
Citation File Format - Core Module (CFF-Core)

1.0.3-2

Stephan Druskat (mail@sdruskat.net) Robert Haines (robert.haines@manchester.ac.uk)
James Baker (james.baker@sussex.ac.uk)

7 May 2018

Abstract
The Citation File Format (CFF) is a human- and machine-readable format for CITATION files. These files

provide citation metadata for (research and scientific) software. The format aims to support citation-specific use
cases for software citation described in [1]. CFF is serialized in YAML 1.2, and is therefore Unicode-based and
cross-language. This specification, together with the Unicode standard for characters, aims to provide all the
information necessary to understand CFF, and to use (i.e., write) and re-use (i.e., read, validate, convert from)
it. These specifications are maintained openly at https://github.com/citation-file-format/citation-file-format.
CFF is a source format for CodeMeta JSON files.

Contents
Introduction 2

Status of this document . 2
Rationale . 3
Status of the format . 3
Goals . 3
Concepts . 4

Format 4
Formatting . 4
File structure . 4

cff-version (required) . 5
message (required) . 5
Software citation metadata (required) . 5
references (optional) . 6

Reference keys . 7
Notable reference keys . 9
Exemplary uses . 10

Reference types . 12

Objects 13
Entity objects . 13

Exemplary uses . 13
Person objects . 14

Exemplary uses . 14

Specified value strings 15
Status strings . 15
License strings . 15
Language strings . 16

Schema 16

1

http://yaml.org
http://yaml.org/spec/1.2/spec.html
https://github.com/citation-file-format/citation-file-format
https://codemeta.github.io/
https://github.com/codemeta/codemeta/blob/master/codemeta.json

Examples 16
Software examples . 16

Software with a DOI . 16
Software without a DOI . 17
Source code without a DOI . 18
A software container . 18
An executable . 18
Software with a further reference . 18
Some references examples . 19

art . 19
article . 20
blog . 20
book . 21
conference-paper . 21
edited-work . 22
report . 22
thesis . 23

Infrastructure 23

Contributions 23

License 23

References 24

Introduction

Status of this document

This document reflects version 1.0.3 of the Citation File Format (CFF)’s Core branch (cf. Status of the format).
CFF has been developed in the context of the Workshop on Sustainable Software for Science: Practice and Expe-
riences (WSSSPE5.1), which was held on 6 September 2017 in Manchester, UK. More specifically, the constraints
for CFF have been developed in the discussion and speed blogging group “Development and implementation of a
standard format for CITATION files”, whose members were Stephan Druskat (Humboldt-Universität zu Berlin, Ger-
many), Neil Chue Hong (Software Sustainability Institute, University of Edinburgh, UK), Raniere Silva (Software
Sustainability Institute, University of Manchester, UK), Radovan Bast (University of Tromsø, Norway), Andrew
Rowley (University of Manchester, UK), and Alexander Konovalov (University of St. Andrews, UK).

This version is based partly on the changes introduced during the FORCE2017 hackathon of the FORCE11 Software
Citation Implementation Working Group in order to make CFF crosswalkable in CodeMeta. It mainly introduces
format modularization, and the final specification of CFF-Core as the module for providing citation metadata.

Future versions will additionally introduce at least a metadata module to capture the maximum amount of metadata
that can be represented in a CodeMeta JSON file.

CFF Version 1.0.3 has been developed by Stephan Druskat with contributions from the following.

• Morane Gruenpeter (@moranegg) helped prepare CFF 1.0-RC1 for the CodeMeta crosswalk, and tested the
crosswalk.

• Neil Chue Hong (@npch) consulted and helped prepare CFF 1.0-RC1 for the CodeMeta crosswalk.
• Robert Haines (@hainesr) has improved the 1.0.3 format specifications (Pull Requests #1, #2).
• James Baker (@drjwbaker) has improved the 1.0.3 format specifications (Pull Request #6).

Reporters

• Radovan Bast (@bast)
• Raniere Silva (@rgaiacs)

2

http://wssspe.researchcomputing.org.uk/wssspe5-1/
http://wssspe.researchcomputing.org.uk/wssspe5-1/
https://www.force2017.org/
https://github.com/force11/force11-sciwg
https://github.com/force11/force11-sciwg
https://github.com/codemeta/codemeta
https://github.com/sdruskat
https://github.com/moranegg
https://github.com/npch
https://github.com/hainesr
https://github.com/citation-file-format/citation-file-format.github.io/pull/1
https://github.com/citation-file-format/citation-file-format.github.io/pull/2
https://github.com/drjwbaker
https://github.com/citation-file-format/citation-file-format.github.io/pull/6
https://github.com/bast
https://github.com/rgaiacs

• Michael R. Crusoe (@mr-c)

CFF has been developed to provide a format for CITATION files which could be recommended to readers of the blog
post which has been produced by the group during the workshop and shortly after, and which will be published on
the blog page of the Software Sustainability Institute.

Rationale

The rationale for a standardized, machine- and human-readable format for CITATION files is discussed in more detail
in [2]. CFF has been developed to support all citation-specific use cases for the citation of software, as discussed in
[1], and thus promote attribution and credit for software in general, and research software in particular.

In a blog post [3], Robin Wilson has introduced CITATION files as a means to make citation information for software
easily accessible. This accessibility is important, because in order to receive deserved credit for research software
in the academic system - where credit is still mainly measured based on citations -, the citation information for
software must be made visible; Authors will only cite software if the citation information is readily available, as
there is no standard, easily deducible way (yet) to cite software, such as there is for journals for example.

Some have followed the advice, and have uploaded CITATION (or CITATION.md, or CITATION.txt) files to the root of
the source code repository holding their software. While this practice has made for a good start, free form CITATION
files are not machine-readable, and machine- readability is a precondition for re-use of the citation information in
different contexts which could further support a fair distribution of credit for research software.

Status of the format

CFF-Core has been branched out to address issue citation-file-format/citation-file-format#23. While an ideal
format for software citation would arguably implement transitive credit [4], there is no concrete implementation yet
that is available for practical use by software creators. The most concrete suggestion for an implementation is [5],
the application of which, however, seems impractical from a usability point of view in terms of human-writability.
Especially regarding the current state of the practice of providing citation metadata for software [6], it seems that
at this point in time, a lower-threshold approach - in terms of technical complexity - could potentially drive higher
participation in the provision of software citation metadata.

On the other end of the complexity spectrum, free form CITATION files as suggested by Robin Wilson [3] provide an
easy-to-access way of providing citation metadata for software. However, as these files are not reliably formatted, and
thus not machine-readable, their potential for re-use is rather low. Re-use of software citation metadata, however,
is a key factor in the promotion of software citation along the software citation principles [1], and ultimately the
fair distribution of credit for software in science.

CFF aims to provide a compromise between the ideal state of software citation, i.e., transitive credit, and the state
of the practice, i.e., free form CITATION files.

CFF-Core, in this context, provides an implementation for basic software citation metadata, so that creators of
research software can supply relevant metadata for citation easily. CFF-Core aims at covering use cases 1 (Use
software for a paper), 2 (Use software in/with new software), and 15 (Store software entry) as defined in the software
citation principles paper [1].

CFF-Core can be used as a human-writable source and input format for CodeMeta JSON, which is emerging as the
standard format for software metadata.

Further development of CFF will include a CFF-Meta module which will provide a set of keys to provide more
general metadata for research software. CFF-Meta will implement the complete set of CodeMeta keys, and will be
usable as an extension to CFF-Core. For more information, see ‘Infrastructure’.

Goals

The goal of CFF is to provide an all-purpose citation format (similar to BibTeX or RIS), and specifically provide
optimized means of citation for software via the provision of software-specific reference keys and types, e.g., a

3

https://github.com/mr-c
https://www.software.ac.uk/blog
https://www.software.ac.uk/
https://github.com/citation-file-format/citation-file-format/issues/23
https://github.com/codemeta/codemeta
https://github.com/codemeta/codemeta

dedicated type for source code and one for executables, and a reference key for versions, cf. Reference types.

The ultimate goal of CFF as a project is comprehensive uptake and re-use of the format by Research Software
Engineers and software developers as well as by vendors and services, such as software repositories, reference
managers, etc., in order to boost the visibility of citation information for research software, and empower the fair
distribution of credit for software development, maintenance, etc., in academia. This can partly be achieved through
CFF’s compatibility with CodeMeta.

Concepts

For users of other reference formats, such as BibTeX or RIS, it is important to note that in CFF, all available
keys can be used for all reference types. For now, CFF leaves reasonability of use with format users and providers
of tooling, such as conversion software for CFF and other formats. In other words, the use of keys should follow
common sense. If not, it will confuse the user of the CITATION file, and some of the information will probably be
lost in re-use scenarios such as conversion or display. If you feel that CFF does not offer a solution for your specific
use case, please consider contributing to the format as described in section Contributions.

Furthermore please note that if a section of a work is referenced, this is not supported by a dedicated reference
type. Instead, the section key should be used within a specific “parent” (i.e., book for a section of a book, etc.).

Format

CFF CITATION files must be named CITATION.cff.

CFF is implemented in YAML 1.2, as the language provides optimal human- readability and the required core data
types. For details, see the YAML 1.2 Specifications [7].

Formatting

CFF follows the formatting rules of YAML 1.2, of which one of the most important ones is that the colon (:) after
a key should always be followed by a whitespace.

Structure is determined by indentation, i.e., lines containing nested elements must be indented by at least one
whitespace character, although using at least two whitespaces as a standard for indentation preserves readability.

Value strings can (and sometimes should) be double-quoted, e.g. "string", especially when they contain YAML
special characters, or special characters in general. These include:

: { } [] , & * # ? | - < > = ! % @ \

File structure

CITATION.cff files represent YAML 1.2 dictionaries (“maps”) with the keys listed in the table below. Note that
the order of the keys is arbitrary, and that most YAML linters will re-order the keys alphabetically.

The primary keys are used to specify

• the version of CFF in use (cff-version);
• a message which should be conveyed to the user of the software, along the lines of “If you use this software,

please cite it as follows” (message);
• the citation metadata for the software version itself, according to [1], i.e., metadata that can be picked up in

a CodeMeta JSON file;
• optionally, a list of references which should be cited in different use cases or scopes, e.g., a software paper

describing the abstract concepts of the software (references).

4

https://github.com/codemeta/codemeta
https://en.wikipedia.org/wiki/Lint_(software)

cff-version (required)

cff-version must specify the exact version of the Citation File Format that is used for the file.

cff-version: 1.0.3

message (required)

message must specify instructions to users on how to cite the software the CITATION.cff file is associated with.

message: "Please cite the following works when using this software."

Software citation metadata (required)

The primary citation metadata provided to users that wish to cite the software version which the CFF file is for. This
metadata can be provided via a subset of the keys from the table below. The keys follow the basic requirements
for software citation metadata for the three basic use cases, as detailed in [1, p. 31] and reproduced below for
convenience.

Table 1: Basic requirements for citation use cases, reproduced from
[1, p. 31]. Bullet points (•) indicate that the use case depends on
that metadata, plus signs (+) indicate that the use case would
benefit from that metadata if available.

Use case:
Use software for

a paper

Use software
in/with new

software
Store software

entry
Unique identifier • • •
Software name • • •
Author(s) • • •
Version number • • •
Release date • • •
Location/repository • • •
Software license + +
Description + + +
Keywords +

Provision of the metadata should follow the best practices detailed in [1], i.e.:

• Give credit where credit is due: Make sure that you include every person in the authors list who deserves to
be listed as an author. This may include people that have not contributed lines of code, but have contributed
as testers, designers, reporters, managers, etc.

• Provide a unique identifier: Publish your software version via services that provide it with a DOI, e.g.,
Zenodo or figshare. This also ensures accessibility of the software, as in these cases the unique identifier
points to a landing page rather than an actual software product.

• Be specific by providing a version number, and citation metadata pertaining to that version. If possible,
let your unique identifier point to a software version rather than the “software as such” (all versions of the
software). If you want to provide the user with the possibility to cite the software as such in addition to a
specific version, create a reference to the software landing page, a software paper, or similar in the CFF file. If,
for some reason, you cannot provide a DOI for your software version, provide the version number or a commit
reference (e.g., a Git hash or a Subversion revision number), and a URL to the source code or build artifact
repository. If your software is closed source and you cannot provide a DOI, provide the version number or
other version identifier, contact details, and a URL which points to the software landing page, homepage, or
similar.

Finally, following the software citation principle of Persistence, make sure that the citation metadata persists, even

5

https://zenodo.org/
https://figshare.com/

when the software’s lifespan is over.

CFF-Core provides the following keys for software citation metadata.

Table 2: CFF-Core keys and accepted data types for the provision
of citation metadata.

CFF key required CFF data type Description
abstract String A description of the software

(version)
authors • Collection of entity or person

objects
The author(s) of the software

commit String The commit hash or revision
number of the software version

contact Collection of entity or person
objects

The contact person, group, company,
etc. for the software version

date-released • Date The release date of the software
version

doi String The DOI of the work (not the
resolver URL, i.e.,
10.5281/zenodo.1003150, not
http://doi.org/10.5281/zenodo.1003150)

keywords Collection of strings Keywords pertaining to the software
version

license SPDX License List Identifier
string

The license the software version is
licensed under

license-url String (URL) The URL of the license text under
which the software version is
licensed (only for non-standard
licenses not included in the SPDX
License List)

repository String (URL) The URL to the software version in
a repository (when the repository is
neither a source code repository or a
build artifact repository)

repository-code String (URL) The URL to the software version in
a source code repository

repository-artifact String (URL) The URL to the software version in
a build artifact/binary/release
repository

title • String The name of the software (may
include a specific name for the
software version)

url String (URL) The URL to a landing page/website
for the software version

version • String The version of the software

references (optional)

Provides an optional list of references pertaining to the software version, or the software itself, e.g., a software paper
describing the abstract concepts of the software, a paper describing an algorithm that has been implemented in the
software version, etc.

A reference item, i.e., an item in the list under references, must at least specify values for the following mandatory
keys: type, authors, title.

6

https://spdx.org/
https://spdx.org/licenses/
https://spdx.org/licenses/
https://spdx.org/licenses/

type must specify the type of the referenced work. For a list of available values, cf. reference types.

authors must specify a list of entity or person objects.

title must specify the title of the referenced work.

Example:

cff-version: 1.0.3
message: "Please cite the following works when using this software."
...
references:

- type: book
authors:

- ...
title: The science of citation

- type: software
authors:

- ...
title: Software Citation Tool

Additionally, it can contain any further reference keys. In version 1.0.3, CFF does not specify a strict schema
where specific reference types can only contain specific reference keys, although this may be implemented in future
versions.

Reference keys

CFF-Core defines the following reference keys.

Table 3: Complete list of CFF-Core reference keys.

CFF Key CFF Data Type Description
abbreviation String The abbreviation of the work
abstract String The abstract of a work
authors Collection of entity or person

objects
The author of a work

collection-doi String The DOI of a collection conttaining the
work

collection-title String The title of a collection or proceedings
collection-type String The type of a collection
commit String The (e.g., Git) commit hash or (e.g.,

Subversion) revision number of the work
conference Entity object The conference where the work was

presented
contact Collection of entity or person

objects
The contact person, group, company, etc.
for a work

copyright String The copyright information pertaining to
the work

data-type String The data type of a data set
database String The name of the database where a work

was accessed/is stored
database-provider Entity object The provider of the database where a

work was accessed/is stored
date-accessed Date The date the work has been last accessed
date-downloaded Date The date the work has been downloaded
date-published Date The date the work has been published
date-released Date The date the work has been released

7

CFF Key CFF Data Type Description
department String The department where a work has been

produced
doi String The DOI of the work
edition String The edition of the work
editors Collection of entity or person

objects
The editors of a work

editors-series Collection of entity or person
objects

The editors of a series in which a work
has been published

end Integer The end page of the work
entry String An entry in the collection that constitutes

the work
filename String The name of the electronic file containing

the work
format String The format in which a work is represented
institution Entity object The institution where a work has been

produced or published
isbn String The ISBN of the work
issn String The ISSN of the work
issue Integer The issue of a periodical in which a work

appeared
issue-date String The publication date of the issue of a

periodical in which a work appeared - see
note below

issue-title String The name of the issue of a periodical in
which the work appeared

journal String The name of the
journal/magazine/newspaper/periodical
where the work was published

keywords Collection of strings Keywords pertaining to the work
languages Collection of ISO 639 language

strings
The language of the work

license License string The license under which a work is licensed
license-url String (URL) The URL of the license text under which

a work is licensed
location Entity object The location of the work
loc-start Integer The line of code in the file where the work

starts
loc-end Integer The line of code in the file where the work

ends
medium String The medium of the work
month Integer The month in which a work has been

published
nihmsid String The NIHMSID of a work
notes String Notes pertaining to the work
number String The accession number for a work
number-volumes Integer The number of volumes making up the

collection in which the work has been
published

pages Integer The number of pages of the work
patent-states Collection of strings The states for which a patent is granted
pmcid String The PMCID of a work
publisher Entity object The publisher who has published the work
recipients Collection of entity or person

objects
The recipient of a personal communication

repository String (URL) The repository where the work is stored

8

CFF Key CFF Data Type Description
repository-code String (URL) The version control system where the

source code of the work is stored
repository-artifact String (URL) The repository where the

(executable/binary) artifact of the work is
stored

scope String The scope of the reference, e.g., the
section of the work it adheres to

section String The section of a work that is referenced
senders Collection of entity or person

objects
The sender of a personal communication

status Status string The publication status of the work
start Integer The start page of the work
thesis-type String The type of the thesis that is the work
title String The title of the work
translators Collection of entity or person

objects
The translator of a work

type Reference types string The type of the work
url String (URL) The URL of the work
version String The version of the work
volume Integer The volume of the periodical in which a

work appeared
volume-title String The title of the volume in which the work

appeared
year Integer The year in which a work has been

published
year-original Integer The year of the original publication

Notable reference keys

conference, database‑provider, institution, publisher

These keys take an entity object as value. Entity objects reference named entities and provide a fixed set of keys,
such as name and contact information.

Example:

references:
- type: book
publisher:

- name: PeerJ
city: London
country: GB
website: https://peerj.com/

authors, contact, editors, editors-series, recipients, senders, translators

These keys take a collection of entity objects or person objects as value. Person objects provide a fixed set of keys
to reference individuals, including a detailed set for specifiying personal names, an affiliation, etc.

Example:

references:
- type: software
authors:

- family-names: Druskat
given-names: Stephan
orcid: https://orcid.org/0000-0003-4925-7248

9

affiliation: "Humboldt-Universität zu Berlin"
email: "mail@sdruskat.net"
website: http://sdruskat.net

- family-names: Beethoven
name-particle: van
given-names: Ludwig

- family-names: Fernández de Córdoba
given-names: Gonzalo
name-suffix: Jr.

...

type, languages, status

These keys only take values from a defined set, cf. the respective sections:

• Reference types
• Language strings
• Status strings

license‑url, repository, repository-code, repository-artifact, url

These keys take URL strings as values. URLs will be validated by a regular expression, such as the one provided
in a GitHub Gist by Diego Perini.

keywords

This key takes a collection of strings.

Example:

references:
- type: software
keywords:

- linguistics
- "multi-layer annotation"
- web service

...

scope

A reference item can specify a more detailed scope for the reference, via the reference key scope. This key can be
useful if certain references should only be cited under specific circumstances, e.g., only when a specific package of
the software is used. In such a case, the package would ideally have its own CFF file, but if this is not possible for
whatever reason, the scope key may come in handy.

For a discussion of this key, cf. issue citation-file-format/citation-file-format#15.

Example:

references:
- scope: "Cite this paper when you run software X with flag --xy"
type: article
...

issue-date

Specify the date of release of an issue. This key has been left as a plain string, rather than a formal date type, to
allow for text values such as “November-December 2018”.

For a discussion of this key, cf. issue citation-file-format/citation-file-format#48.

Exemplary uses

This section details exemplary use cases for some of the keys to avoid ambiguity/misuse.

10

https://gist.github.com/dperini/729294
https://github.com/citation-file-format/citation-file-format/issues/15
https://github.com/citation-file-format/citation-file-format/issues/48

abstract

• If the work is a journal paper or other academic work: The abstract of the work.
• If the work is a film, broadcast or similar: The synopsis of the work.

department

• If the work is a thesis: The academic department where the thesis has been produced.
• If the work is a government document: The governmental department which has issued the document.

format

• If the work is a music file: The digital format in which a musical piece is saved, e.g., MP3.
• If the work is a data set: The digital format in which the data set is saved.
• If the work is a painting: The format of the painting, e.g., the width and height of the canvas.

institution

• If the work is a report: The institution where the report has been produced.
• If the work is a case: The court where a case has been held.
• If the work is a blog post: The institution responsible for running the blog.
• If the work is a patent, legal rule or similar: The issuing institution of the patent/rule.
• If the work is a grant: The funding agency sponsoring the grant.
• If the work is a thesis: The university where a thesis has been produced.
• If the work is a statute: The institution or geographical unit which the statute adheres to.
• If the work is a conference: The organisation which held the conference.

languages

• If the work is a book: The language in which the book is written.

location

• If the work is an artwork: E.g., the museum holding the work.
• If the work is a historical work, illuminated manuscript or similar: The library or archive where the work is

held.

medium

• If the work is an artwork: The medium of the artwork, e.g., “photograph”, “painting”, “oil on canvas”, etc.
• If the work is a book or similar: Whether it is a printed book or an ebook.

month

• If the work is a conference: The month in which the conference has been held.
• If the work is a magazine article: The month in which the magazine issue containing the article has been

published.

number

• If the work is a conference paper: E.g., the submission number of the paper
• If the work is a grant: The grant number provided by the funding agency.
• If the work is a work of art: E.g., the catalogue number provided by a museum holding the artwork.
• If the work is a report: The report number of a report.
• If the work is a patent: The patent number of the work.
• If the work is a historical work, illuminated manuscript or similar: The codex or folio number of a manuscript,

or the library identifier for a manuscript.

term

• If the work is a dictionary or encyclopedia: The term in the dictionary or encyclopedia that is being referenced.

title

• If the work is a case: The name of the case (e.g., Name v. Name).

version

11

• If the work is a software: The version of the referenced software.

Reference types

Table 4: Complete list of CFF reference types.

Reference type string Description
art A work of art, e.g., a painting
article
audiovisual
bill A legal bill
blog A blog post
book A book or e-book
catalogue
conference
conference-paper
data A data set
database An aggregated or online database
dictionary
edited-work An edited work, e.g., a book
encyclopedia
film-broadcast A film or broadcast
generic The fallback type
government-document
grant A research or other grant
hearing
historical-work A historical work, e.g., a medieval manuscript
legal-case
legal-rule
magazine-article
manual A manual
map A geographical map
multimedia A multimedia file
music A music file or sheet music
newspaper-article
pamphlet
patent
personal-communication
proceedings Conference proceedings
report
serial
slides Slides, i.e., a published slide deck
software Software
software-code Software source code
software-container A software container (e.g., a docker container)
software-executable An executable software, i.e., a binary/artifact
software-virtual-machine A virtual machine/vm image
sound-recording
standard
statute
thesis An academic thesis
unpublished
video A video recording
website

12

Objects

Entity objects

Entity objects can represent different types of entities, e.g., a publishing company, or conference. In CFF, they are
realized as collections with a defined set of keys. Only the key name is mandatory.

Table 5: Complete list of keys for entity objects.

Entity key Entity Data Type optional
name String
address String •
city String •
region String •
post-code String •
country String •
orcid String (ORCID URL) •
email String •
tel String •
fax String •
website String (URL) •
date-start Date •
date-end Date •
location String •

Exemplary uses

address

• To be used for street names and house numbers, etc.

region

• To be used for, e.g., states (as in US states or German federal states).

post-code

• The post code or zip code of an address.

country

• The ISO 3166-1 alpha-2 country code for a country. A list of ISO 3166-1 alpha-2 codes can be found at
Wikipedia:ISO 3166-1.

Example:

references:
- type: book
publisher:

- name: PeerJ
city: London
country: GB

date-start and date-end

• The start and end date of, e.g., a conference. This must be formatted according to ISO 8601, e.g., YYYY-MM-DD,
or 2017-10-04T16:20:57+00:00.

orcid

13

https://en.wikipedia.org/wiki/ISO_3166-1
https://en.wikipedia.org/wiki/ISO_8601

The ORCID iD is expressed as an https URI, i.e. the 16-digit identifier is preceded by “https://orcid.org/”.
A hyphen is inserted every 4 digits of the identifier to aid readability. (https://support.orcid.org/
knowledgebase/articles/116780-structure-of-the-orcid-identifier, section “Expressing the ORCID iD”)

Example:

orcid: https://orcid.org/0000-0001-2345-6789

Person objects

A person object represents a person. In CFF, person objects are realized as collections with a defined set of keys,
of which only family-names and given-names are mandatory.

Table 6: Complete list of keys for person objects.

Entity key Entity Data Type optional
family-names String
given-names String
name-particle String •
name-suffix String •
affiliation String •
address String •
city String •
region String •
post-code String •
country String •
orcid String (ORCID URL) •
email String •
tel String •
fax String •
website String (URL) •

Exemplary uses

Name keys

CFF aims to implement a culturally neutral model for personal names, according to the suggestions on splitting
personal names by the W3C and the implementation of personal name splitting in BibTeX [8].

To this end, CFF provides four generic keys to specify personal names:

1. Values for family-names specify family names, including combinations of given and patronymic forms, such as
Guðmundsdóttir or bin Osman; double names with or without hyphen, such as Leutheusser-Schnarrenberger
or Sánchez Vicario. It can potentially also specify names that include prepositions or (nobiliary) particles,
especially if they occur in between family names such as in Spanish- or Portuguese-origin names, such as
Fernández de Córdoba.

2. Values for given-names specify given and any other names.
3. Values for name-particle specify nobiliary particles and prepositions, such as in Ludwig van Beethoven or

Rafael van der Vaart.
4. Values for name-suffix specify suffixes such as Jr. or III (as in Frank Edwin Wright III).

Note that these keys may still not be optimal for, e.g., Icelandic names which do not have the concept of family names,
or Chinese generation names, but the alternative is highly localized customization, which would be counterintuitive
as to CFF’s goal to be easily accessible. Thus, it is ultimately the task of CFF file authors to find the optimal name
split in any given case.

affiliation

14

https://support.orcid.org/knowledgebase/articles/116780-structure-of-the-orcid-identifier
https://support.orcid.org/knowledgebase/articles/116780-structure-of-the-orcid-identifier
https://www.w3.org/International/questions/qa-personal-names
https://www.w3.org/International/questions/qa-personal-names
https://en.wikipedia.org/wiki/Tr%C3%A9_Cool

• To specify the affiliation of a person, e.g., a university, research centre, etc.

Address keys

• Cf. Entity objects for details.

orcid

• Cf. Entity objects for details.

Specified value strings

The keys status, license, and languages can only take values from a fixed set of strings. These are specified
below.

Status strings

Works can have a different status of publication, e.g., journal papers. CFF specifies the following value strings for
the key status.

Table 7: Defined statuses for works.

Status (String) Description
in-preparation A work in preparation, e.g., a manuscript (covers drafts)
abstract The abstract of a work
submitted A work that has been submitted for publication
in-press A work that has been accepted for publication but has not yet been published
advance-online A work that has been published online in advance of publication in the target

medium
preprint A work that has been published as a preprint before peer review

For a work that is complete and has been published, leave status unset.

License strings

License strings must conform with the SPDX Licenses list, i.e., a license must be specified via the short identifier
from the list. If a license is not included in the SPDX Licenses list, the license-url should be provided as a
fallback.

Example:

references:
- type: software
authors:

- ...
title: My Research Tool
license: Apache-2.0

- type: software
authors:

- ...
title: Obscure Research Tool
license-url: http://r3s34archs0ft.com/eula

15

https://spdx.org/licenses/

Language strings

Natural languages as a value for the key languages are specified via their respective 3-character ISO 639-3 code. A
list of ISO 639-3 codes in maintained at Wikipedia:List of ISO 639-3 codes. Alternatively, a language’s 2-character
ISO 639-1 code may be used. A list of ISO 639-1 codes is maintained at Wikipedia:List of ISO 639-1 codes.

Example for a work in both English and Daakaka:

references:
- type: book
...
languages:

- en
- bpa

Schema

CFF CITATION.cff files can be validated against a schema which is available at https://github.com/citation-file-
format/schema.

Examples

All of the following examples are minimal working examples, so they can be copied and pasted into a CITATION.cff
file and will validate against the CFF schema.

Software examples

The main focus of CFF-Core is to comprehensively cover the provision of citation metadata for software. To this
end, use of CFF-Core should - wherever possible - be based on the Software Citation Principles [1]. Scenarios for
software citation are listed below. These are not intended to be comphrensive, but rather to represent both typical
and edge cases for software citation.

Software with a DOI

Note that [1, p. 12] recommend

[…] the use of DOIs as the unique identifier due to their common usage and acceptance, particularly as
they are the standard for other digital products such as publications.

Furthermore, DOIs should point to a “unique, specific software version” [1, p. 12]. Also it is recommended [1, p.
13] that:

the [DOI] should resolve to a persistent landing page that contains metadata and a link to the software
itself, rather than directly to the source code files, repository, or executable.

Therefore, a minimal CITATION.cff file in such a case would look similar to the following.

cff-version: 1.0.3
message: If you use this software, please cite it as below.
authors:

- family-names: Druskat
given-names: Stephan
orcid: https://orcid.org/0000-0003-4925-7248

title: My Research Tool
version: 1.0.4

16

https://en.wikipedia.org/wiki/ISO_639-3
https://en.wikipedia.org/wiki/List_of_ISO_639-3_codes
https://en.wikipedia.org/wiki/ISO_639-1
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://github.com/citation-file-format/schema
https://github.com/citation-file-format/schema

doi: 10.5281/zenodo.1234
date-released: 2017-12-18

A more comprehensive version could look similar to the following.

cff-version: 1.0.3
message: If you use this software, please cite it as below.
authors:

- family-names: Druskat
given-names: Stephan
orcid: https://orcid.org/0000-0003-4925-7248
affiliation: "Humboldt-Universität zu Berlin, Dept. of German Studies and Linguistics"
email: mail@sdruskat.net
website: https://hu.berlin/sdruskat

title: My Research Tool
version: 1.0.4
doi: 10.5281/zenodo.1234
date-released: 2017-12-18
repository-code: https://github.com/sdruskat/my-research-tool
repository-artifact: https://hu.berlin/nexus/mrt
keywords:

- "McAuthor's algorithm"
- linguistics
- nlp
- parser
- deep convolutional neural network

license: Apache-2.0
url: https://sdruskat.github.io/my-research-tool

Software without a DOI

For software without a DOI, it is recommended that “the metadata should still provide information on how to
access the specific software, but this may be a company’s product number or a link to a website that allows the
software be purchased.” [1, p. 13]. Furthermore, “if the version number and release date are not available, the
download date can be used. Similarly, the contact name/email is an alternative to the location/repository.” [1, p.
7]

Hence, for a closed source software without a DOI for which the version number and release date cannot be
determined, a CITATION.cff file could look like this.

cff-version: 1.0.3
message:
If you dare use this commercial, closed-source, strangely versioned
software in your research, please at least cite it as below.

authors:
- family-names: Vader
name-suffix: né Skywalker
given-names: 'Anakin "Darth"'

title: Opaquity
version: opq-1234-XZVF-ACME-RLY
date-released: 2017-02-28
url: http://www.opaquity.com
contact:

- name: Dark Side Software
address: DS-1 Orbital Battle Station, near Scarif
email: father@imperial-empire.com
tel: +850 (0)123-45-666

17

Source code without a DOI

We recognize that there are certain situations where it may not be possible to follow the recommended best-practice.
For example, if (1) the software authors did not register a DOI and/or release a specific version, or (2) the version
of the software used does not match what is available to cite. In those cases, falling back on a combination of the
repository URL and version number/commit hash would be an appropriate way to cite the software used. [1, p. 12]

cff-version: 1.0.3
message: "If you use this MRT alpha snapshot version, please cite."
authors:

- family-names: Druskat
given-names: Stephan
orcid: https://orcid.org/0000-0003-4925-7248

title: My Research Tool Prototype
version: 0.0.1-alpha1-build1507284872
date-released: 2017-12-18
repository-code: https://github.com/doe/mrt
commit: 160d54f9e935c914df38c1ffda752112b5c979a8

A software container

cff-version: 1.0.3
message: "If you use the MRT Docker container, please cite the following."
authors:

- name: "Humboldt-Universität zu Berlin"
website: https://www.linguistik.hu-berlin.de/

- family-names: Doe
given-names: Jane

title: mrt-iain-m-banks
version: 1.0.4 (Iain M. Banks)
url: https://github.com/doe/docker-brew-mrt-core/blob/160d54f9e935/iain/Dockerfile
repository: https://hub.docker.hu-berlin.de/_/mrt-iain-m-banks/
date-released: 2017-12-18

An executable

cff-version: 1.0.3
message: "If you use MRT, please cite the following."
authors:

- family-names: Druskat
given-names: Stephan
orcid: https://orcid.org/0000-0003-4925-7248

title: My Research Tool Kickstarter
version: 2.0.4
date-released: 2017-12-18
repository-artifact: https://hu.berlin/nexus/mrt-kickstarter/2.0.4/mrt2-kickstarter.exe

Software with a further reference

Where authors wish to encourage citation of an outline paper with citation of their software, we recommend the
use of reference keys to highlight the existence of further references.

cff-version: 1.0.3
message: If you use My Research Tool, please cite both the software and the outline paper.
authors:

18

- family-names: Doe
given-names: Jane

- family-names: Bielefeld
name-particle: von
given-names: Arthur

- family-names: McAuthor
given-names: Juniper
name-suffix: Jr.

title: My Research Tool
version: 1.0.4
doi: 10.5281/zenodo.1234
date-released: 2017-12-18
references:

- type: article
scope: Cite this paper if you want to reference the general concepts of MRT.
authors:

- family-names: Doe
given-names: Jane

- family-names: Bielefeld
name-particle: von
given-names: Arthur

title: "My Research Tool: A 100% accuracy syntax parser for all languages"
year: 2099
journal: Journal of Hard Science Fiction
volume: 42
issue: "13"
doi: 10.9999/hardscifi-lang.42132

Some references examples

art

cff-version: 1.0.3
message: "If you use this software, please cite the following."
authors:

- family-names: Druskat
given-names: Stephan
orcid: https://orcid.org/0000-0003-4925-7248

title: My Research Tool
version: 1.0.4
doi: 10.5281/zenodo.1234
date-released: 2017-12-18
references:

- type: art
authors:

- family-names: Picasso
given-names: Pablo

title: Guernica
year: 1937
medium: Oil on canvas
format: 349.3cm x 776.6cm
location:
name: Museo Reina Sofia
city: Madrid
country: ES

19

article

cff-version: 1.0.3
message: If you use this software, please cite it as below.
authors:

- family-names: Druskat
given-names: Stephan
orcid: https://orcid.org/0000-0003-4925-7248

title: My Research Tool
version: 1.0.4
doi: 10.5281/zenodo.1234
date-released: 2017-12-18
references:

- type: article
authors:

- family-names: Smith
given-names: Arfon M.

- family-names: Katz
given-names: Daniel S.
affiliation: "National Center for Supercomputing Applications &
Electrical and Computer Engineering Department & School of Information
Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois,
United States"
orcid: https://orcid.org/0000-0001-5934-7525

- family-names: Niemeyer
given-names: Kyle E.

- name: "FORCE11 Software Citation Working Group"
website: https://www.force11.org/group/software-citation-working-group

title: "Software citation principles"
year: 2016
journal: PeerJ Computer Science
volume: 2
issue: e86
doi: 10.7717/peerj-cs.86
url: https://doi.org/10.7717/peerj-cs.86

blog

cff-version: 1.0.3
message: If you use this software, please cite the software itself and the blog post.
authors:

- family-names: Druskat
given-names: Stephan
orcid: https://orcid.org/0000-0003-4925-7248

title: My Research Tool
version: 1.0.4
doi: 10.5281/zenodo.1234
date-released: 2017-12-18
references:

- type: blog
authors:

- family-names: Doe
given-names: Jane

title: "Implement a 100% accuracy syntax parser for all languages? No probs!"
date-published: 2017-09-23
url: https://hu-berlin.de/blogs/jdoe/2017/09/23/if-only
institution:

20

name: "Humboldt-Universität zu Berlin"
city: Berlin
country: DE

book

cff-version: 1.0.3
message: "If you use MRT for your research, please cite the following book."
authors:

- family-names: Druskat
given-names: Stephan
orcid: https://orcid.org/0000-0003-4925-7248

title: My Research Tool
version: 1.0.4
doi: 10.5281/zenodo.1234
date-released: 2017-12-18
references:

- type: book
authors:

- family-names: Doe
given-names: Jane

title: "The future of syntax parsing"
year: 2017
publisher:
name: Far Out Publications
city: Bielefeld

medium: print

conference-paper

cff-version: 1.0.3
message: If you use this software, please cite the software and the paper.
authors:

- family-names: Druskat
given-names: Stephan
orcid: https://orcid.org/0000-0003-4925-7248

title: My Research Tool
version: 1.0.4
doi: 10.5281/zenodo.1234
date-released: 2017-12-18
references:

- type: conference-paper
authors:

- family-names: Doe
given-names: Jane

title: "Ultimate-accuracy syntax parsing with My Research Tool"
year: 2017
collection-title: "Proceedings of the 1st Conference on Wishful Thinking"
collection-doi: 10.5281/zenodo.123456
editors:

- family-names: Kirk
given-names: James T.

conference:
name: 1st Conference on Wishful Thinking
location: Spock's Inn Hotel and Bar
address: 123 Main St

21

city: Bielefeld
region: Jarvis Island
post-code: "12345"
country: UM
date-start: 2017-04-01
date-end: 2017-04-01

start: 42
end: 45
doi: 10.5281/zenodo.1234

edited-work

Note that the editors of the edited work must be specified under the authors key. Specific citation styles may or
may not attach a suffix to the authors, such as “, eds.” or similar.

cff-version: 1.0.3
message: If you use this software, please cite it as below.
authors:

- family-names: Druskat
given-names: Stephan
orcid: https://orcid.org/0000-0003-4925-7248

title: My Research Tool
version: 1.0.4
doi: 10.5281/zenodo.1234
date-released: 2017-12-18
references:

- type: edited-work
authors:

- family-names: Doe
given-names: Jane

title: "Ultimate-accuracy parsing in practice"
year: 2017
publisher:
name: Far Out Publications
city: Bielefeld
country: DE

report

cff-version: 1.0.3
message: If you use this software, please cite it as below.
authors:

- family-names: Druskat
given-names: Stephan
orcid: https://orcid.org/0000-0003-4925-7248

title: My Research Tool
version: 1.0.4
doi: 10.5281/zenodo.1234
date-released: 2017-12-18
references:

- type: report
authors:

- name: Fictional Parsing Interest Group, ACME Inc.
title: "100% accuracy syntax parsing at ACME"
url: http://www.acme.com/sigs/fp/reports/hpsp.pdf
year: 2017
date-accessed: 2017-09-23

22

thesis

cff-version: 1.0.3
message: If you use this software, please cite it as below.
authors:

- family-names: Druskat
given-names: Stephan
orcid: https://orcid.org/0000-0003-4925-7248

title: My Research Tool
version: 1.0.4
doi: 10.5281/zenodo.1234
date-released: 2017-12-18
references:

- type: thesis
authors:

- family-names: Doe
given-names: Jane

title: "A high accuracy syntax parser in Visual Basic"
thesis-type: PhD
year: 2017
department: Dept. of Universal Language Philosophy
institution:
name: "Humboldt-Universität zu Berlin"
city: Berlin
country: DE

database: Thesiserver
date-accessed: 2017-09-23
date-published: 2017-03-21
url: http://thesiserver.hu-berlin.de/2017/march/phd/doe-12345

Infrastructure

The roadmap for CFF plans for the provision of further infrastructure (e.g., software packages and web services),
to support the following use cases for CFF:

• Creating CFF files
• Reading CFF files
• Validating CFF files
• Converting CFF files

Contributions

Contributions to the format specifications are welcome! For details on how to contribute, please refer to the GitHub
repository for CFF at https://github.com/citation-file-format/citation-file-format.

License

This document is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. The full
license text can be obtained from the URL https://creativecommons.org/licenses/by-sa/4.0/legalcode.

23

https://github.com/citation-file-format/citation-file-format
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/legalcode

References

[1] A. M. Smith, D. S. Katz, K. E. Niemeyer, and FORCE11 Software Citation Working Group, “Software citation
principles,” PeerJ Computer Science, vol. 2, p. e86, Sep. 2016 [Online]. Available: https://doi.org/10.7717/peerj-
cs.86

[2] S. Druskat, “Track 2 Lightning Talk: Should CITATION files be standardized?” in Proceedings of the Workshop
on Sustainable Software for Science: Practice and Experiences (WSSSPE5.1), 2017 [Online]. Available: https:
//doi.org/10.6084/m9.figshare.3827058

[3] R. Wilson, “Encouraging citation of software - introducing CITATION files.” 2013 [Online]. Available: https:
//www.software.ac.uk/blog/2013-09-02-encouraging-citation-software-introducing-citation-files

[4] D. S. Katz, “Transitive credit as a means to address social and technological concerns stemming from citation
and attribution of digital products,” Journal of Open Research Software, vol. 2, no. 1, p. e20, 2014.

[5] D. S. Katz and A. M. Smith, “Implementing transitive credit with JSON-LD,” Journal of Open Research Software,
vol. 3, no. e7, 2015 [Online]. Available: https://doi.org/10.5334/jors.by

[6] J. Howison and J. Bullard, “Software in the scientific literature: Problems with seeing, finding, and using software
mentioned in the biology literature,” Journal of the Association for Information Science and Technology, vol. 67,
no. 9, pp. 2137–2155, 2016 [Online]. Available: http://dx.doi.org/10.1002/asi.23538

[7] O. Ben-Kiki, C. Evans, and I. döt Net, “YAML Ain’t Markup Language (YAML™) Version 1.2. 3rd Edition,
Patched at 2009-10-01.” 2009 [Online]. Available: http://yaml.org/spec/1.2/spec.html

[8] J.-M. Hufflen, “Names in bibtex and mlBibTeX,” TUGboat, vol. 27, no. 2, pp. 243–253, Nov. 2006 [Online].
Available: https://www.tug.org/TUGboat/tb27-2/tb87hufflen.pdf

24

https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.6084/m9.figshare.3827058
https://doi.org/10.6084/m9.figshare.3827058
https://www.software.ac.uk/blog/2013-09-02-encouraging-citation-software-introducing-citation-files
https://www.software.ac.uk/blog/2013-09-02-encouraging-citation-software-introducing-citation-files
https://doi.org/10.5334/jors.by
http://dx.doi.org/10.1002/asi.23538
http://yaml.org/spec/1.2/spec.html
https://www.tug.org/TUGboat/tb27-2/tb87hufflen.pdf

	Introduction
	Status of this document
	Rationale
	Status of the format
	Goals
	Concepts

	Format
	Formatting
	File structure
	cff-version (required)
	message (required)
	Software citation metadata (required)
	references (optional)

	Reference keys
	Notable reference keys
	Exemplary uses

	Reference types

	Objects
	Entity objects
	Exemplary uses

	Person objects
	Exemplary uses

	Specified value strings
	Status strings
	License strings
	Language strings

	Schema
	Examples
	Software examples
	Software with a DOI
	Software without a DOI
	Source code without a DOI
	A software container
	An executable
	Software with a further reference
	Some references examples
	art
	article
	blog
	book
	conference-paper
	edited-work
	report
	thesis

	Infrastructure
	Contributions
	License
	References

