initial conditions set to 1) and ready to be 
transcribed if the necessary conditions are met for each of the species. For simulations 



of species deletions, we set the value of the corresponding gene to 0 in the initial 
conditions. Since the genes are not regulated, it is equivalent to setting the value of the 
gene to 0. 
 
The parameter values were chosen so as to fit the known behavior of single mutants. It 
is important to note that the parameter set provided here might not be the only one. 
Some tools exist to optimize the search for parameter values, either using data [56,57] 
or applying constraint-based methods such as temporal logic [58]. With this parameter 
set, in the presence of DNA damage and ECM, TP53 can be activated but the activity of 
NICD is not strong enough to activate the EMT regulators (Figure 3B). 
 
The simulations of the single mutants are in accordance with the logical model and the 
experimental observations (Supplementary Figure S3): the double mutant NICD 
overexpressed - TP63 deletion does not lead to EMT whereas the double mutant NICD 
overexpressed - TP53 deletion shows some activation of the EMT regulators (>65%). 
Note that another choice of parameter set might be able to show a more drastic 
activation of EMT in the double mutant, but for our purpose here, we consider that EMT 
is triggered.  
 
The chemical kinetics formalism allows the exploration of more quantitative aspects 
such as the impact of the order of mutations (supplementary material). We tested the 
sequential activation of Notch and p53 mutations. For both in silico experiments, the 
results show that the same levels of activations of all species are reached but with 
different dynamics.  
 
Advantages and drawbacks of both approaches 
The simulation of the same biological question in the two formalisms presented here 
show advantages and drawbacks of both. The logical formalism reasons on the 
topology of the network and confirms that the network is coherent with the experimental 
results. There are only few parameters that need to be set in this context but it does not 
constitute a major difficulty. The use of MaBoSS adds a mean to quantify these Boolean 
solutions but the results and their interpretation remain coarse-grained. The same 
model translated in nonlinear ordinary differential equations allows the introduction of 
more biochemical details about the process. The details of transcription and translation 
processes of the species included in the network are added to account for the dynamics 
of the miRNA and the transcription factors. This more refined model necessitates to 
carefully fine tune parameters though. This is when the difficulty appears. Choosing the 
right parameter set that is able to reproduce experimental observations can become a 
very difficult task. For a model of such dimension, it is handable, but for higher 
dimension, it becomes impossible without the help of optimization methods.  



Conclusion 
Significant progress in cancer research was made by comprehensive cataloguing of 
elementary steps of related molecular mechanisms. This created a demand for 
developing predictive formal models of cellular behavior. Modeling large biochemical 
networks, using pure bottom-up approach and the classical chemical kinetics 
methodology, faces difficulties related to poor availability of quantitative system 
parameters. This challenge led to appearance of multiple semi-qualitative modeling 
languages representing biochemical reaction networks at various levels of abstraction. 
Until recently, the main formalism for qualitative modeling in cancer research was logical 
(discrete) modeling. However, both classical chemical kinetics and logical modeling 
formalisms have been significantly revised recently and adapted to the characteristics of 
real-life large-scale data existing in cancer research. Interestingly, developing new 
methods in mathematical modeling of cancer biology are influenced today by the tools 
developed in the field of artificial intelligence, and especially, machine learning methods 
based on training large and complex networks. 
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Figure Legend 
 
Figure 1: Summary of approaches from continuous and logical modeling and their 
transformation to hybrid semi-qualitative modeling formalisms. Summary of the 
approaches to mathematical modeling applied to the biochemistry of cancer. These approaches 
are related to the classical chemical kinetics or discrete modeling formalisms. Two ways of 
"discretizing" chemical kinetics via developing useful approximations are accompanied by 
making the classical discrete approach more flexible via introducing continuous time or 
variables. Appearance of large-scale datasets and the recent success of machine learning 
approaches in cancer research has stimulated development of hybrid mathematical modeling 
approaches which borrowed ideas and tools from these fields. 



 
 
Figure 2: Logical model of the early steps of metastasis. (A) TP53 and its homologs, TP63 
and TP73, are activated by DNA damage. They share similar and distinct functions 
(PMID:10769197). For simplicity, in this model, TP63 and TP73 are lumped together into a 
single node. They have been reported to show different interactions with Notch pathway and 
some miRNAs (in particular mir200 and mir34a) than those of TP53, but may still be able to 
trigger apoptosis in the absence of TP53. Notch is activated by external signals (ECM for 
extracellular matrix). NICD corresponds to the intracellular domain of Notch which can interact 
with TP53, TP63, TP73, and the EMT regulators. Finally, the activation of the EMT transcription 
factors depends on both NICD and the absence of miRNA, themselves regulated by TP53 and 
its homologs. (B) Pie chart recapitulating the probabilities of the solutions of the logical model 
using MaBoSS 
   
Figure 3: Kinetic model of the early steps of metastasis. (A) Reaction network of the 
metastasis model. Regulations of genes, mRNA and proteins dynamics are represented. 
Positive influences (or catalyses) are drawn as arrows ending with circles and negative 
influences (or inhibitions) as arrows ending with a T-shape. (B) Simulations of wild type 
conditions over time, with DNA damage and ECM active.  
 


