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Abstract

We present a probabilistic model for learning from dynamic
relational data, wherein the observed interactions among net-
worked nodes are modeled via the Bernoulli Poisson link
function, and the underlying network structure are character-
ized by nonnegative latent node-group memberships, which
are assumed to be gamma distributed. The latent member-
ships evolve according to Markov processes. The optimal
number of latent groups can be determined by data itself.
The computational complexity of our method scales with the
number of non-zero links, which makes it scalable to large
sparse dynamic relational data. We present batch and online
Gibbs sampling algorithms to perform model inference. Fi-
nally, we demonstrate the model’s performance on both syn-
thetic and real-world datasets compared to state-of-the-art
methods.

Introduction
Considerable work has been done on the analysis of static
networks in terms of community detection or link predic-
tion (Hoff et al. 2001; Kemp et al. 2006; Airoldi et al. 2008).
However, due to the temporal evolution of nodes (e.g. indi-
viduals), their role within a network can change and hence
observed links among nodes may appear or disappear over
time (Mucha et al. 2010; Goldenberg et al. 2010). Given
such dynamic network data, one may be interested in under-
standing the temporal evolution of groups in terms of their
size and node-group memberships and in predicting missing
or future unobserved links based on historical records.

A dynamic network of N nodes can be represented as
a sequence of adjacency matrices b(t) ∈ {0, 1}N×N , t =

1, . . . , T , where b(t)mn = 1 indicates the presence of a link
between node m and n at time point t and b(t)mn = 0 oth-
erwise. For the sake of clarity we focus on undirected and
unweighted networks but the presented method can be ex-
tended to weighted networks via the compound Poisson
distribution (Basbug and Engelhardt 2016) and to multi-
relational networks (Bordes et al. 2011; Nickel et al. 2016).

Many of the current probabilistic methods for dynamic
networks map observed binary edge-variables (either links
or non-links) to latent Gaussian random variables via the
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logistic or probit function (Durante et al. 2014). The time-
complexity of these approaches often scales quadratically
with the number of nodes, i.e., O(N2). This will become
infeasible for large networks and will become especially in-
efficient for sparse networks. In this work we leverage the
Bernoulli-Poisson link function (Dunson and Herring 2005;
Zhou 2015; Caron and Fox 2015) to map an observed bi-
nary edge to a latent Poisson count random variable, which
leads to a computational cost that only scales with the num-
ber of non-zero edges. As large, real-world networks are
usually very sparse, the proposed method yields significant
speed-up and enables the analysis of larger dynamic net-
works. We allow for a time-varying nonnegative degree of
membership of a node to a group. We realize this by con-
structing a gamma Markov chain to capture the time evo-
lution of those latent membership variables. Inspired by
recent advances in data augmentation and marginalization
techniques (Zhou and Carin 2015), we develop an easy-
to-implement efficient Gibbs sampling algorithm for model
inference. We also present an online Gibbs sampling al-
gorithm that can process data in mini-batches and thus
readily scales to massive sparse dynamic networks. The
algorithms performs favorably on standard datasets when
compared to state-of-the-art methods (Foulds et al. 2011;
Acharya et al. 2015).

Dynamic Poisson Gamma Membership Model
In the proposed model, each node n is characterized by
a time-dependent latent membership variable φ(t)nk that de-
termines its interactions or involvement in group k at the
t-th snapshot of the dynamic networks. This latent node-
group membership is modeled by a gamma random vari-
able and is, thus, naturally nonnegative real-valued. This is
contrast to multi-group memberships models (or latent fea-
ture models) (Foulds et al. 2011; Heaukulani et al. 2013;
Kim et al. 2013) where each node-group membership is rep-
resented by a binary latent feature vector. These models as-
sume that each node either associates to one group or not
– simply by a binary feature. The proposed model on the
other hand can characterize how strongly each node asso-
ciates with multiple groups.



Dynamics of latent node-group memberships. For dy-
namic networks, the latent node-group membership φ(t)nk can
evolve over time to interpret the interaction dynamics among
the nodes. For example, latent group k could mean “play
soccer” and φ(t)nk could mean how frequently person n plays
soccer or how strongly person n likes playing soccer. The
person’s degree of association to this group could be in-
creasing over time due to, for instance, increased interac-
tion with professional soccer players, or decreasing over
time as a consequence of sickness. Hence, in order to model
the temporal evolution of the latent node-group member-
ships, we assume the individual memberships to form a
gamma Markov chain. More specifically, φ(t)nk is drawn from
a gamma distribution, whose shape parameter is the latent
membership at the previous time

φ
(t)
nk ∼ Gam(φ

(t−1)
nk /τ, 1/τ), for t = 1, . . . , T

φ
(0)
nk ∼ Gam(g0, 1/h0),

where the parameter τ controls the variance without affect-
ing the mean, i.e., E[φ(t)nk | φ

(t−1)
nk , τ ] = φ

(t−1)
nk .

Model of latent groups. We characterize the interactions
or correlations among latent groups by a matrix Λ of size
K ×K, where λkk′ relates to the probability of there being
a link between node n affiliated to group k and nodem affili-
ated to group k′. Specifically, we assume the latent groups to
be generated by the following hierarchical process: we first
generate a separate weight for each group as

rk ∼ Gam(γ0/K, 1/c0), (1)
and then generate the inter-group interaction weight λkk′
and intra-group weight λkk as

λkk′ ∼
{
Gam(ξrk, 1/β), if k = k′

Gam(rkrk′ , 1/β), otherwise
(2)

where ξ ∈ R>0 and β ∈ R>0. The reasonable number of la-
tent groups can be inferred from dynamic relational data it-
self by the shrinkage mechanism of our model. More specif-
ically, for fixed γ0, the redundant groups will effectively be
shrunk as many of the groups weights tend to be small for
increasing K. Thus, the interaction weights λkk′ between
the redundant group k and all the other groups k′, and all
the node-memberships to group k will be shrunk accord-
ingly. In practice, the intra-group weight λkk would tend to
almost zero if λkk ∼ Gam(r2k, 1/β) for small rk, and the
corresponding groups will disappear inevitably. Hence, we
use a separate variable ξ to avoid overly shrinking of small
groups with less interactions with other groups. As γ0 has
a large effect on the number of the latent groups, we do not
treat it as a fixed parameter but place a gamma prior over
it, i.e., γ0 ∼ Gam(1, 1). Given the latent node-group mem-
bership φ(t)nk and the interaction weights λ(t)kk′ among groups,
the probability of there being a link between node m and n
is given by

b(t)mn ∼ Bern

(
1− exp

{
−

K∑
k=1

K∑
k′=1

λkk′φ
(t)
nkφ

(t)
mk′

})
.

(3)
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Figure 1: The graphical model of the Poisson gamma latent
membership model; auxillary variables introduced for infer-
ence are not shown.

Interestingly, we can also generate b(t)mn by truncating a latent
count random variable x(t)mn at 1, where x(t)mn can be seen
as the integer-valued weight for node m and n and can be
interpreted as the number of times the two nodes interacted.
More specifically, b(t)mn can be drawn as

b(t)mn = 1(x(t)mn ≥ 1), (4)

x(t)mn ∼ Po

(
K∑
k=1

K∑
k′=1

λkk′φ
(t)
nkφ

(t)
mk′

)
, (5)

where Po indicates the Poisson distribution. We can obtain
Eq. (3) by marginalizing out the latent count x(t)mn from the
above expression. The conditional distribution of the latent
count x(t)mn can then be written as

(x(t)mn | b(t)mn,Φ,Λ) ∼ b(t)mnPo+

(
K∑
k=1

K∑
k′=1

λkk′φ
(t)
nkφ

(t)
mk′

)
,

where x ∼ Po+(σ) is the zero-truncated Poisson distri-
bution with probabilisty mass function (PMF) fX(x|σ) =
(1 − e−σ)−1σxe−σ/x! and x ∈ Z>0 and Φ denotes the
set of all node-group membership variables. The usefulness
of this construction for b(t)nm will become clear in the infer-
ence section. We note that the latent count x(t)mn only needs
to be sampled for b(t)mn = 1, using rejection sampling de-
tailed in (Zhou 2015). To this end the proposed hierarchical
generative model is as follows.

φ
(t)
nk ∼ Gam(φ

(t−1)
nk /τ, 1/τ), for t = 1, . . . , T

φ
(0)
nk ∼ Gam(g0, 1/h0),

rk ∼ Gam(γ0/K, 1/c0),

λkk′ ∼
{
Gam(ξrk, 1/β), if k = k′

Gam(rkrk′ , 1/β), otherwise

x(t)mn ∼ Po

(
K∑
k=1

K∑
k′=1

λkk′φ
(t)
nkφ

(t)
mk′

)
,

b(t)mn = 1(x(t)mn ≥ 1).

For our model’s hyperparameters, we draw c0, ξ and β
from Gam(0.1, 1/0.1). The graphical model is shown in
Fig. 1.



Related Work
Approaches to analyze dynamic networks range from non-
Bayesian methods such as the exponential random graph
models (Robins et al. 2007) or matrix and tensor factoriza-
tion based methods (Dunlavy et al. 2011) to Bayesian latent
variable models (Ishiguro et al. 2010; Foulds et al. 2011;
Ho et al. 2011; Heaukulani et al. 2013; Kim et al. 2013).
Our work falls into the latter class and we hence confine
ourselves to discuss it’s relation to this class.

Dynamic extensions of mixed membership models, where
each node is assigned to a set of latent groups represented
by multinomial distribution, have been developed (Fu et al.
2009; Ho et al. 2011). One limitation of mixed membership
models is that if the probability that node i associates to
group k is increased, the probability that node i associates to
group k′ has to be decreased. The multi-group memberships
models use a binary latent feature vector to characterize
each node’s multi-group memberships. In multi-group mem-
berships models, a node’s membership to one group does
not limit its memberships to other groups. However, differ-
ences in the degree associations of a node to different groups
cannot be captured by such models (Foulds et al. 2011;
Heaukulani et al. 2013; Kim et al. 2013). One possible ex-
tension is to introduce a Gaussian distributed random vari-
ables to characterize how strongly each node is associated
to different groups as previously done for latent factor mod-
els (Rai and Daume III 2008). Such approaches where mem-
bership variables evolve according to linear dynamical sys-
tems (Xing et al. 2010) can exploit the rich and efficient
toolset for inference, such as Kalman filtering. However, the
resulting signed-valued latent features lack an intuitive inter-
pretation, e.g., in terms of degree of membership to a group.

In contrast to these approaches, our model is based on
a bilinear Poisson factor model (Zhou 2015), where each
node’s memberships to groups are represented by a non-
negative real-valued memberships variable. The model does
not only allow each node to be associated with multiple
groups but also captures the degree at which each node is
associated to a group. It means that our model combines
the advantages of both mixed membership and multi-group
memberships models. We exploit recent data augmentation
technique (Zhou and Carin 2015), to construct a sampling
scheme for the time evolution of the nonnegative latent fea-
tures. Related to our work is the dynamic gamma process
Poisson factorization model (D-GPPF) (Acharya et al. 2015)
where the underlying groups’ structure can evolve over time
but each node-group membership is static. This is in con-
strast to our approach where the node’s memberships evolve
over time. We note that the gamma Markov chain used by
our method and by D-GPPF is motivated by the augmen-
tation techniques in (Zhou and Carin 2015). In the exper-
iment section we compare our model to (1) the hierarchi-
cal gamma process edge partition model (HGP-EPM) (Zhou
2015), which is the static counterpart of our model, (2) the
dynamic relational infinite feature model (DRIFT) (Foulds
et al. 2011) which uses binary latent features to represent
the node-group memberships, and characterizes the tempo-
ral dependences of latent features via a hidden Markov pro-
cess and (3) the D-GPPF model.

Inference
We present a Gibbs sampling procedure to draw samples of
{φ(t)nk, λkk′ , rk, ξ, γ0, β, c0} from their posterior distribution
given the observed dynamic relational data and the hyper-
parameters {τ, g0, h0}. In order to circumvent the techni-
cal challenges of drawing samples from the gamma Markov
chain which does not yield closed-form posterior, we make
use of the idea of data augmentation and marginalization
technique and of the gamma-Poisson conjugacy to derive a
closed-form update.
Notation. When expressing the full conditionals for Gibbs
sampling we will use the shorthand “–” to denote all other
variables or equivalently those in the Markov blanket for the
respective variable according to Fig. 1. We use “·” as a index
summation shorthand, e.g., x·j =

∑
i xij .

We repeatedly exploit the following three results (Que-
nouille 1949; Dunson and Herring 2005; Zhou and Carin
2015) to derive the conditional distributions used in our sam-
pling algorithm.
Result 1. A negative binomially (NB) distributed random
variable y ∼ NB(r, p) can be generated from a gamma
mixed Poisson distribution as, i.e., y ∼ Po(λ) and λ ∼
Gam(r, p

1−p ), as seen by marginalizing over λ.
Result 2. The Poisson-logarithmic bivariate distributed vari-
able (y, l) (Zhou and Carin 2015) with y ∼ NB(y; r, p)
and a Chinese restaurant table (CRT) (Pitman 2006) dis-
tributed variables l ∼ CRT(l; y, r), can equivalently be ex-
pressed as a sum-logarithmic (SumLog) and Poisson vari-
able, i.e., y ∼

∑l
s=1 us with us ∼ Logarithmic(p) and

l ∼ Po(−r log(1− p)).
Result 3. Let y· =

∑N
n=1 yn, where yn ∼ Po(λn)

are independently drawn from a Poisson distribution with
rate λn, then according to the Poisson-multinomial equiva-
lence (Dunson and Herring 2005), we have (y1, . . . , yN ) ∼
Mult(y·;

λ1∑
n λn

, . . . , λN∑
n λn

) and y· ∼ Po(
∑
n λn).

Gibbs sampling

Sampling latent counts x(t)mn. We sample a latent count for
each time dependent observed edge b(t)mn as

(x(t)mn | −) ∼ b(t)mnPo+

(
K∑
k=1

K∑
k′=1

λkk′φ
(t)
nkφ

(t)
mk′

)
. (6)

Sampling individual counts x(t)mkk′n. We can partition the
latent count
x
(t)
mn ∼ Po(

∑K
k,k′=1 λkk′φ

(t)
nkφ

(t)
mk′) using the Poisson addi-

tive property as
x
(t)
mn =

∑K
k,k′ x

(t)
mkk′n, where x(t)mkk′n ∼ Po(λkk′φ

(t)
nkφ

(t)
mk′).

Then, via the Poisson-multinomial equivalence, we sample
the latent count x(t)mkk′n as

(x
(t)
mkk′n | −) ∼ Mult

(
x(t)mn;

λkk′φ
(t)
nkφ

(t)
mk′∑K

k=1

∑K
k′=1 λkk′φ

(t)
nkφ

(t)
mk′

)
.

(7)



Sampling group weights rk. Via the Poisson additive prop-
erty, we have

x
(·)
·kk′· ∼ Po(λkk′θkk′), (8)

where we defined x(·)·kk′· ≡
∑
t

∑
m,n 6=m x

(t)
mkk′n and θkk′ ≡∑

t

∑
n

∑
m 6=n φ

(t)
nkφ

(t)
mk′ . We can marginalize out λkk′ from

Eq. (8) and (2) using the gamma-Poisson conjugacy, which
gives

x
(·)
·kk′· ∼ NB(rkξ

δkk′ r
1−δkk′
k′ , p̃kk′),

where p̃kk′ =
θkk′

θkk′+β
and δkk′ denotes the Kronecker delta.

According to Result 2, we introduce the auxiliary variables
as

lkk′ ∼ CRT(x
(·)
·kk′·, rkξ

δkk′ r
1−δkk′
k′ ). (9)

We then re-express the bivariate distribution over x(·)·kk′· and
lkk′ as

x
(·)
·kk′· ∼ SumLog(lkk′ , rkξ

δkk′ r
1−δkk′
k′ ),

lkk′ ∼ Po[−rkξδkk′ r1−δkk′k′ log(1− p̃kk′)]. (10)
Using Eq. (1) and (10), via the gamma-Poisson conjugacy,
we obtain the conditional distribution of rk as

(rk | −) ∼ Gam
[γ0
K

+
∑
k′

lkk′ ,

1

c0 −
∑
k′ ξ

δkk′ r
1−δkk′
k′ log(1− p̃kk′)

]
. (11)

Sampling intra-group weight ξ. We resample the auxiliary
variables lkk using Eq. (9), and then exploit the gamma-
Poisson conjugacy to sample ξ as

(ξ | −) ∼ Gam
[
0.1 +

∑
k

lkk,
1

0.1−
∑
k rk log(1− p̃kk)

]
.

(12)
Sampling inter-group weights λkk′ . We sample λkk′ from
its conditional obtained from Eq. (2) and (8) via the gamma-
Poisson conjugacy as

(λkk′ | −) ∼ Gam
[
x
(·)
·kk′· + rkξ

δkk′ r
1−δkk′
k′ ,

1

(β + θkk′
)
]
.

(13)
Sampling hyperparameter γ0. Using Eq. (10) and the Pois-
son additive property, we have lk· ≡

∑
k′ lkk′ as

lk· ∼ Po[−rk
∑
k′

ξδkk′ r
1−δkk′
k′ log(1− p̃kk′)].

Marginalizing out rk using the gamma-Poisson conjugacy,
we have

lk· ∼ NB(γ0/K, p̂k),

where p̂k =
∑
k′ ξ

δ
kk′ r

1−δ
kk′

k′ log(1−p̃kk′ )

c0−
∑
k′ ξ

δ
kk′ r

1−δ
kk′

k′ log(1−p̃kk′ )
. We introduce

the auxiliary variables l̃k ∼ CRT(lk·, γ0/K) and re-express
the bivariate distribution over lk· and l̃k as

lk· ∼ SumLog(l̃k, p̂k),

l̃k ∼ Po
[
− γ0
K

log(1− p̂k)
]
. (14)

Using Eq. (14), we can then sample γ0 via the gamma-
Poisson conjugacy as

(γ0 | −) ∼ Gam
[
1 +

∑
k

l̃k,
1

1− 1
K

∑
k log(1− p̂k)

]
.

(15)

Sampling latent memberships φ(t)nk. Since the latent mem-
berships φ(t)nk evolve over time according to our Markovian
construction, the backward and forward information need to
be incorporated into the updates of φ(t)nk. We start from time
slice t = T ,

x
(T )
nk·· ∼ Po(φ

(T )
nk ω

(T )
nk ), φ

(T )
nk ∼ Gam(φ

(T−1)
nk /τ, 1/τ),

where

x
(t)
nk·· ≡

∑
m 6=n,k′

x
(t)
mkk′n, ω

(t)
nk ≡

∑
m 6=n,k′

φ
(t)
mk′λkk′ .

Via the gamma-Poisson conjugacy, we have

(φ
(T )
nk | −) ∼ Gam

[
φ
(T−1)
nk /τ + x

(T )
nk··, 1/(τ + ω

(T )
nk )

]
.

(16)

Marginalizing out φ(T )
nk yields

x
(T )
nk·· ∼ NB(φ

(T−1)
nk /τ, %

(T )
nk ), (17)

where %(T )
nk =

ω
(T )
nk

τ+ω
(T )
nk

. According to Result 2, the NB distri-

bution can be augmented with an auxiliary variable as

y
(T )
nk ∼ CRT(x

(T )
nk··, φ

(T−1)
nk /τ). (18)

We re-express the bivariate distribution over x(T )
nk·· and y(T )

nk
as

x
(T )
nk·· ∼ SumLog(y

(T )
nk , %

(T )
nk ),

y
(T )
nk ∼ Po

[
−
φ
(T−1)
nk

τ
log(1− %(T )

nk )
]
. (19)

where

%
(t)
nk =

ω
(t)
nk −

1
τ log(1− %

(t+1)
nk )

τ + ω
(t)
nk −

1
τ log(1− %

(t+1)
nk )

. (20)

Given x(T−1)nk·· ∼ Po(φ
(T−1)
nk ω

(T−1)
nk ), via the Poisson addi-

tive property, we have

y
(T )
nk + x

(T−1)
nk·· ∼ Po

(
φ
(T−1)
nk

[
ω
(T−1)
nk − 1

τ
log(1− %(T )

nk )
])
.

(21)

Combing the likelihood in Eq. (21) with the gamma prior
placed on φ(T−1)nk , we immediately have the conditional dis-
tribution of φ(T−1)nk via the gamma-Poisson conjugacy as

(φ
(T−1)
nk |−) ∼ Gam

[
φ
(T−2)
nk /τ + y

(T )
nk + x

(T−1)
nk·· , (22)

1

τ + ω
(T−1)
nk − 1

τ log(1− %
(T )
nk )

]
.



Here, y(T )
nk can be considered as the backward information

passed from t = T to T − 1. Recursively, we augment φ(t)nk
at each time slice with an auxiliary variable y(t)nk as

y
(t+1)
nk + x

(t)
nk·· ∼ NB(φ

(t−1)
nk /τ, %

(t)
nk),

y
(t)
nk ∼ CRT(x

(t)
nk·· + y

(t+1)
nk , φ

(t−1)
nk /τ), (23)

where the NB distribution over y(t+1)
nk + x

(t)
nk·· is obtained

via the Poisson additive property and gamma-Poisson conju-
gacy with x(t)nk·· ∼ Po(φ

(t)
nkω

(t)
nk). Repeatedly using Result 2,

we have

y
(t+1)
nk + x

(t)
nk·· ∼ SumLog(y

(t)
nk , %

(t)
nk),

y
(t)
nk ∼ Po

[
−
φ
(t−1)
nk

τ
log(1− %(t)nk)

]
.

By repeatedly exploiting the Poisson additive property and
gamma-Poisson conjugacy, we obtain

(φ
(t−1)
nk | −) ∼ Gam

[
y
(t)
nk + φ

(t−2)
nk /τ + x

(t−1)
nk·· , (24)

1

τ + ω
(t−1)
nk − 1

τ log(1− %
(t)
nk)

]
.

We sample the auxiliary variables y(t)nk and update %(t)nk recur-
sively from t = T to t = 1, which can be considered as the
backward filtering step. Then, in the forward pass we sam-
ple φ(t)nk from t = 1 to t = T .
Sampling hyperparameters. Via the gamma-gamma con-
jugacy, we sample c0 and β as

(c0 | −) ∼ Gam
[
0.1 + γ0, 1/(0.1 +

∑
k

rk)
]
, (25)

(β | −) ∼ Gam
[
0.1 +

∑
k,k′

rkξ
δkk′ r

1−δkk′
k′ ,

1

0.1 +
∑

k,k′ λkk′

]
Algorithm 1 summarizes the full procedure.

Online Gibbs sampling
To make our model applicable to large-scale dynamic net-
works, we propose an online Gibbs sampling algorithm
based on the recent developed Bayesian conditional density
filtering (BCDF) (Guhaniyogi et al. 2014), which has been
adapted for Poisson tensor factorization (Hu et al. 2015) re-
cently. The main idea of BCDF is to partition the data into
small mini-batches, and then to perform inference by up-
dating the sufficient statistics using each mini-batch in each
iteration. Specifically, the sufficient statistics used in our
model are the latent count numbers. We use J and J i to
denote the indices of the entire data and the mini-batch in
i-th iteration respectively. We define the quantities updated
with the mini-batch in i-th iteration as:

x
(t)i
mk·· =

|J |
|J i|

∑
k′,n6=m,
m,n∈Ji

x
(t)
mkk′n, x

i
·kk′· =

|J |
|J i|

∑
t,m,n 6=m,
m,n∈Ji

x
(t)
mkk′n.

Algorithm 1: Batch Gibbs Sampling

input : dynamic relational data b(1), . . . ,b(T )

Initialize the maximum number of groups K,
hyperparameters β, τ, c0, g0, h0, and parameters
γ0, rk, ξ, λkk′ , φ

(t)
nk

repeat
Sample x(t)mn for non-zero links (Eq. 6)
Sample x(t)mkk′n (Eq. 7) and update
x
(·)
·kk′· =

∑
t

∑
m,n6=m x

(t)
mkk′n

x
(t)
mk·· =

∑
n 6=m,k′ x

(t)
mkk′n

Sample lkk′ (Eq. 9) and calculate the quantities:
θkk′ =

∑
t,n,m 6=n φ

(t)
nkφ

(t)
mk′ , p̃kk′ =

θkk′
θkk′+β

Sample rk (Eq. 11), ξ (Eq. 12), and λkk′ (Eq. 13)
for t = T to 1 do

Sample y(t)nk (Eq. 23) and update %(t)nk (Eq. 20)
end
for t = 0 to T do

Sample φ(t)nk (Eq. 24)
end
Sample c0, β (Eq. 25) and γ0 (Eq. 15)

until convergence
output: posterior mean φ(t)nk, rk, ξ, λkk′ , β, γ0, c0

The main procedure of our online Gibbs sampler is then as
follows. We first update the sufficient statistics used to sam-
ple model parameters as

x
(t)i
mk·· = (1− ρi)xi−1mk·· + ρi

|J |
|J i|

∑
n 6=m,
m,n∈Ji

∑
k′

x
(t)
mkk′n,

xi·kk′· = (1− ρi)xi·kk′· + ρi
|J |
|J i|

∑
t

∑
m,n 6=m,
m,n∈Ji

x
(t)
mkk′n,

where ρi = (i + i0)
−κ, where i0 > 0 and κ ∈

(1/2, 1] is the decay factor commonly used for online meth-
ods (Guhaniyogi et al. 2014). We calculate the sufficient
statistics for each mini-batch and then resample the model
parameters using the procedure in batch Gibbs sampling al-
gorithm outlined in Algorithm 1.

Experiments
We evaluate our model and its inference algorithm by
performing experiments on both synthetic and real-world
datasets. First, we generate a synthetic data with the true
underlying network structure evolving over time to test
our model on dynamic community detection. For quantitive
evaluation, we determine the model’s ability to predict held-
out missing links. Our baseline methods include DRIFT, D-
GPPF and HGP-EPM as we discussed before. For DRIFT,
we use default settings as the code released online. 1 We im-

1http://jfoulds.informationsystems.umbc.edu/code/DRIFT.tar.gz.



plemented D-GPPF by ourselves and set the hyperparam-
eters and initialize the model parameters with the values
provided in (Acharya et al. 2015). For HGP-EPM, we used
the code released for (Zhou 2015). 2 In the following, we
refer to our model as DPGM (Dynamic Poisson Gamma
Membership model). For DPGM, we set τ = 1, g0 =
0.1, h0 = 0.1 and use K = N/2, where N is the number
of nodes, for initilization. We obtain similar results when
instead setting τ = 0.1, τ = 10 in a sensitivity analysis.
For online Gibbs sampling, we set κ = 0.5, i0 = 100, and
mini-batch size |Ji| = N/4. All our experiments were per-
formed on a standard desktop with 2.7 GHz CPU and 24 GB
RAM. Following (Foulds et al. 2011; Heaukulani et al. 2013;
Kim et al. 2013), we generate a set of small-scale dynamic
networks from real-world relational data while we use held-
out relational data to evaluate our model. The following
three real-world datasets are used in our experiments, the
detail of which are summarized in Table 1.

NIPS. The dataset records the co-authorship information
among 5722 authors on publications in NIPS conferences
over the past ten years (Rosenfeld et al. 2014). We first
take the 70 authors who are most connected across all years
to evaluate all methods (NIPS 70). We also use the whole
dataset (NIPS 5K) for evaluation.

Enron. The dataset contains 136776 emails among 2359
persons over 28 months (T = 28) (Tang et al. 2008). We
generate a binary symmetric matrix for each monthly snap-
shot. The presence or absence of an email between each pair
of persons during one month is described by the binary link
at that time. We first select 61 persons by taking a 7-core of
the aggregated network for the entire time and filter out the
authors with email records less than 5 snapshots (Enron 61).
We also use the whole dataset for evaluation (Enron 2K).

DBLP. The DBLP dynamic networks dataset (Tang et al.
2008) are generated from the co-authorship recordings
among 347013 authors over 25 years, which is a subset of
data contained in the DBLP database. We first choose 7750
authors by taking a 7-core of the aggregated network for the
entire time (DBLP 7K) and subsequently filter out authors
with less than 10 years of consecutive publication activity to
generate a small dataset (DBLP 96).

The proposed method and the two baselines are applied
to all six datasets, except for DRIFT. DRIFT could not be
applied to NIPS 5K, Enron 2K and DBLP 7K due to its un-
favorable computational complexity. Most of these datasets
exhibit strong sparsity that the proposed algorithm can ex-
ploit through its Bernoulli-Poisson link function.

Table 1: Details of the dataset used in our experiments.
Datasets NIPS 70 DBLP 96 Enron 61
Nodes # 70 96 61
Time slices # 10 25 28
Non-zero links # 528 1392 1386

NIPS 5K DBLP 7K Enron 2K
Nodes # 5722 7750 2359
Time slices # 10 10 28
Non-zero links # 5514 108980 76828

2https://github.com/mingyuanzhou/EPM.

Dynamic community detection

We adapt the synthetic example used in (Acharya et al. 2015)
to generate a dynamic network of size 65 that evolve over
five time slices as shown in Fig. 2. More specifically, we
generate three groups at t = 1, and split the second group
at t = 2. From t = 3 to 4, the second and third group
merge into one group. In Fig. 2, column (b) and (d) show the
discovered latent groups over time by D-GPPF and DPGM,
respectively. D-GPPF captures the evolution of the discov-
ered groups but has difficulties to characterize the changes
of node-group memberships over time. Our model (DPGM)
can detect the dynamic groups quite distinctively. We also
show the associations of the nodes to the inferred latent
groups by D-GPPF and DPGM in column (c) and (e), re-
spectively. In particular, we calculate the association weights
of each node to the latent groups as rtkφnk for D-GPPF and
φtnkλkk for DPGM. For both models, most of the redundant
groups can effectively be shrunk even though we initialize
both algorithms with K = 50. The node-group association
weights estimated by DPGM vary smoothly over time and
capture the evolution of the node-group memberships, which
is consistent to the ground truth shown in column (a).

Missing link prediction

For the task of missing link prediction, we randomly hold
out 20% of the observed interactions (either links or non-
links) at each time as test data. The remaining data is used
for training. HGP-EPM, DRIFT and D-GPPF are considered
as the baseline methods. We train a HGP-EPM model on
the training entries for each time slice separately. For each
method, we use 2000 burn-in iterations, and collect 1000
samples of the model posterior. We estimate the posterior
mean of the link probability for each held-out edge in the test
data by averaging over the collected Gibbs samples. We then
use these link probabilities to evaluate the predictive perfor-
mance of each model by calculating the area under the curve
of the receiver operating characteristic (AUC-ROC) and of
the precision-recall (AUC-PR). Table 2 shows the average
evaluation metrics for each model over 10 runs. Overall, our
model (DPGM) shows the best performance. We observe
that both DRIFT and DPGM outperform D-GPPF because
the evolution of individual node-group memberships are ex-
plicitly captured in these two models. D-GPPF essentially
assumes that the nodes’ memberships are static over time
and thus has difficulties to fully capture the dynamics of each
node’s interactions caused by the same node’s memberships’
evolution. We see that DPGM outperforms its static counter-
part, HGP-EPM, via capturing the evolution of nodes’ mem-
berships over time. We also compare per-iteration compu-
tation time of each model (all models are implemented in
Matlab), as shown in Table 3. The computational cost of
DRIFT scales quadratically with the number of nodes. Both
D-GPPF and DPGM are much faster than DRIFT because
the former two models scale only with the number of non-
zero edges. We also report per-iteration computation time of
GPPF and DPGM with Matlab/MEX/C implementation on
medium-scale data in Table 3.



(a) (b) (c) (d) (e)
Figure 2: Dynamic community detection on synthetic data. We generate a dynamic network with five time snapshots as shown
in column (a) ordered from top to bottom. The link probabilities estimated by D-GPPF and DPGM are shown in column (b)
and (d). The association weights of each node to the latent groups can be calculated by rtkφnk for D-GPPF and φtnkλkk for
DPGM as shown in column (c) and (e), respectively. The pixel values are displayed on log10 scale.

Table 2: Missing links prediction. We highlight the performance of the best scoring model in bold.
NIPS 70 DBLP 96 Enron 61

Model AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR
HGP-EPM 0.947± 0.003 0.146± 0.030 0.936± 0.004 0.268± 0.025 0.931± 0.003 0.432± 0.016
D-GPPF 0.943± 0.009 0.072± 0.023 0.924± 0.004 0.249± 0.010 0.963± 0.002 0.649± 0.022
DRIFT 0.963± 0.002 0.148± 0.015 0.965± 0.001 0.335± 0.001 0.975± 0.006 0.736± 0.030
DPGM (batch) 0.970± 0.003 0.169± 0.028 0.967± 0.002 0.339± 0.006 0.971± 0.002 0.712± 0.004

NIPS 5K DBLP 7K Enron 2K
Model AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR
HGP-EPM 0.928± 0.010 0.121± 0.008 0.897± 0.016 0.055± 0.008 0.975± 0.003 0.324± 0.006
D-GPPF 0.928± 0.006 0.119± 0.006 0.858± 0.002 0.054± 0.003 0.976± 0.001 0.305± 0.003
DPGM (batch) 0.930± 0.002 0.129± 0.004 0.923± 0.011 0.057± 0.001 0.983± 0.001 0.398± 0.006
DPGM (online) 0.929± 0.002 0.104± 0.005 0.911± 0.001 0.051± 0.003 0.976± 0.001 0.346± 0.005

Table 3: Comparison of per-iteration computation time (seconds).
NIPS 70 DBLP 96 Enron 61 NIPS 5K DBLP 7K Enron 2K

D-GPPF 0.0388 0.1350 0.2161 D-GPPF 7.6440 7.9160 7.8227
DRIFT 11.7047 42.1853 24.7505 DPGM (batch) 10.6240 15.6576 15.8584
DPGM (batch) 0.1283 0.6302 0.7364 DPGM (online) 8.9501 10.8152 10.4521

Conclusion
We have presented a probabilistic model for learning from
dynamic relational data. The evolution of the underlying
structure is characterized by the Markovian construction of
latent memberships. We also proposed efficient batch and
online Gibbs algorithms that make use of the data augmen-
tation technique. Experimental results on synthetic and real
datasets illustrate our model’s interpretable latent represen-
tations and competitive performance. Our model is dedi-
cated to dynamic networks modeling but can be considered
for other related problems such as dynamic multi-relational

graph model (Tay et al. 2017; Trivedi et al. 2017). Another
interesting direction is to scale up the model inference algo-
rithm via stochastic gradient variational Bayes (Kingma and
Welling 2014; Knowles 2015).
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