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Abstract: The need for wireless communication has driven the communication systems to high 

performance. However, the main bottleneck that affects the communication capability is the Fast 

Fourier Transform (FFT), which is the core of most modulators. This study presents on-chip 

implementation of pipeline digit-slicing multiplier-less butterfly for FFT structure. The approach 

taken; in order to reduce computation complexity in butterfly, digit-slicing multiplier-less single 

constant technique was utilized in the critical path of Radix-2 Decimation In Time (DIT) FFT 

structure. The proposed design focused on the trade-off between the speed and active silicon area for 

the chip implementation. The new architecture was investigated and simulated with MATLAB 

software. The Verilog HDL code in Xilinx ISE environment was derived to describe the FFT Butterfly 

functionality and was downloaded to Virtex II FPGA board. Consequently, the Virtex-II FG456 Proto 

board was used to implement and test the design on the real hardware. As a result, from the findings, 

the synthesis report indicates the maximum clock frequency of 549.75 MHz with the total equivalent 

gate count of 31,159 is a marked and significant improvement over Radix 2 FFT butterfly. In 

comparison with the conventional butterfly architecture, design that can only run at a maximum clock 

frequency of 198.987 MHz and the conventional multiplier can only run at a maximum clock 

frequency of 220.160 MHz, the proposed system exhibits better results. The resulting maximum clock 

frequency increases by about 276.28% for the FFT butterfly and about 277.06% for the multiplier. It 

can be concluded that on-chip implementation of pipeline digit-slicing multiplier-less butterfly for FFT 

structure is an enabler in solving problems that affect communications capability in FFT and possesses 

huge potentials for future related works and research areas. 
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INTRODUCTION 

 

 FFT plays an important role in many Digital 

Signals Processing (DSP) applications such as in 

communication systems and image processing. It is an 

efficient algorithm to compute the Discrete Fourier 

Transform (DFT). DFT is the main and important 

procedure in data analysis, system design, and 

implementation (Oppenheim and Rader, 1990). In order 

to reduce the complexity computation of the FFT 

algorithm many modules have been designed and 

implemented in different platforms. These modules 

focus on the radix order or twiddle factors to perform a 

simple and efficient algorithm which includes the 

higher radix FFT (Bergland, 1969), the mixed-radix 

FFT (Singleton, 1969), the prime-factor FFT (Kolba 

and Parks, 1977), the recursive FFT (Varkonyi-Koczy, 

1995), low-memory reference FFT (Wang et al., 2007), 

Multiplier-less based FFT (Zhou et al., 2007; Prasanthi 

et al., 2005; Mahmud and Othman, 2006) and 

Application-Specific Integrated Circuits (ASIC) system 

such as  stated by Baas (1999). ASIC-based systems are 

able to fit real low-power or high performance 

applications; however the function is very solid to be 

modified (Hsu and Lin, 2008). The study of the digit-

slicing technique has been dealt by Bin Nun and 

Woodward (1976); Peled and Liu (1976); and Sharrif, 

(1980) for the digital filters.  
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The design and implementation of Digit-slicing FFT 

has been discussed by Samad et al., (1998). This study 

proposed a similar idea with the ones put forth by 

Samad et al (1998); but having a difference by the use 

of a different algorithm and different platform, which 

helps to improve the performance and achieve higher 

speed. Recently, FPGAs Field Programmable Gate 

Array have become an applicable option to direct 

hardware solution performance in the real time 

application. In this study, digit-slicing architecture was 

proposed in designing the pipeline digit-slicing 

multiplier-less butterfly. The FFT butterfly 

multiplication is the most crucial part in causing the 

delay in the computation of the FFT. In view of the 

fact, the twiddle factors in the FFT processor were 

known in advance hence we proposed to use the 

pipeline digit slicing multiplier-less butterfly to replace 

the traditional butterfly in FFT. 

 The study structure is organized as follows; 

describes the FFT architecture in brief, explains the 

butterfly conventional architecture, discuses the digit 

slicing architecture, explicates the design of the pipeline         

digit- slicing multiplier-less butterfly architecture in 

detail and finally the implementation result and 

conclusion respectively. 

  

Fast Fourier Transform (FFT): A useful method to 

transform domains from the time domain to the 

frequency domain and the reverse for the 

implementation on digital hardware is the DFT. For N-

point DFT of a complex data sequence x (n) is defined 

in Eq. 1: 

  
N 1

kn

N

n 0

X(k) x(n)W ,k 0,1,.......,N 1




    (1) 

 

Where: 

 x(n) and X(k) = Complex numbers 
kn j2 / N

NW e   = The twiddle factor 

 

 The DFT of N-point finite sequence represents 

harmonically related frequency components of x(n). 

The direct computation of Eq. 1 requires the order of N
2
 

operations where N is the transform size. Cooley and 

Tukey (1965) found this new technique to reduce the 

order of complexity operations of DFT from N
2
 to 

(Nlog2N). Consequently, a huge number of FFT 

algorithms have been developed such as Radix-2, radix-4 

and split radix algorithms. These algorithms are mostly 

used for practical applications due to their simple 

structure and constant butterfly geometry.  

In general, higher-radix FFT algorithm has fewer 

numbers of complex multiplications, whereas radix-2 

FFT algorithm is the simplest form in all FFT algorithms. 

Furthermore, it has a regularity mode that makes it 

suitable for VLSI implementation as shown in the 

fallowing Eq. 2: 
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     (2) 

 

 FFT algorithm relies on a ‘divide-and-conquer’ 

methodology, which divides the N coefficient points 

into smaller blocks in different stages. The first stage 

computes with groups of two coefficients, yielding N/2 

blocks, each computing the addition and subtraction of 

the coefficients scaled by the corresponding twiddle 

factors, called a butterfly for its cross-over appearance 

as shown in Fig. 1.  

 

These results are used to compute the next state of N/4 

blocks, which will then combine the results of two 

previous blocks, combining four coefficients at this 

point. This process is repeated until one main block is 

formed, with a final computation of all N coefficients. 

Fig. 2 shows the 8-point radix-2 DIT FFT. 

 

 
 

Fig. 1:  Butterfly structure. 

 

 
 

Fig. 2:  8-points FFT radix-2 Decimation in Time. 
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Fig. 3: Radix-2 DIT FFT Butterfly Architecture. 

 

Conventional Butterfly architecture The 

conventional radix-2 DIT butterfly architecture consists 

of complex data I/O, complex multiplier and complex 

adder and subtraction as shown in Fig. 3. 

 Consider A and B as the complex input data, and 

the complex twiddle factor is considered as 

W = Wr-jWi, hence finally the complex output are X 

and Y.  

 

 
 

Fig. 4: Complex multiplier structure 

 

 
 

Fig. 5: Complex Adder Structure 

 

The index r and i represent the real and imaginary parts 

respectively: 

 

X A WB   (3) 

Y A WB   (4) 

(Xr jXi) (Ar jAi) (Wr jWi) (Br jBi)          (5) 

(Yr jYi) (Ar jAi) (Wr jWi) (Br jBi)          (6) 

  

 The implementation of the complex multiplier is 

required for four real multipliers and two real adders as 

shown in Fig. 4. The complex multiplier is determined 

in Eq.7: 

 

(Br jBi) (Wr jWi) (Br Wr) (Br jWi)

( jBi Wr) ( jBi jWi)

[(Br Wr) ( jBi jWi)]

[(Br jWi) ( jBi Wr)]

[(Br Wr) (Bi Wi)]

[(Br jWi) ( jBi Wr)]

      

   

   

   

   

   

 (7) 

 The real and imaginary parts of the multiplication 

result is )]()[( WiBiWrBr   and )]()[( WrjBijWiBr   

respectively. 

 The complex adder is required for two real adders 

to perform addition functionality as shown in Fig. 5.  

(Ar jAi) (Br jBi) (Ar Br) j(Ai Bi)          (8) 

 
Digit-slicing architecture: The concept behind the 

digit-slicing architecture is any binary number that can 

be sliced into a few blocks of shorter binary numbers, 

with each block carrying a different weight. In this 

study, the fixed-point 2’s complements arithmetic has 

been chosen to represent the input data, which are 

singed numbers with absolute value less than one. The 

absolute value of the input data x with length of B bits 

(x
0
,x

1
,x

2
,….,x

B-1
) has been represented in 2’s 

complement as: 
 

B 1
j j

k 0

x 2 x






   (9)  

 
 To represent the sliced data, there are many 

different algorithms. Depending on the data type and 

word length, different structures can be introduced. In 

this study, where the fundamental sliced algorithm will 

be presented as following: 
 

b 1
pk (pb 1)

k

k 0

x 2 X 2


 



 
  
 
  (10) 

Where: 

 x = Sliced into b blocks 

 p = Bit widths per block 
 

p 1
j

k k, j

j 0

X 2 X




  (11) 

 
Where: 
Xk,j =All either ones or zeros except 
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Xk=b-1, j= p-1 = which is zero or minus one 

 The algorithm in Eq. (10) applies when the sliced 

data word length is 2
x
 such as 2

2
=4, 2

3
= 8, 16… bits.

 

Thus, let us consider the decimal number    -0.65625 of 

which we would like to demonstrate how digit slicing 

operates accordingly:  
 
x = 1.010 11002 = -0.6562510 

 

where, the suffix 2 refers to a binary fixed point two’s 

complement number 8 bits and the suffix 10 refers to a 

decimal number, if x is sliced into two blocks, of each 

four bits wide, that is b = 2 and p = 4: 

 
3

j 3 2

0 0, j

j 0

3
j 3 1

1 1, j

j 0

X 2 X 2 2 12

X 2 X 2 2 6





   

     




 

1
4k (8 1)

k

k 0

x 2 X 2 



 
  
 
  

 
4 0 4 1 7

7

10

x 2 12 2 ( 6) 2

84
x (12 96) 2 0.65625

128

  



      


     

 

 Another algorithm that represents the sliced data 

with a word length 2
x
+1 such as 2

2 
+1=5, 9, 17…bits 

can be dealt as the following: 

 
p 1

k
p

k

k 0

x 2 X






     (12) 

  

Where, x is a decimal number whose absolute value is 

less than one and is sliced into b blocks each of p bits 

wide.  

 The most significant block is k = 0 where this 

contains the only sign bit of x plus leading dummy zeros 

to make up a block of length p bits (Samad et al., 1998): 

 

k 0

p 1
j

k k, j k, j

j 0

X 0 or 1 only

X 2 X ; X 0 or 1 only for k 0







 

  
 (13) 

 

 Let us assume that the decimal number - 0.328125 

is represented as nine bits two’s complement number: 
k2

4

k

k 0

4 0 4 1 3 1 4 2 3 2

1 3 5 6

10

x 2 X

x [2 ] [ 1] [2 ] [2 2 ] [2 ] [2 2 ]

1 2 2 2 2 -0.328125





  

   

   

     

      



 

 

 As a comparison between the first and the second 

algorithms, the second algorithm requires one extra 

block to deal with the sign bit which makes the design 

more complicated and requires more hardware for the 

implementation. In this study, the first digit-slicing 

algorithm has been chosen to build the digit-slicing FFT 

butterfly structure. Therefore, any complex numbers, F, 

can be sliced into smaller blocks b, each having a 

shorter word length, p, as illustrated in following 

equations: 

  

R IF F jF   (13) 

 
b 1 b 1

pk (pb 1) pk (pb 1)

Rk Ik

k 0 k 0

F 2 F 2 j 2 F 2
 

   

 

   
    
   
   (14) 

 

 
 

Fig. 6: The digit-slicing first algorithm for -0.65625 

 

 
 

Fig. 7: The digit-slicing 2
nd

 algorithm for -0.328125 

 

 
 

Fig. 8: Digit-slicing structure for the input A. 
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p 1
j

Rk Rk, j

j 0

F 2 F




  (15) 

 
p 1

j

Ik Ik, j

j 0

F 2 F




  (16) 

 

Where, the values of FIk,i and FRk,I are either zero or 

one.  

 

Pipeline digit-slicing multiplier-less butterfly 

architecture: The butterfly is the smallest component 

to build the FFT. As mentioned in the explanations 

prior to this, the butterfly structure contains one 

complex multiplier, one complex adder, and one 

complex subtractor. 

 The digit-slicing architecture has been applied for 

the butterfly input to slice the data into four groups each 

carrying four bits as shown in Fig. 8.  

 

 
 
Fig. 9: Digit-Slicing Single Constant Multiplier 

(DSSCM) Structure. 
 

b 1
pk (pb 1)

k

k 0

A 2 A 2


 



 
  
 
  (17) 

 
p 1

j

k k, j

j 0

A 2 A




  (18) 

 
where, Ak,j are all either ones or zeros except for      

Ak=b-1,j=p-1 which is zero or minus one. 

The same applies for the input B: 
 

b 1
pk (pb 1)

k

k 0

B 2 B 2


 



 
  
 
  (19) 

 
p 1

j

k k, j

j 0

B 2 B




  (20) 

 

where, Bk,j are all either ones or zeros except for the 

value Bk=b-1,j=p-1 which is zero or minus one. 

 The multiplication functionality is regarded as the 

most important operation for most signal processing 

systems, but it is a complex and expensive operation. 

Many techniques have been introduced for reducing the 

size and improving the speed of multipliers. Some 

applications require Constant Coefficient Multipliers 

such as digital signal processing, image processing, and 

multiple precision arithmetic in the design of compilers. 

Constant Coefficient Multipliers is one of the most 

common solutions to speed up the multiplication 

process.  

The multiplier can be designed for one constant which 

is termed as Single Constant Multiplier (SCM) or for 

many constant and is termed as Multiple Constant 

Multiplier (MCM). Since the twiddle factor in FFT 

processor are known in advance, a special design of 

SCM has been proposed to perform the multiplication 

function with the twiddle factor without using the 

traditional multiplier, which is termed as Single 

Constant Multiplier Less (SCML). The design of the 

SCML consists of four lookup tables (ROMs) and adder 

to perform the output as shown in Fig 9. To generate 

the lookup tables data (the multiplication result 

possibilities), which are 16 different results for each 

ROM, a special MATLAB program has been written by 

applying the digit-slicing algorithm for all the possible 

numbers for the input data (4 bits) from “0000” to 

“1111” to perform all the possibilities for the 

multiplication result. The result for the SCML has been 

optioned by simple addition for all the lookup tables’ 

results. In the hardware implementation, the addition 

logic has been reduced. During the addition of the four 

products obtained from the look-up tables, the least 

significant digit (4 bits) for each level is always added 

to zero. These bits will not be affected, or changed and 

will be carried into the next column. The storage of all 

these possibilities in four different ROMs allows the 

design to perform the multiplication process without 

any real multiplier. 

 From Eq. 10 and 11, the digit-slicing multiplier is 

represented as the following: 

 
3

4k (7)

k

k 0

BW 2 WB 2



 
  
 
  (21) 

 
3

j

k k, j

j 0

WB 2 WB


  (22) 

where, WBk,j are all either ones or zeros except for 

WBk=b-1,j=p-1 which is zero or minus one and where W is 

the constant. 
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 The result of the multiplication will be added and 

subtracted with the complex inputs Ar+jAi for the 

butterfly to perform the butterfly outputs. 

The butterfly output X has been defined as: 

 

 
b 1

pk (pb 1)

k

k 0

X 2 X 2


 



 
  
 
  (23) 

 
p 1

j

k k, j

j 0

X 2 X




  (24) 

 
where, Xk,j are all either ones or zeros except for     

Xk=b-1,j=p-1 which is zero or minus one. 

 By applying Eq. 17, 19 and 21 into Eq. 3: 
 

3 3
4k (pb 1) 4k (pb 1)

k k

k 0 k 0

3
4k (pb 1)

k

k 0

k k k

X A WB

2 X 2 2 A 2

2 WB 2

X A WB

   

 

 



 

   
    

   

 
 
 

 

 



 

k

k rk ik

rk k r k

ik k i k

X iscomplex number

X X jX

Realpart of X A WB

Imag part of X A WB

 

 

 

 

  

 The same step for the output X has been applied to 

get the output Y: 

 

b 1 b 1
pk (pb 1) pk (pb 1)

k k

k 0 k 0

b 1
pk (pb 1)

k

k 0

k k k

Y A WB

2 Y 2 2 A 2

2 WB 2

Y A WB

 
   

 


 



 

   
    

   

 
 
 

 

 



 (26) 

 

k

k rk ik

rk k r k ik k i k

Y iscomplex number

Y Y jY

Realpart of Y A WB Imagpart of Y A WB

 

   

  

Finally, the complex output is represented as the 

following: 

 

rk rk rk ikX A WB WB    (27) 

ik ik ik rkX A WB WB    (28) 

rk rk rk ikY A WB WB    (29) 

ik ik ik rkY A WB WB    (30) 

 

 The full digit-slicing single constant multiplier-less 

has been designed and tested in MATLAB as shown in 

Fig 10 and 11, of which the result is then compared 

with the normal multiplier.  

 For the addition and subtraction, the parallel-prefix 

Koggie and Stone Ling adder were used for high speed 

and better performance. The pipeline technique was 

applied for the full design for better performance. 

 

RESULT 
 

 Two different modules were implemented for 

radix-2 DIT butterfly. The first module uses the 

conventional architecture for the butterfly where the 

twiddle factors are stored in ROM and called by the 

butterfly to be multiplied with the inputs by utilising the 

dedicated high speed multiplier equipped with the 

Virtex-II FPGA.  

 

 
 
Fig. 10: MATLAB design of Digit-Slicing Single 

Constant Multiplier-Less for the Butterfly. 
 

 
 
Fig. 11: MATLAB design of Digit-slicing Butterfly. 
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Fig. 12: Simulation result of the Pipeline Digit-slicing 

Single Constant Multiplier-Less for the 

Butterfly. 
 

 
 
Fig. 13: Simulation result of Digit-slicing Butterfly. 

 

The other module uses the pipelined digit-slicing single 

constant multiplier-less architecture to perform the 

multiplication with the twiddle factor. Both modules 

were built and tested in MATLAB as indicated in Fig. 9 

and 10, and is then coded in Verilog and synthesized by 

using the XST-Xilinx Synthesis Technology tool. The 

target FPGA was Xilinx Virtex-II XC2V500-6-FG456 

FPGA. The ModelSim simulation result of pipelined 

digit-slicing multiplier-less radix-2 DIT butterfly is 

shown in Fig. 12 and 13, while the synthesis results for 

the two models are presented in Table 1, which 

demonstrates the hardware specifications for the design. 

It indicates the maximum clock frequency of           

549.75 MHz for Pipelined digit-slicing Multiplier-less 

Butterfly as well as the Pipelined Digit-slicing Single 

Constant Multiplier-less for the butterfly with a 

performance of the maximum clock frequency of 

609.980 MHz. Meanwhile, Fig. 14 and 15 shows the 

RTL schematic for the Pipeline Digit-Slicing Single 

Constant Multiplier-less for the Butterfly. 

 

 
 

Fig. 14: RTL schematic for the Pipeline Digit-slicing 

Single Constant Multiplier-Less for the 

Butterfly. 

 

 
 

Fig. 15: RTL schematic for the Pipeline Digit-slicing 

Single Constant Multiplier-Less Lookup table 

(ROM) for the Butterfly. 
 

Table 1:  Hardware specifications of the digit-slicing butterfly 

Xilinx Virtax-II Total equivalent gate Maximum 

FPGA XC2v250-6FG456 count for design Frequency MHz 

Conventional butterfly 18.408 198.987 
Pipeline Digit-Slicing 31.159 549.750 

Multiplier-less Butterfly 

Conventional 16 bits  4.131 220.160 
Multiplier  

Pipeline Digit-Slicing Single 6.483 609.980 

Constant Multiplier-Less  

16 bits for the butterfly 

 
 

CONCLUSION 

 

 This study presented an on-chip 

implementation of pipeline digit-slicing multiplier-less 

butterfly for FFT structure. The implementation has 

been coded in Verilog hardware descriptive language 

and was tested on Xilinx Virtex-I1 XC2V500-6- FG456 

prototyping FPGA board. A maximum clock frequency 

of 549.75 MHz has been obtained from the synthesis 

report for the pipeline digit-slicing multiplier-less 

butterfly that is 2.77 time faster than the conventional 

butterfly. It can be concluded that on-chip 
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implementation of pipeline digit-slicing multiplier-less 

butterfly for FFT structure is an enabler in solving 

problems that affect communications capability in FFT 

and possesses huge potentials for future related works 

and research areas. 
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