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Abstract— Dealing with high order coupled systems of FDEs 
through nonlinear p-Laplacian operator. We analyze existence, 
uniqueness & Hyer-Ulam stability (HUS) of the solutions by 
means of topological degree method. For this purpose, we 
transform the supposed problem into an integral system via 
Green’s function(s) and assume certain operator equivalent to 
the integral form of the problem. Then after, the results are 
proved with some necessary assumptions. 
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I. INTRODUCTION 

The real world physical phenomena described by 
mathematical models of fractional differential equations 
(FDEs) are more constructive and practical in memory as 
compared to the models of integer order differential equations. 
. Due to the application of FDEs, one can learn fractional 
calculus in diverse fields like metallurgy, signal and image 
processing, economics, fractal theory, biology and other 
disciplines [16-26]. Existence of solutions for FDEs is one of 
the most attracted research areas. For the different classes of 
FDEs, one can study different methods for existence and 
uniqueness of solutions. Various nonlinear mathematical 
models can be found in the scientific fields to study dynamic 
systems. The classical nonlinear operator ϕ_p is one of the 
most important and frequently used nonlinear operators, which 
satisfies 

  
1

𝑝
+

1

𝑞
= 1,     𝜙𝑝 𝑠 = |𝑠|𝑝−2𝑠,      𝑝 > 1 and𝜙𝑞 𝜃 = 𝜙𝑝

−1 𝜃 . 

For details and applications of nonlinear operator 𝜙𝑝 , we 

pass on readers to [27-34]. 

Here we highlight some related and interested research 
problems and contribution of scientists. Baleanu et al. [1] 
proved existence of some super linear FDE solutions and 
presented some applications of their results. Kuman et al. [2] 
presented stability and existence results for a class of FDE with 
help of topological degree theory. Baleanu et al. [3] proved 
existence solution for a nonlinear FDE on partially ordered 
Banach spaces. Baleanu et al. [4] studied that under certain 
assumptions the solutions of FDEs are eventually large and 
eventually small. Mahmudov and unul [5] studied a FDE with 
integral conditions involving order 2 < 𝛼 ≤ 3, an impulsive 
fractional differential equation [6] and FDE with p-Laplacian 
operator [7], for existence of solutions. 

Hu et al. [8] calculated existence of non-linear FDEs using 
the p-Laplacian operator: 

 
𝐷0+

𝛾
 𝜙𝑝  𝐷0+

𝜌
𝜇 𝑡   + 𝑓  𝑥, 𝜇 𝑡 , 𝐷0+

𝜌
𝜇 𝑡  = 0,    𝑡 ∈  0,1 ,

𝐷0+
𝜌

𝜇 0 = 0 = 𝐷0+
𝜌

𝜇 1 ,                                                                  

  

where 0<ρ,γ<1,1<ρ+γ<2,D_(0+)^ρ,D_(0+)^γ are in the sense 
of Caputo derivatives. 

Ali et al. [9] calculated the EUS and HUS for coupled system 
of FDEs: 

𝐷0+
𝜌

𝑥 𝑡 = 𝑓 𝑡, 𝑦 𝑡  ,                                               𝑡 ∈  0,1 ,

𝐷0+
𝛾

𝑦 𝑡 = 𝑓 𝑡, 𝑥 𝑡  ,                                               𝑡 ∈  0,1 ,

𝑥 0 = 0,        𝑥 𝑡 |𝑡=1 =
1

Γ 𝜎 
  𝑇 − 𝑠 𝜎−1𝑝 𝑥(𝑠) 

𝑇

0

𝑑𝑠,

𝑦 0 = 0,        𝑦 𝑡 |𝑡=1 =
1

Γ 𝛿 
  𝑇 − 𝑠 𝛿−1𝑞 𝑦(𝑠) 

𝑇

0

𝑑𝑠,

 

where𝜌, 𝛾, 𝜎, 𝛿 ∈  1,2 , 𝐷0+
𝜌

, 𝐷0+
𝛾

 are in the sense of Caputo 

derivatives, 𝑝, 𝑞 ∈ 𝐿[0,1]. 

Khan et al. [36] recently calculated the existence and 
uniqueness of positive solutions and HUS for the following 
system of coupled FDEs: 

𝐷0+
𝛾1  𝜙𝑝  𝐷0+

𝜌1𝑥 𝑡   = −Ψ1 𝑡, 𝑦 𝑡  ,   𝐷0+
𝛾2  𝜙𝑝  𝐷0+

𝜌2𝑦 𝑡   

= −Ψ2 𝑡, 𝑥 𝑡  , 

𝐷0+
𝜌1𝑥 0 = 0 =  𝜙𝑝  𝐷0+

𝜌1𝑥 𝑡   
′

|𝑡=0 = 𝐷0+
𝛿1𝑥 𝑡 |𝑡=𝜂1

, 𝑥 1 

=
Γ 2 − 𝛿1 

𝜂1
1−𝛿1

ℐ𝜌1−𝛿1𝜙𝑞  ℐ0+
𝛾1 Ψ1 𝑡, 𝑦 𝑡   |𝑡=𝜂1 , 
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𝐷0+
𝜌2𝑦 0 = 0 =  𝜙𝑝  𝐷0+

𝜌2𝑦 𝑡   
′

|𝑡=0 = 𝐷0+
𝛿2𝑦 𝑡 |𝑡=𝜂2

, 𝑦 1 

=
Γ 2 − 𝛿2 

𝜂2
1−𝛿2

ℐ𝜌2−𝛿2𝜙𝑞  ℐ0+
𝛾2 Ψ2 𝑡, 𝑥 𝑡   |𝑡=𝜂2

 

where 𝑡 ∈  0,1 , 𝜌𝑖 , 𝛾𝑖 ∈  1,2 , 𝜂𝑖 , 𝛿𝑖 ∈  0,1 , for 𝑖 = 1,2,

𝑎𝑛𝑑 𝐷0+
𝜌𝑖 , 𝐷0+

𝛾𝑖 , 𝐷0+
𝛿𝑖 for 𝑖 = 1,2  are denoting Caputo fractional 

derivatives. 

In classical cases the fixed point theorems have some very 
strong conditions which limit the applications of the results to 
big extent for the study of many categories of FDEs and their 
coupled systems. Nowadays, degree theory plays a significant 
role in relaxing of the necessary conditions required for the 
study of fixed points of operators and EUS for a large number 
of FDEs and its coupled systems for their solutions. Different 
types of degree theorems have been produced including the 
well-known Brouwer and Leray-Schauder theory which have 
been considered by a large number of scientists for the 

exploration of different aspects of fractional calculus especially 
dealing with existence of positive solution of differential 
equations involving integer order as well non-integer. A 
version of the degree theory acknowledged as topological 
degree theory which was introduced by Mawhin [10] and 
further expanded by Isaia [11] was considered for the existence 
results of linear as well nonlinear FDEs. The proposed 
technique is also known as prior estimation technique, which 
does not involve the compactness of operators. For new results 
on topological degree theory, we suggest the readers for the 
study of some recently developed results in [12-14]. 

Enthused from the abovementioned studies, we study the 
EUS and HUS of a coupled system with initial and boundary 
conditions and non-linear operator 𝜙𝑝  using the topological 

degree method: 

 

 

 

 
 
 
 
 

 
 
 
 𝐷0+

𝛽1  𝜙𝑝  𝐷0+
𝛼1𝑢 𝑡   = −𝜓1 𝑡, 𝑣 𝑡  ,   𝐷0+

𝛽2  𝜙𝑝  𝐷0+
𝛼2𝑣 𝑡   = −𝜓2 𝑡, 𝑢 𝑡  ,

 𝜙𝑝  𝐷0+
𝛼1𝑢 𝑡   |𝑡=1 = 0,  𝜙𝑝  𝐷0+

𝛼1𝑢 𝑡   
 𝑘 

|𝑡=0 = 0, for 𝑘 = 1,2,3, … , 𝑛 − 1,

 𝜙𝑝  𝐷0+
𝛼2𝑣 𝑡   |𝑡=1 = 0,  𝜙𝑝  𝐷0+

𝛼2𝑣 𝑡   
 𝑘 

|𝑡=0 = 0, for 𝑘 = 1,2,3, … , 𝑛 − 1,

𝑢 𝑖  0 = 0, for 𝑖 = 0,1,2, … . , 𝑚 − 2, 𝑚, … . , 𝑛 − 1, 𝑢 𝑚−1  1 = 0,                         

𝑣 𝑖  0 = 0, for 𝑖 = 0,1,2, … . , 𝑚 − 2, 𝑚, … . , 𝑛 − 1, 𝑣 𝑚−1  1 = 0,                         

                                                              (1.1) 

 

 

where  𝛼𝑖 , 𝛽𝑖 ∈  𝑛 − 1, 𝑛 , 𝜓1 , 𝜓2 ∈ 𝐿 0,1 and𝐷0+
𝛼𝑖 , 𝐷0+

𝛽𝑖 for 𝑖 =
1,2 stand for Caputo fractional derivative 𝜙𝑝 𝒩 = |𝒩|𝑝−2𝒩 

is non-linear operator 𝜙𝑝  satisfying 1
𝑝 + 1

𝑞 = 1, 𝜙𝑞  

represents inverse of 𝜙𝑝 . Here, we affirm that applying degree 

method to treat existence, uniqueness also to get the 

conditions for the stability of Hyers-ULam to a coupled 
system of (FDEs) with  𝜙𝑝  (1.1) has not been explored to our 

loyal awareness and understanding. Therefore, this work may 
get the attention of researchers to the study of Hyers-Ulam 
stability for more complex problems. We test enough 
conditions for the stability of EUS and HUS for system (1.1).  

 

II. AUXILIARY RESULTS  

Definition 2.1. The fractional integral of order 𝛼 > 0  of  
𝑓:  0, +∞ → ℝ is defined as  

𝐼0+
𝛼 𝜓 𝑡 =

1

Γ 𝛼 
  𝑡 − 𝑠 𝛼−1𝜓 𝑠 𝑑𝑠,

𝑡

0

 

Given that integral on R.H.S is point wise defined on the 
interval  0, +∞ , where 

Γ 𝛼 =  𝑒−𝑠𝑠𝛼−1𝑑𝑠.
+∞

0

 

Definition 2.2. For a function 𝜓 𝑡  the fractional Caputo’s 
derivative of 𝛼 order is defined by the following integral form 
(provided it exist) 

𝐷0+
𝛼 𝜓 𝑡 =

1

Γ  𝛼 + 1 − 𝛼 
  𝑡 − 𝑠 [𝛼]−𝛼

𝑡

0

𝜓  𝛼 +1  𝑠 𝑑𝑠, 

Where [𝛼] is the integer part of 𝛼. 

Lemma 2.3. Let  𝛼 ∈  𝑛 − 1, 𝑛 , 𝜓 ∈ 𝐴𝐶𝑛−1 , then 

𝐼0+
𝛼 𝐷0+

𝛼 𝜓 𝑡 = 𝜓 𝑡 + 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡
2 + ⋯ + 𝑐𝑛−1𝑡

𝑛−1, 

 

For the 𝑐𝑖 ∈ ℝ for 𝑖 = 0,1,2, … , 𝑛 − 1. 

Consider the space of real valued continuous functions𝑉 =
𝐶  0,1 , ℝ  with Topological norm ∥ 𝑣 ∥= sup  𝑣 𝑡  : 0 ≤
𝑡≤1for 𝑣∈𝑉.The product space 𝜔∗=𝑉×𝑉 with the norm 
∥  𝑣, 𝑧 ∥=∥ 𝑣 ∥ +∥ 𝑧 ∥  is also Banach space. We give a 
notation 𝑆 to the class of all bounded mappings in 𝜔. 

Definition 2.4. For the mapping 𝜉: 𝑆 →  0, ∞  Kuratowski 
measure of non-compactness is: 

𝜉 ℳ = inf⁡{𝑟 > 0: ℳ the finite cover for sets of diameter 
≤ 𝑟} 

where ℳ ∈ 𝑆. 



International Journal of Engineering Works                                                                               Vol. 5, Issue 5, PP. 76-86, May 2018 

            ISSN: 2409-2770 

Definition 2.5. Let 𝑇: 𝜗 → 𝑉  be bounded and continuous 
mapping with 𝜗 ⊂ 𝑉. Then 𝑇 is an 𝜉 −Lipschitz, where 𝜍 ≥ 0 
if 

𝜉 𝑇 ℳ  ≤ 𝜍𝜉 ℳ for all bounded ℳ ⊂ 𝜗. 

And 𝑇 is a strict 𝜉-contraction with 𝜍 < 1. 

Definition 2.6.The function 𝑇 is 𝜉-condensing if  

𝜉 𝑇 ℳ  < 𝜉 ℳ for all bounded ℳ ⊂ 𝜗  such that 𝜉 ℳ 

> 0. 

Therefore 𝜉 𝑇 ℳ  ≥ 𝜉 ℳ yields 𝜉 ℳ = 0. 

More we have 𝑇: 𝜗 → 𝑉 is Lipschitz for 𝜍 > 0,  such that 

∥ 𝑇 𝑣 − 𝑇 𝑣  ∥≤ 𝜍 ∥ 𝑣 − 𝑣 ∥   for all 𝑣, 𝑣 ∈ 𝜗. 

The condition 𝜍 < 1, then 𝑇 is a strict contraction.  

Proposition 2.7. The 𝑇  is said to be 𝜉 -Lipschitz with  𝜍 =
0 if and only if 𝑇: 𝜗 → 𝑉  is said to be compact. 

Proposition 2.8. The 𝑇 is said to be 𝜉-Lipschitz for constant 
value 𝜍 if and only if 𝑇: 𝜗 → 𝑉, is Lipschitz with constant 𝜍. 

Theorem 2.9. [11] Let 𝑇: 𝑉 → 𝑉 be an 𝜉-condensing and 

ℋ =  𝑧 ∈ 𝑉: there exist 0 ≤ 𝜆 ≤ 1 such that 𝑧 = 𝜆𝑇𝑧 . 

If ℋ  is a bounded in 𝑉 ,  there exists 𝑎 > 0 , and ℋ ⊂
ℳ𝑎(0),with degree 

𝑑𝑒𝑔 𝐼 − 𝜆𝒢, ℳ𝑟 0 , 0 = 1  for every 𝜆 ∈  0,1 . 

So, 𝑇 has atleast one fixed point and collection of all fixed 
points of 𝑇 are contained in ℳ𝑎(0). 

Lemma 2.10 [15] For the nonlinear operator 𝜙𝑝  , we have 

1. If 1 < 𝑝 ≤ 2, ℓ1ℓ2 > 0 and ℓ1 ,  ℓ2 ≥ 𝑚 > 0, then 

 𝜙𝑝(ℓ1 − 𝜙𝑝 ℓ2  ≤  𝑝 − 1 𝑚𝑝−2 ℓ1 − ℓ2|. 
2. If 𝑝 > 2, and  ℓ1 ,  ℓ1 ≤ 𝐹, then 

 𝜙𝑝 ℓ1 − 𝜙𝑝 ℓ2  ≤  𝑝 − 1 𝐹𝑝−2|ℓ1 − ℓ2| 
 

III. MAIN RESULTS  

Theorem 3.1. Let 𝜓1 ∈ 𝐶 0,1  be an integrable function 
satisfying (1.1). Then the solution of  

 
 
 

 
 𝐷0+

𝛽1  𝜙𝑝  𝐷0+
𝛼1𝑢 𝑡   = −𝜓1 𝑡, 𝑣(𝑡) ,                                                                             

 𝜙𝑝  𝐷0+
𝛼1𝑢 𝑡   |𝑡=1 = 0,  𝜙𝑝  𝐷0+

𝛼1𝑢 𝑡   
(𝑘)

|𝑡=0 = 0, for 𝑘 = 1,2,3, … , 𝑛 − 1

𝑢 𝑖  0 = 0, for𝑖 = 0,1,2, … . , 𝑚 − 2, 𝑚, … . , 𝑛 − 1, 𝑢 𝑚−1  1 = 0,                       

  

 

is given by the integral equation 

𝑢

 𝑥 =  𝐻𝛼1(𝑡, 𝑠)
1

0

𝜙𝑞   𝐻𝛽1

1

0

(𝑠, 𝑡)𝜓1 𝑡, 𝑣(𝑡) 𝑑𝑡 𝑑𝑠,                                                                                                             (3.2) 

where 𝐻𝛼1 𝑡, 𝑠 , 𝐻𝛽1 𝑡, 𝑠  are Green’s function(s) defined by 

𝐻𝛼1 𝑡, 𝑠 =  

(𝑡−𝑠)𝛼1−1

Γ(𝛼1)
− 𝑡𝑚−1  1−𝑠 𝛼1−𝑚

Γ 𝑚 Γ 𝛼1− 𝑚−1  
,                 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

−𝑡𝑚−1 (1−𝑠)𝛼1−𝑚

Γ 𝑚 Γ 𝛼1− 𝑚−1  
,                                   0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

                                                                        (3.3)                                                                      

  

𝐻𝛽1 𝑡, 𝑠 =

 
 
 

 
 −

 𝑡 − 𝑠 𝛽1−1

Γ 𝛽1 
+

 1 − 𝑠 𝛽1−1

Γ 𝛽1 
,                        0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

 1 − 𝑠 𝛽1−1

Γ 𝛽1 
,                                                        0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

                                                                                 (3.4) 

Proof. Applying operator 𝐼0+
𝛽1  on (3.1) and with help of Lemma (2.3), we proceed the following 

𝜙𝑝  𝐷0+
𝛼1𝑢 𝑡  = −𝐼0+

𝛽1𝜓1 𝑡, 𝑣(𝑡) + 𝑐1 + 𝑐2𝑡 + ⋯ + 𝑐𝑛𝑡𝑛−1                                                                                                       (3.5) 

Condition  𝜙𝑝  𝐷0+
𝛼1𝑢 𝑡   

(𝑘)

|𝑡=0 = 0, 𝑓𝑜𝑟 𝑘 = 1,2,3, … , 𝑛 − 1 results 𝑐2 = 𝑐3 = ⋯ = 𝑐𝑛 = 0 . And  𝜙𝑝  𝐷0+
𝛼1𝑢 𝑡   |𝑡=1 = 0, 

implies  

𝑐1 = 𝐼0+
𝛽1𝜓1 𝑡, 𝑣(𝑡) |𝑡=1 =

1

Γ(𝛽1)
 (1 − 𝑠)𝛽1−1𝜓1 𝑠, 𝑣(𝑠) 

1

0

𝑑𝑠.                                                                                                 (3.6) 
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By using values of 𝑐𝑖  𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 and (3.5), we have 

𝜙𝑝  𝐷0+
𝛼1𝑢 𝑡  = −𝐼0+

𝛽1𝜓1 𝑡, 𝑣(𝑡) + 𝐼0+
𝛽1𝜓1 𝑡, 𝑣(𝑡) |𝑡=1 

= −
1

Γ(𝛽)
 (𝑡 − 𝑠)𝛽1−1

𝑡

0

𝜓1 𝑠, 𝑣(𝑠) 𝑑𝑠 +
1

Γ(𝛽1)
 (1 − 𝑠)𝛽1−1𝜓1 𝑠, 𝑣(𝑠) 

1

0

𝑑𝑠      

=  𝐻𝛽1 𝑡, 𝑠 
1

0

𝜓1 𝑠, 𝑣(𝑠) 𝑑𝑠,                                                                                                                                                              (3.7) 

where𝐻𝛽1 𝑡, 𝑠  is a Green’s function given in (3.4).  

Applying 𝜙𝑞 = 𝜙𝑝
−1

in (3.7), we get 

𝐷0+
𝛼1𝑢 𝑡 = 𝜙𝑞   𝐻𝛽1 𝑡, 𝑠 

1

0

𝜓1 𝑠, 𝑣(𝑠) 𝑑𝑠 .                                                                                                                                 (3.8) 

Applying operator 𝐼0+
𝛼1  on (3.8) and Lemma 2.10, we get 

𝑢 𝑡 = 𝐼0+
𝛼1  𝜙𝑞   𝐻𝛽1 𝑡, 𝑠 

1

0

𝜓1 𝑠, 𝑣(𝑠) 𝑑𝑠  + 𝑧1 + 𝑧2𝑡 + ⋯ + 𝑧𝑚 𝑡𝑚−1 + ⋯

+ 𝑧𝑛𝑡𝑛−1                                                                                                                                                                   (3.9) 

Using condition 𝑢 𝑖  0 = 0, 𝑓𝑜𝑟 𝑖 = 0,1,2, … . , 𝑚 − 2, 𝑚, … . , 𝑛 − 1,  we obtain 𝑧1 = 𝑧2 = ⋯ 𝑧𝑚−1 = 𝑧𝑚+1 = ⋯ 𝑧𝑛 = 0 . From 

condition 𝑢 𝑚−1  1 = 0, we have  

𝑧𝑚 = −
1

 𝑚 − 1 !
𝐼0+
𝛼1−(𝑚−1)

 𝜙𝑞   𝐻𝛽1 𝑡, 𝑠 
1

0

𝜓1 𝑠, 𝑣(𝑠) 𝑑𝑠  |𝑡=1                                                                                        (3.10) 

Now putting the values of 𝑧𝑖 , 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑚, … , 𝑛 in (3.9), we have 

𝑢 𝑡 = 𝐼0+
𝛼1  𝜙𝑞   𝐻𝛽1 𝑡, 𝑠 

1

0

𝜓1 𝑠, 𝑣(𝑠) 𝑑𝑠  −
𝑡𝑚−1

 𝑚 − 1 !
𝐼0+
𝛼1−(𝑚−1)

 𝜙𝑞   𝐻𝛽1 𝑡, 𝑠 
1

0

𝜓1 𝑠, 𝑣(𝑠) 𝑑𝑠  |𝑡=1 

=  
1

Γ(𝛼1)
 (𝑡 − 𝑠)𝛼1−1 −

𝑡𝑚−1

Γ(𝑚)
 

(1 − 𝑠)𝛼1−𝑚

Γ 𝛼1 − (𝑚 − 1) 

1

0

𝑡

0

 𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣(℘) 𝑑℘𝑑𝑠  

=  𝐻𝛼1 (𝑡, 𝑠)
1

0

𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣(℘) 𝑑℘ 𝑑𝑠                                                                                                                 (3.11) 

where𝐻𝛼1 𝑡, 𝑠 , 𝐻𝛽1 𝑠, ℘  are defined by (3.3), (3.4), respectively, as Green’s function(s). 

Following Theorem 3.1, we may write our problem in the following system 

𝑢 𝑡 =  𝐻𝛼1(𝑡, 𝑠)
1

0

𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣(℘) 𝑑℘ 𝑑𝑠,                                                                                                       (3.12) 

𝑣 𝑡 =  𝐻𝛼2 (𝑡, 𝑠)
1

0

𝜙𝑞   𝐻𝛽2 𝑠, ℘ 
1

0

𝜓2 ℘, 𝑢(℘) 𝑑℘ 𝑑𝑠,                                                                                                       (3.13) 

where 𝐻𝛼2 𝑡, 𝑠 , 𝐻𝛽2 𝑠, 𝑡  are Green’s function(s) defined by 

𝐻𝛼2 𝑡, 𝑠 =

 
 
 

 
 

 𝑡 − 𝑠 𝛼2−1

Γ 𝛼2 
− 𝑡𝑚−1

 1 − 𝑠 𝛼2−𝑚

Γ 𝑚 Γ 𝛼2 −  𝑚 − 1  
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

−𝑡𝑚−1
 1 − 𝑠 𝛼2−𝑚

Γ 𝑚 Γ 𝛼2 −  𝑚 − 1  
,                                   0 ≤ 𝑡 ≤ 𝑠 ≤ 1.  

                                                                 (3.14) 

𝐻𝛽2 𝑡, 𝑠 =

 
 
 

 
 −

 𝑡 − 𝑠 𝛽2−1

Γ 𝛽2 
+

 1 − 𝑠 𝛽2−1

Γ 𝛽2 
,                                      0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

 1 − 𝑠 𝛽2−1

Γ 𝛽2 
,                                                                    0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

                                                                    (3.15) 
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Define 𝑇𝑖
∗: 𝑉 → 𝑉𝑓𝑜𝑟 𝑖 = 1,2  by 

𝑇1
∗𝑢 𝑡 =  𝐻𝛼1 (𝑡, 𝑠)

1

0

𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣(℘) 𝑑℘ 𝑑𝑠                                                                                                   (3.16) 

𝑇2
∗𝑣 𝑡 =  𝐻𝛼2 (𝑡, 𝑠)

1

0

𝜙𝑞   𝐻𝛽2 𝑠, ℘ 
1

0

𝜓2 ℘, 𝑢(℘) 𝑑℘ 𝑑𝑠                                                                                                   (3.17) 

We further define 𝐹 𝑢, 𝑣 =  𝑇1
∗ 𝑢 , 𝑇2

∗(𝑣) . Then, with help of Theorem 3.1, the solution of (3.12), (3.13) is equivalent to any 
fixed point, say  𝑥, 𝑦 , of operator equation 

                                                                                                   𝑥, 𝑦 = 𝐹 𝑥, 𝑦 .                                                                                     (3.18) 

To proceed further, we need following assumptions in the 
main results of the paper. 

 (𝑄1)  With positive constant values of 

𝑎1 , 𝑏1, 𝕄𝜓1

∗ , 𝕄𝜓2

∗ 𝑎𝑛𝑑 𝑘1, 𝑘2 ∈  0,1 ,  functions 𝜓1 , 𝜓2  satisfy 

the following growth conditions 

 |𝜓1 𝑥, 𝑣 | ≤ 𝜙𝑝(𝑎1 𝑣 𝑘1 + 𝕄𝜓1

∗ ), 

 |𝜓2 𝑥, 𝑢 | ≤ 𝜙𝑝(𝑏1 𝑢 𝑘2 + 𝕄𝜓2

∗ ). 

(𝑄2) There exist real valued constants 𝜆𝜓1
, 𝜆𝜓2

 such that for 

all 𝑢, 𝑣, 𝑥, 𝑦 ∈ 𝑉, 

  𝜓1 𝑡, 𝑣 − 𝜓1 𝑡, 𝑥  ≤ 𝜆𝜓1
 𝑣 − 𝑥 , 

  𝜓2 𝑡, 𝑢 − 𝜓2 𝑡, 𝑦  ≤ 𝜆𝜓2
 𝑢 − 𝑦 . 

For simplicity in calculations, we define the following terms: 

Υ1 =  
1

Γ(𝛼1 + 1)
+

1

Γ 𝑚 Γ(𝛼1 − 𝑚 + 2)
  

1

Γ(𝛽1 + 1)

+
1

Γ(𝛽1 + 1)
 

𝑞−1

, 

Υ2 =  
1

Γ(𝛼2 + 1)
+

1

Γ 𝑚 Γ(𝛼2 − 𝑚 + 2)
  

1

Γ(𝛽2 + 1)

+
1

Γ(𝛽2 + 1)
 

𝑞−1

,  

𝜌1
∗ =  Υ1 + Υ2  𝕄𝜓1

∗ + 𝕄𝜓2

∗  , 𝛿∗ =  𝑎1 + 𝑏1  Υ1 + Υ2 , 

𝜗1 =  𝑝 − 1 𝜎𝑝−2𝜆𝜓1
 

1

Γ(𝛼1 + 1)

+
1

Γ 𝑚 Γ(𝛼1 − 𝑚 + 2)
  

1

Γ 𝛽1 + 1 

+
1

Γ 𝛽1 + 1 
 , 

𝜗2 =  𝑝 − 1 𝜎𝑝−2𝜆𝜓2
 

1

Γ(𝛼2 + 1)

+
1

Γ 𝑚 Γ(𝛼2 − 𝑚 + 2)
  

1

Γ 𝛽2 + 1 

+
1

Γ 𝛽2 + 1 
 . 

Theorem 3.2.With assumption  𝑄1 , the operator 𝐹: 𝜔∗ → 𝜔∗ is continuous and satisfies following growth condition 

                                                                                      𝐹 𝑢, 𝑣  𝑡 ≤ 𝛿∗ ∥  𝑢, 𝑣 ∥𝑘+ 𝜌1
∗                                                                   (3.19) 

For each (𝑢, 𝑣) ∈ ℳ𝑟 ⊂ 𝜔∗ 

Proof. Consider a bounded set ℳ𝑟 =   𝑢, 𝑣 ∈ 𝜔: ∥  𝑢, 𝑣 ∥≤ 𝑟  with sequence { 𝑢𝑛 , 𝑣𝑛 } converging to (𝑢, 𝑣)in ℳ𝑟 . To show 
that ∥ 𝑇∗ 𝑢𝑛 , 𝑣𝑛 − 𝑇∗ 𝑢, 𝑣 ∥→ 0 𝑎𝑠 𝑛 → ∞. Let us consider 

 𝑇1
∗𝑢𝑛 𝑡 − 𝑇1

∗𝑢 𝑡  

=   𝐻𝛼1 𝑡, 𝑠 
1

0

𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣𝑛 ℘  𝑑℘ 𝑑𝑠 −  𝐻𝛼1 𝑡, 𝑠 
1

0

𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣 ℘  𝑑℘ 𝑑𝑠

≤  |𝐻𝛼1 𝑡, 𝑠 
1

0

  𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣𝑛 ℘  𝑑℘ 𝑑𝑠

− 𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣 ℘  𝑑℘  𝑑𝑠,                                                                                                     (3.20) 

And 
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 𝑇2
∗𝑣𝑛 𝑡 − 𝑇2

∗𝑣 𝑡  

= |  𝐻𝛼2 𝑡, 𝑠 
1

0

𝜙𝑞   𝐻𝛽2 𝑠, ℘ 
1

0

𝜓2 ℘, 𝑢𝑛 ℘  𝑑℘ 𝑑𝑠

−  𝐻𝛼2 𝑡, 𝑠 
1

0

𝜙𝑞   𝐻𝛽2 𝑠, ℘ 
1

0

𝜓2 ℘, 𝑢 ℘  𝑑℘ 𝑑𝑠|

≤   𝐻𝛼2 𝑡, 𝑠  |
1

0

𝜙𝑞   𝐻𝛽2 𝑠, ℘ 
1

0

𝜓2 ℘, 𝑢𝑛 ℘  𝑑℘ 𝑑𝑠

− 𝜙𝑞   𝐻𝛽2 𝑠, ℘ 
1

0

𝜓2 ℘, 𝑢 ℘  𝑑℘ |𝑑𝑠.                                                                                                     (3.21) 

With the help of (3.20), (3.21) and due to the continuity of the functions 𝜓1 , 𝜓2 we have  𝑇1
∗𝑢𝑛 𝑡 − 𝑇1

∗𝑢 𝑡  → 0 𝑎𝑠 𝑛 → ∞.This 
implies that 𝑇1

∗ is continuous. Similarly,  𝑇2
∗𝑣𝑛 𝑡 − 𝑇2

∗𝑣 𝑡  → 0 𝑎𝑠 𝑛 → ∞, which implies 𝑇2
∗ is continuous. The continuity of 

𝑇1
∗ 𝑎𝑛𝑑 𝑇2

∗ implies that operator 𝐹 = (𝑇1
∗, 𝑇2

∗) is continuous. 

Now, for the inequality (3.19), from (3.16), (3.17) and assumption (𝑄1), we continue as 

 𝑇1
∗𝑢 𝑡  =   𝐻𝛼1 𝑡, 𝑠 

1

0

𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣 ℘  𝑑℘ 𝑑𝑠  

               ≤   𝐻𝛼1 𝑡, 𝑠  
1

0

𝜙𝑞   |𝐻𝛽1 𝑠, ℘ ||
1

0

𝜓1 ℘, 𝑣 ℘  |𝑑℘ 𝑑𝑠                                                                                        (3.22) 

               ≤   𝐻𝛼1 𝑡, 𝑠  
1

0

𝜙𝑞   |𝐻𝛽1 𝑠, ℘ |𝜙𝑝(𝑎1 ∥ 𝑣 ∥𝑘1 + 𝕄𝜓1

∗ )𝑑℘
1

0

 𝑑𝑠            

              ≤  
1

Γ(𝛼1 + 1)
+

1

Γ 𝑚 Γ(𝛼1 − 𝑚 + 2)
  

1

Γ(𝛽1 + 1)
+

1

Γ(𝛽1 + 1)
 

𝑞−1

 𝑎1 ∥ 𝑣 ∥𝑘1   + 𝕄𝜓1

∗   

              = Υ1 𝑎1 ∥ 𝑣 ∥𝑘1+ 𝕄𝜓1

∗  .                               

And 

 𝑇2
∗𝑣 𝑡  =   𝐻𝛼2 𝑡, 𝑠 

1

0

𝜙𝑞   |𝐻𝛽2 𝑠, ℘ 
1

0

||𝜓2 ℘, 𝑢 ℘  |𝑑℘ 𝑑𝑠  

               ≤  |𝐻𝛼2 𝑡, 𝑠 |
1

0
𝜙𝑞   |𝐻𝛽2 𝑠, ℘ 

1

0
||𝜓2 ℘, 𝑢 ℘  |𝑑℘ 𝑑𝑠                                                                                        (3.23) 

                 ≤  |𝐻𝛼2 𝑡, 𝑠 |
1

0

𝜙𝑞   |𝐻𝛽2 𝑠, ℘ 
1

0

|𝜙𝑝(𝑏1 𝑢 𝑘2 + 𝕄𝜓2

∗ )𝑑℘ 𝑑𝑠                                 

               ≤  
1

Γ(𝛼2+1)
+

1

Γ 𝑚 Γ(𝛼2−𝑚+2)
  

1

Γ(𝛽2+1)
+

1

Γ(𝛽2+1)
 

𝑞−1

(𝑏1 ∥ 𝑢 ∥𝑘2+ 𝕄𝜓2

∗ ) 

               = Υ2(𝑏1 𝑢 𝑘2 + 𝕄𝜓2

∗ ) 

With the help of (3.22), (3.23), we proceed 

|𝐹∗ 𝑢, 𝑣  𝑡 | ≤ Υ1 𝑎1 ∥ 𝑣 ∥𝑘1+ 𝕄𝜓1

∗  + Υ2(𝑏1 ∥ 𝑢 ∥𝑘2 + 𝕄𝜓2

∗ ) 

                                                                          ≤ 𝛿∗ ∥  𝑢, 𝑣 ∥𝑘+ 𝜌1
∗                                                                                     (3.24) 

This completes the proof. 

Theorem 3.3.Assumethat (𝑄1) holds true. Then𝐹∗: 𝜔∗ → 𝜔∗ is compact and 𝜉 − Lipschitzwith constant zero. 

Proof. Theorem 3.2 implies that𝐹∗: 𝜔 → 𝜔 is bounded. Next, let ℬ ⊂ ℳ𝑟 ⊂ 𝜔∗. Then, by (𝑄1), Lemma 3.1, Eq. (3.12), (3.13), 
then for any 𝑡1, 𝑡2 ∈  0,1 , we have 
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 𝑇1
∗𝑢 𝑡1 − 𝑇1

∗𝑢 𝑡2  

=   𝐻𝛼1 𝑡1, 𝑠 
1

0

𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣 ℘  𝑑℘ 𝑑𝑠

−  𝐻𝛼1 𝑡2, 𝑠 
1

0

𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣 ℘  𝑑℘ 𝑑𝑠                                                                              (3.25) 

≤  |𝐻𝛼1 𝑡1, 𝑠 
1

0

− 𝑔𝛼1 𝑡2, 𝑠 |𝜙𝑞   |𝐻𝛽1 𝑠, ℘ 
1

0

|𝜙𝑝(𝑎1 ∥ 𝑣 ∥𝑘1 + 𝕄𝜓1

∗ )𝑑℘ 𝑑𝑠 

≤  
|𝑡1

𝛼1 − 𝑡2
𝛼1 |

Γ 𝛼1 + 1 
+

|𝑡1
𝑚−1 − 𝑡2

𝑚−1|

Γ 𝑚 Γ 𝛼1 − 𝑚 + 2 
  

1

Γ 𝛽1 + 1 
+

1

Γ 𝛽1 + 1 
 

𝑞−1

 𝑎1 ∥ 𝑣 ∥𝑘1 + 𝕄𝜓1

∗  , 

 

|𝑇2
∗𝑣 𝑡1 − 𝑇2

∗𝑣 𝑡2 |

=   𝐻𝛼2 𝑡1, 𝑠 
1

0

𝜙𝑞   𝐻𝛽2 𝑠, ℘ 
1

0

𝜓2 ℘, 𝑢 ℘  𝑑℘ 𝑑𝑠

−  𝐻𝛼2 𝑡1, 𝑠 
1

0

𝜙𝑞   𝐻𝛽2 𝑠, ℘ 
1

0

𝜓2 ℘, 𝑢 ℘  𝑑℘ 𝑑𝑠                                                                              (3.26) 

≤  |𝐻𝛼2 𝑡1, 𝑠 
1

0

− 𝐻𝛼2 𝑡1, 𝑠 |𝜙𝑞   |𝐻𝛽2 𝑠, ℘ 
1

0

|𝜙𝑝(𝑏1 𝑢 𝑘2 + 𝕄𝜓2

∗ )𝑑℘ 𝑑𝑠 

≤  
|𝑡1

𝛼2 − 𝑡2
𝛼2 |

Γ 𝛼2 + 1 
+

|𝑡1
𝑚−1 − 𝑡2

𝑚−1|

Γ 𝑚 Γ 𝛼2 − 𝑚 + 2 
  

1

Γ(𝛽2 + 1)
+

1

Γ(𝛽2 + 1)
 

𝑞−1

𝑏1 𝑢 𝑘2 + 𝕄𝜓2

∗ ), 

From (3.25), (3.26), we have 

|𝐹∗ 𝑢, 𝑣  𝑡1 − 𝐹∗ 𝑢, 𝑣  𝑡2 |

≤  
 𝑡1

𝛼1 − 𝑡2
𝛼1  

Γ 𝛼1 + 1 
+

 𝑡1
𝑚−1 − 𝑡2

𝑚−1 

Γ 𝑚 Γ 𝛼1 − 𝑚 + 2 
  

1

Γ 𝛽1 + 1 
+

1

Γ 𝛽1 + 1 
 

𝑞−1

 𝑎1 ∥ 𝑣 ∥𝑘1 + 𝕄𝜓1

∗  

+  
 𝑡1

𝛼2 − 𝑡2
𝛼2 

Γ 𝛼2 + 1 
+

 𝑡1
𝑚−1 − 𝑡2

𝑚−1 

Γ 𝑚 Γ 𝛼2 − 𝑚 + 2 
  

1

Γ 𝛽2 + 1 
+

1

Γ 𝛽2 + 1 
 

𝑞−1

(𝑏1 𝑢 𝑘2

+ 𝕄𝜓2

∗                                                                                                                                                                         (3.27) 

As 𝑡1 → 𝑡2 , (3.27) approaches to zero which may be observe on the right side. Thus, the operator𝐹∗ = (𝑇1
∗, 𝑇2

∗) is an equi-
continuous on ℬ. Arzela-Ascoli theorem implies that 𝐹∗ ℬ  is compact. Ultimately, ℬ is 𝜉 − Lipschitz with constant zero. 

Theorem 3.4. With assumtions 𝑄1 − 𝑄2and𝛿∗ < 1, the system of FDEs with 𝜙𝑝  (1.1) has a bounded solution in 𝜔∗. 

Proof. For existence of solution of the coupled differential system of fractional order (1.1), we take help from Theorem 2.9. Let us 
consider the set  

𝑆 =   𝑢, 𝑣 ∈ 𝜔∗: there exist 𝜆 ∈  0,1 , such that 𝑢, 𝑣 = 𝜆𝐹 𝑢, 𝑣  , 

We show that S is bounded. For this we assume a contrary path. Let for some  𝑢, 𝑣 ∈ 𝑆, such that ∥  𝑢, 𝑣 ∥= 𝒥 → ∞. But from 
Theorem 3.2, we have 

∥  𝑢, 𝑣 ∥=∥  𝜆𝐹 𝑢, 𝑣 ∥≤∥ 𝐹 𝑢, 𝑣 ∥                                                                                                                             (3.28) 

                                    ≤ 𝛿∗ ∥  𝑢, 𝑣 ∥𝑘+ 𝜌1
∗ 

Since ∥  𝑢, 𝑣 ∥= 𝒥, then (3.28) implies 

∥  𝑢, 𝑣 ∥≤ 𝛿∗ ∥  𝑢, 𝑣 ∥𝑘+ 𝜌1
∗             

                          1 ≤ 𝛿∗
∥  𝑢, 𝑣 ∥𝑘

∥  𝑢, 𝑣 ∥
+

𝜌1
∗

∥  𝑢, 𝑣 ∥
           

                                 1 ≤ 𝛿∗
1

𝒥1−𝑘
+

𝜌1
∗

𝒥
→ 0, 𝑎𝑠 𝒥 → ∞         . 
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This is a contradiction. Ultimately, ∥  𝑢, 𝑣 ∥< ∞ and hence the set S is bounded and therefore, by Theorem 2.9, the operator F 
has atleast one fixed point which is the solution of the coupled system of FDEs (1.1). And the set of solution of (1.1) is bounded 
in𝜔∗. 

Theorem 3.5. Assume that 𝑄1 − 𝑄2 hold. Then Eq. (1.1) has a unique solution provided that 𝜗1 + 𝜗2 < 1. 

Proof. From (3.16), (3.17) and assumptions 𝑄1 − 𝑄2 and Lemma (2.10). Then for any 𝑡1 , 𝑡2 ∈ [0,1], we proceed 

 𝑇1
∗𝑢 𝑡 − 𝑇1

∗𝑢  𝑡  

=   𝐻𝛼1 𝑡, 𝑠 
1

0

𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣 ℘  𝑑℘ 𝑑𝑠 −  𝐻𝛼1 𝑡, 𝑠 
1

0

𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣  ℘  𝑑℘ 𝑑𝑠 

=  |𝐻𝛼1 𝑡, 𝑠 
1

0

|  𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣 ℘  𝑑℘𝑑𝑠 

− 𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣  ℘  𝑑℘ 𝑑𝑠                                                                                                       (3.29) 

     =  𝑝 − 1 𝜎𝑝−2  |𝐻𝛼1 𝑡, 𝑠 |  |𝐻𝛽1 𝑠, ℘ 
1

0

|
1

0

 𝜓1 ℘, 𝑣 ℘  − 𝜓1 ℘, 𝑣  ℘   𝑑℘𝑑𝑠 

     ≤  𝑝 − 1 𝜎𝑝−2𝜆𝜓1
 

1

Γ(𝛼1 + 1)
+

1

Γ 𝑚 Γ(𝛼1 − 𝑚 + 2)
  

1

Γ 𝛽1 + 1 
+

1

Γ 𝛽1 + 1 
   𝑣 𝑡 − 𝑣  𝑡   ,   

     = 𝜗1  𝑣 𝑡 − 𝑣  𝑡   , 

And 

 𝑇2
∗𝑣 𝑡 − 𝑇2

∗𝑣  𝑡  

=   𝐻𝛼2 𝑡, 𝑠 
1

0

𝜙𝑞   𝐻𝛽2 𝑠, ℘ 
1

0

𝜓2 ℘, 𝑢 ℘  𝑑℘ 𝑑𝑠 −  𝐻𝛼2 𝑡, 𝑠 
1

0

𝜙𝑞   𝐻𝛽2 𝑠, ℘ 
1

0

𝜓2 ℘, 𝑢  ℘  𝑑℘ 𝑑𝑠 

=  |𝐻𝛼2 𝑡, 𝑠 
1

0

|  𝜙𝑞   𝐻𝛽2 𝑠, ℘ 
1

0

𝜓2 ℘, 𝑢 ℘   𝑑℘𝑑𝑠

− 𝜙𝑞   𝐻𝛽2 𝑠, ℘ 
1

0

𝜓2 ℘, 𝑢  ℘  𝑑℘ 𝑑𝑠                                                                                                      (3.30) 

= (𝑝 − 1)𝜎𝑝−2  |𝐻𝛼2 𝑡, 𝑠 
1

0

  |𝐻𝛽2 𝑠, ℘ 
1

0

 |𝜓2 ℘, 𝑢 ℘  − 𝜓2 ℘, 𝑢  ℘  |𝑑℘𝑑𝑠 

≤  𝑝 − 1 𝜎𝑝−2𝜆𝜓2
 

1

Γ(𝛼2 + 1)
+

1

Γ 𝑚 Γ(𝛼2 − 𝑚 + 2)
  

1

Γ 𝛽2 + 1 
+

1

Γ 𝛽2 + 1 
  |𝑢 𝑡 − 𝑢  𝑡   

= 𝜗2 |𝑢 𝑡 − 𝑢  𝑡  . 

From (3.29), (3.30), we have 

 𝐹∗ 𝑢, 𝑣  𝑡 − 𝐹∗ 𝑢 , 𝑣   𝑡  ≤ 𝜗1  𝑣 𝑡 − 𝑣  𝑡   + 𝜗2 |𝑢 𝑡 − 𝑢  𝑡   

                                                    ≤  𝜗1 + 𝜗2  ∥  𝑢, 𝑣  𝑡 −  𝑢 , 𝑣   𝑡 ∥ .                                                                                       (3.31) 

With assumption 𝜗1 + 𝜗2 < 1, Banach’s contraction principle implies that 𝐹∗ has a unique fixed point. As a result, the solution of 
the system of fractional order with 𝜙𝑝  (1.1) is unique. 

Recently, Khan et al.[35] studied the stability of Hyers-Ulam for the following system of FDEs with 𝜙𝑝 : 
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 𝐷0+

𝛽1  𝜙𝑝  𝐷0+

𝛼1𝑢 𝑡   + 𝜓1 𝑡, 𝑣 𝑡  = 0,    𝐷0+

𝛽2  𝜙𝑝  𝐷0+

𝛼2𝑣 𝑡   + 𝜓2 𝑡, 𝑢 𝑡  = 0,                                                                     

 𝜙𝑝  𝐷0+

𝛼1𝑢 𝑡   |𝑡=1 = 𝐼0+

𝛽1−1
 𝜓1 𝑡, 𝑣 𝑡   |𝑡=1 ,                                                                                                                           3.32 

 𝜙𝑝  𝐷0+

𝛼1𝑢 𝑡   
′

|𝑡=1 = 0 =  𝜙𝑝  𝐷0+

𝛼1𝑢 𝑡   
′′

|𝑡=0,                                                                                                                                

 𝜙𝑝  𝐷0+

𝛼2𝑣 𝑡   |𝑡=1 = 𝐼0+

𝛽2−1
 𝜓2 𝑡, 𝑢 𝑡   |𝑡=1,                                                                                                                                      

 𝜙𝑝 𝐷0+

𝛼2𝑣(𝑡)  
′

|𝑡=1 = 0 =  𝜙𝑝 𝐷0+

𝛼2𝑣(𝑡)  
′′

|𝑡=0,                                                                                                                                  

𝑢 0 = 0 = 𝑢′′  0 ,           𝑢 1 = 0,        𝑣 0 = 0 = 𝑣′′  0 ,   𝑣 1 = 0,                                                                                            

  

Where 2 < 𝛼𝑖 , 𝛽𝑖 < 3, 𝜓1 , 𝜓2 ∈ 𝐿 0,1 , 𝑎𝑛𝑑 𝐷0+

𝛼𝑖 , 𝐷0+

𝛽𝑖  𝑓𝑜𝑟 𝑖 = 1,2 are in Caputo sense.  

They converted (3.32) system into following coupled system of Hammerstein-type integral equations given below: 

                                                                     𝑢 𝑡 =  ℋ𝛼1 𝑡, 𝑠 
1

0

𝜙𝑞   ℋ𝛽1 𝑠, 𝜃 
1

0

𝜓1 𝜃, 𝑣 𝜃  𝑑𝜃 𝑑𝑠,                                   (3.33) 

                                                                     𝑣 𝑡 =  ℋ𝛼2 𝑡, 𝑠 
1

0

𝜙𝑞   ℋ𝛽2 𝑠, 𝜃 
1

0

𝜓2 𝜃, 𝑢 𝜃  𝑑𝜃 𝑑𝑠,                                   (3.34) 

where the Green’s function(s) ℋ𝛼1 𝑡, 𝑠 , ℋ𝛽1 𝑠, 𝜃 , ℋ𝛼2 𝑡, 𝑠 , ℋ𝛽2 𝑠, 𝜃 are defined in [35]. 

Definition 3.6. [35] The integral (3.33) and (3.34) is HUS if there exist positive constants 𝐷1
∗, 𝐷2

∗ fulfilling the conditions below: 

For every 𝜆1 , 𝜆2 > 0, if 

|𝑢 𝑡 −  𝒢𝛼1
 𝑡, 𝑠 𝜙𝑞   𝒢𝛽1

𝜓1 𝜏, 𝑣 𝜏  
1

0

 𝑑𝑠| ≤
1

0

𝜆1,      

                                                                      |𝑣 𝑡 −  𝒢𝛼2
 𝑡, 𝑠 𝜙𝑞   𝒢𝛽2

𝜓2 𝜏, 𝑢 𝜏  
1

0

 𝑑𝑠| ≤
1

0

𝜆2 ,                                          (3.35) 

There exists a pair, say (𝑢∗ 𝑡 , 𝑣∗(𝑡)), satisfying 

𝑢∗ 𝑡 =  𝒢𝛼1
 𝑡, 𝑠 𝜙𝑞

1

0

  𝒢𝛽1

1

0

 𝑠, 𝜃 𝜓1 𝜃, 𝑣∗ 𝜃  𝑑𝜃 𝑑𝑠, 

                                                                   𝑣∗ 𝑡 =  𝒢𝛼2
 𝑡, 𝑠 𝜙𝑞   𝒢𝛽2

1

0

(𝑠, 𝜃)𝜓2 𝜃, 𝑢∗ 𝜃  𝑑𝜃 𝑑𝑠,                                    (3.36)
1

0

 

Such that 

  𝑢 𝑡 − 𝑢∗ 𝑡  ≤ 𝐷1
∗𝜆1, 

 𝑣 𝑡 − 𝑣∗ 𝑡  ≤ 𝐷2
∗𝜆2 .                                                                                                                                                                         (3.37) 

Khan.et al also studied HUS for a coupled system of FDEs with initial and boundary conditions [36]. 

1. Hyers-Ulam stability 

          Here we study Hyers-Ulam stability of nonlinear system of FDEs with p-Laplacian operator (1.1). By taking help from 
Definition 3.6 and the work [35], we propose the following definition.  

Definition 4.1. If there exist positive constants 𝐷1
∗, 𝐷2

∗ , then coupled systems of integral equations given by (3.12), (3.13) are 
Hyers-Ulam stable, satisfying: 

For every 𝜆1 , 𝜆2 > 0, if  

                                                                       

 
 
 

 
 𝑢 𝑡 −  𝐻𝛼1(𝑡, 𝑠)

1

0

𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣(℘) 𝑑℘ 𝑑𝑠

𝑣 𝑡 −  𝐻𝛼2 (𝑡, 𝑠)
1

0

𝜙𝑞   𝐻𝛽2 𝑠, ℘ 
1

0

𝜓2 ℘, 𝑢(℘) 𝑑℘ 𝑑𝑠,

                             (4.1)  
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There exist a pair, say (𝑢∗ 𝑡 , 𝑣∗(𝑡)), satisfying 

                                                                      

 
 
 

 
 𝑢∗ 𝑡 =  𝐻𝛼1(𝑡, 𝑠)

1

0

𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣∗(℘) 𝑑℘ 𝑑𝑠,

𝑣∗ 𝑡 =  𝐻𝛼2 (𝑡, 𝑠)
1

0

𝜙𝑞   𝐻𝛽2 𝑠, ℘ 
1

0

𝜓2 ℘, 𝑢∗(℘) 𝑑℘ 𝑑𝑠,

                          (4.2)  

Such that  

 𝑢 𝑡 − 𝑢∗ 𝑡  ≤ 𝐷1
∗𝜆1 ,                                                                                                                                                                         (4.3) 

 𝑣 𝑡 − 𝑣∗ 𝑡  ≤ 𝐷2
∗𝜆2 . 

Theorem 4.2.With the assumptions (𝑄1),(𝑄2), solution of couple system of FDEs 𝜙𝑝  (1.1), is Hyers-Ulam stable. 

Proof. From Theorem 3.5 and definition 4.1, let  𝑢 𝑡 , 𝑣(𝑡)  be a solution of the system (3.12), (3.13). Let (𝑢∗ 𝑡 , 𝑣∗(𝑡)) be any 
other approximation satisfying (4.2). Then, we have 

 𝑢 𝑡 − 𝑢∗ 𝑡  =   𝐻𝛼1 𝑡, 𝑠 
1

0

𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣 ℘  𝑑℘ 𝑑𝑠 −  𝐻𝛼1(𝑡, 𝑠)
1

0

𝜙𝑞   𝐻𝛽1 𝑠, ℘ 
1

0

𝜓1 ℘, 𝑣∗(℘) 𝑑℘  𝑑𝑠 

  ≤  𝑝 − 1 𝜎𝑝−2    𝐻𝛼1 𝑡, 𝑠  
1

0

  𝐻𝛽1 𝑠, ℘  
1

0

 𝜓1 ℘, 𝑣 ℘  

− 𝜓1 ℘, 𝑣∗ ℘   𝑑℘𝑑𝑠                                                                                                                                       (4.4) 

         ≤  𝑝 − 1 𝜎𝑝−2𝜆𝜓1
 

1

Γ(𝛼1 + 1)
+

1

Γ 𝑚 Γ(𝛼1 − 𝑚 + 2)
  

1

Γ 𝛽1 + 1 
+

1

Γ 𝛽1 + 1 
 ∥ 𝑣 𝑡 − 𝑣∗(𝑡) ∥ 

         = 𝜗1 ∥ 𝑣 𝑡 − 𝑣∗ 𝑡 ∥, 

And 

 𝑣 𝑡 − 𝑣∗ 𝑡  = |  𝐻𝛼2 𝑡, 𝑠 
1

0

𝜙𝑞   𝐻𝛽2 𝑠, ℘ 
1

0

𝜓2 ℘, 𝑢 ℘  𝑑℘ 𝑑𝑠 −  𝐻𝛼2(𝑡, 𝑠)
1

0

𝜙𝑞   𝐻𝛽2 𝑠, ℘ 
1

0

𝜓2 ℘, 𝑢∗(℘) 𝑑℘ 𝑑𝑠 

≤  𝑝 − 1 𝜎𝑝−2   |𝐻𝛼2 𝑡, 𝑠 |
1

0

 |𝐻𝛽2 𝑠, ℘ 
1

0

||𝜓2 ℘, 𝑢 ℘  

− 𝜓2 ℘, 𝑢∗ ℘  |𝑑℘𝑑𝑠                                                                                                                                        4.5  

       ≤  𝑝 − 1 𝜎𝑝−2𝜆𝜓2
 

1

Γ(𝛼2 + 1)
+

1

Γ 𝑚 Γ(𝛼2 − 𝑚 + 2)
  

1

Γ 𝛽2 + 1 
+

1

Γ 𝛽2 + 1 
 ∥ 𝑢 𝑡 − 𝑢∗ 𝑡 ∥ 

       = 𝜗2 ∥ 𝑢 𝑡 − 𝑢∗ 𝑡 ∥ 

Where 𝐷1
∗ = 𝜗1, 𝐷2

∗ = 𝜗2. Hence, by the help of (4.4), (4.5) the system (3.12), (3.13), is Hyers-Ulam stable. Therefore, Eq. (1.1) is 
Hyers-Ulam stable. 

CONCLUSION 

We have considered a high order coupled system of FDEs 
with nonlinear p-Laplacian operator for the examination of 
existence, uniqueness of solution and Hyer-Ulam stability by 
using topological degree theory. For these aims, we 
transformed the supposed problem into an integral system via 
Green’s function(s) and assumed certain necessary conditions 
over a Banach space. Our results are more general and useful 
than the standard case. 
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