ARGOND

Proudly Operated by Battelle Since 1965

Developing the First Supply of Underground Argon

THOMAS ALEXANDER

Pacific Northwest National Laboratory

1

Argon on Earth

269 y

³⁹₁₈Ar

100% 10.11 3/2+

Q_{β-}=565

$\frac{Atmospheric \ isotopic \ abundance}{J.-Y. \ Lee, \ et \ al., \ Geochim. \ Cosmochim. \ Acta \ 70 \ (2006) \ 4507-4512} \\ ^{36}Ar - 0.334\% \\ ^{38}Ar - 0.063\% \\ ^{40}Ar - 99.604\%$

- ⁴⁰Ar comes from ⁴⁰K decay
- ▶ ³⁹Ar Origins
 - ⁴⁰Ar(n,2n)→³⁹Ar
 - ⁴⁰Ar(p,np)→³⁹Ar
- Underground via U + Th fission neutrons

The Hunt

Proudly Operated by Battelle Since 1965

2007: Helium Reserve ³⁹Ar content < 5% atmospheric levels

2007: Begin Searching CO₂ Wells Notes on Trip to Busyeros - May 23-26 2007 and sal for Small Scale Argon Production in the 2008 Campaign

Discovery of underground argon with low level of radioactive ³⁹Ar and possible applications to WIMP dark matter detectors

and possible applications to WIMP dark matter detectors
One of the second secon arXiv:0712.0381v1

cs, Note Chance University, Noter Davas, DJ 46556, USA Bogineerica, Marring Hill, NJ 07974, USA del Gai, Morring Hill, NJ 07974, USA Marring H Bern, Nicherstone S. (2018), DiSA viewing of Bern, Nicherstone S. (2018), Bern, Switzenland Yagh Androngi PAN, 37-542 Kraisna, Polend Yangh Changel Ginasten, Honsen, TX 77204, USA gence, Stanford University, Sonford, CA 94305, USA di Flouo, University of Milane Bioceco, Milane 201306, IoSA

We report on the first measu Helium Reserve was found to We report on the first measurement of 10 kr in argon from underground natural gas reservoirs. The gas stored in the US National Helium Reserve was found to contain a low level of 10 Ar. The ratio of 10 Ar to ratio argon was month to be 10 cited 10 (Ar). Reset than 85 the value in attompheric argon $^{(10)}$ (Ar)(Ar=3-810^{-10}). The total quantity of argon currently proved in the National Helium Reserve is stimulated at 1000 Gas. 10 Ar presents one of the most important backgrounds in argon detectors for VIMP

	Notes on Proposal for Sas Notes on T Proposal f	Trip to Busyeros - May 21-26 2 11 Scale Argon Froduction in th rip to Busyeros - May 2 and for Small Scale Argon P in the 2008 Campaign	007 and e 2008 Campaign 23-26 2007 roduction	2008: First Production		
F. Clercitor, F. do Tasar, C. Okliki, A. Gureni, A. Tana, A. Balan Physics Department of Frischen University Fabruary 10, 2008			ti, rsity	First Large Scale Production of Argon Depleted in ³⁰ Ar from Underground Wells H. Babcock ¹ C. Ballentine [*] R. Banail J. Benziger [*] J. Bangers [*] F. Cala A. Chavaria [*] P. Collon [*] F. Dahok-Verser [*] <i>et</i> . <i>Hase</i> [*] C. Gallaut		
		Gas from Liquid Trap	Gas from the PSA	A. Goretti ^{a,*} W. Hayoz ^j T. Hohman ^a An. Ianni ^a B. Loer ^{a,*} H.H. Loos S. Mukhopadhyay ^f A. Nelsan ^a A. Pocar ^k B. Purtschert ⁱ D. Bohertson ^c B. Sa		
	Ar	290 ppn	2.	C. Schmitt ^e S. Vanderburg ¹ V. Vanderburg ¹		
	CH4	11.5%	1200 p	^b Department of Physics, Princeton University, Princeton, NJ 08544, USA ^b Department of Chemical Engineering, Princeton University, Princeton, NJ 0854		
	CO2	79.3%	6500 p	¹ Department of PApics, onnersity of noise Danie, Nore Danie, 18 4000, 1 ¹ Department of Geosciences, University of Houston, Houston, TX 19204, U		
	C.H,	0 ppb	0 p	¹ Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 1 ² Schedul of Generationses The University Conductive Planetary Sciences (Conductive)		
	H2	467 ppn	750 p	^b Department of Physics, Stanford University, Stanford, CA 94205, USA 'Physics Institute, University of Bern, 3012 Bern, Switterland		
	820	2860 ppm	5000 p	¹ Beliant Holdings Ltd., Odesse, TX 79764, USA ^k AirSep Corporation, Buffalo, NY 14208, USA		
	Re	700 ppm	22.	¹ Koch Modular Process Systems, Paramus, NJ 07032, USA		
	N2	8.78	73.			
	01	550 ppm	120 p	Abstract		
Table 1: 0 from the 1	composition of the SA unit.	e stream from the liquid t	rap and of the stream	We report on the first large-scale production of depleted argon from underground gas wells. We p the CO2, fiquidior of the Relation Dry less Plant in Bayerors, NM, which a special Vecuum Swing Adde directly from the well into the liquidire contains argon at the concentration of 0-70 ppm, and the arg stream of the liquidir is in the range 2004-100 pm. The Vacuum Swing Addeeption plant produces		

First Large Scale Production of Argon Depleted in ³⁹Ar from Underground Wells H. Bahred C. Hardneit P. Dahab. Yenes & E. at La. Y. Controls * M. Canaiya * A. Canartis P. Collarris * D. Dahab. Yenes & E. at La. Y. Collard M. Gally S. Gillangs' A. Gorent Y. W. Harver T. Holman * An Innivi B. Lever * H. Loord D. Dakananar 'S. Mikhopadhya * A. Nevar's R. Functioner V. D. Robertson * R. Saldanha * G. Schlowsky * C. Schnitt V. Sunderburgt Y. V. Vanderburgt / "Superson of Phase. Provide Gimens, Prantis, El Mall, 108 "Departic of Phase. Review of Biomes, Proceeding M. Sanderburgt "Department of Phase. Review of Biomes, Proceeding M. Barris, 108 "Department of Phase. Review of Biomes, Phases, C. Balder, 108 "Department of Phase. Review of Biomes, Review, C. Barris, B. Mall, 108 "Department of Phase. Review of Biomes, Review, C. Barris, B. Mart, 108 "Department of Phase. Review of Biomes, Review, C. Barris, B. Mart, 108 "Department of Phase. Review of Biomes, Review, C. Barris, B. Mart, 108 "Department of Phase. Review of Biomes, Review, C. Barris, B. Mart, 108 "Department of Phase. Review of Biomes, Review, C. Barris, B. Mart, 108 "Department of Phase. Review of Biomes, Review, C. Barris, B. Mart, 108 "Department of Phase. Review of Biomes, Barris, B. Mart, 108 "Department of Phase. Review of Biomes, Barris, B. Mart, 108 "Department of Phase. Review of Phase. Barris, C. Barris, B. Mart, 108 "Department of Phase. Review of Phase. Barris, Barris, B. Mart, 108 "Department of Phase. Review of Biomes, Barris, B. Mart, 108 "Department of Phase. Review of Biomes, Barris, B. Mart, 108 "Department of Phase. Review of Biomes, Barris, B. Mart, 108 "Department of Phase. Review of Biomes, Barris, B. Mart, 108 "Department of Phase. Review of Biomes, Barris, B. Mart, 108 "Department of Phase. Review of Biomes, Barris, B. Mart, 108 "Department of Phase. Review of Biomes, Barris, B. Mart, 108 "Department of Phase. Review of Biomes, Barris, B. Mart, 108 "Second Barris, D. Barris, B. Mart, 108 "Second Barris, Department, 2018, Barris, B. Mart, 108 "Second Barris, Barris, Barris, Barris, Barri from Underground Wells Abstract

ADAPTS The origination of the field impossible production of phyloid agent from anticeprotein gas works. The field spin of the physical spin of the physica

2009: Move to Colorado

First Large Scale Production of Low Radioactivity Argon From Underground Sources

H. O. Back**, F. Calaprios*, C. Condon*, E. de Hass*, R. Ford^b, C. Galbiati*, A. Goretti*, T. Hohmann*, An. Ianni*, B. Lore*^{1,1}, D. Montanari*, A. Nelson*, A. Porar^d

*Department of Physics, Princeton University, Jakom Hall, Princeton, NJ 08544 SNOLAB, 1039 Regional Road Ed., Oriejdone Mise & Pol, Liebg, ON, Consde, PSY 1NR mest of Physics, USE Inder Conducts Research Toward (CIGRT), University of Massethandust, Andrent, MA 01035

Abstract

We report on the first large-scale production of low radioactivity argon from underground gas wells. Low radioactivity of α argon is of general interest, in particular for the nonstruction of large scale WDIP dark matter searchs and detectors of radioactivity argon have activity of about 1 Boyff min the decays of $\alpha^{2}\beta_{\rm Br}$; the concentration of ³⁰Ar in the underground argon we are collecting is at least a factor of 100 lower than this

Walke. The argue is collected from a stream of gas from a CO₂ will in southwestern Columdo with a Varuum Pressure Sering. Adsorption (VFSA) jatar. The gas from the will contains argue at a concentration of 400-000 pcm, and the VFSA point produces an output stream with an argue concentration to the level of 300,000-3000 pm (1-35)) in a single pass. This gas is sent for future processing to Fermilab where it is particle by cryogenic distillation. The argue production much presently for future processing to Fermilab where it is particle by cryogenic distillation. The argue production much presently for future processing to Fermilab where it is particle by cryogenic distillation.

Keywords: depleted argon, dark matter, pressure swing adsorption

Exploration at Doe Canyon

Proudly Operated by Battelle Since 1965

Argon Extraction-Cortez, Colorado

Proudly Operated by Battelle Since 1965

Approximate Input:

Gas Type	Concentration from well		
Carbon Dioxide	96%		
Nitrogen	2.4%		
Methane	0.57%		
Helium	0.43%		
Other hydrocarbons	0.21%		
Argon	440 ppm		

Gas Type	Concentration in Output			
Helium	85-95%			
Argon	3-6% 1-10% Trace			
Nitrogen				
Methane, Oxygen				
Carbon Dioxide	Trace			
Other Hydrocarbons	Trace			

Average Production: 140g/day

First Measurement of Underground Argon

2011-2012

A Study of the Residual ³⁹Ar Content in Argon from Underground Sources

J. Xu^a, F. Calaprice^{a,*}, C. Galbiati^a, A. Goretti^b, G. Guray^a, T. Hohman^{a,1}, D. Holtz^{a,2}, A. Ianni^b, M. Laubenstein^b, B. Loer^{a,3}, C. Love^{c,4}, C.J. Martoff^{*}, D. Montanari^{a,3}, S. Mukhopadhyay⁴, A. Nelson^a, S.D. Rountree^{*}, R.B. Vogelaar^{*}, A. Wright^a

^aDepartment of Physics, Princeton University, Princeton NJ 08544, USA ^bINFN Laboratori Nazionali del Gran Sasso, SS 17 bis Km 18.910, 067010 Assergi (AQ), Italy

(AQ), Italy ^cPhysics Department, Temple University, Philadelphia, PA 19122, USA ^dDepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA

^ePhysics Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Abstract

/:1204.6011v1 [physics.ins-det] 26 Apr 2012

The discovery of argon from underground sources with significantly less ³⁶Ar than atmospheric argon was an important step in the development of direct-detection dark matter experiments using argon as the active target. We report on the design and operation of a low background detector with a single phase liquid argon target that was built to study the ³⁹Ar content of the underground argon. Underground argon from the Kinder Morgan CO₂ plant in Cortez, Colorado was determined to have less than 0.65% of the ³⁹Ar activity in atmospheric argon.

 ${\it Keywords:} \quad {\rm underground \ argon, \ dark \ matter \ search \ technique,}$

Purification– Fermilab, Illinois, USA

Proudly Operated by Battelle Since 1965

Total DS-50 production: 157 kg

14 ppm

Carbon Dioxide

The Target Leaves FNAL for LNGS

- Underground Argon tested in SCENE cryostat
 - Test final polishing technique (Zirconium Getter)
 - Recaptured in Condenser Booster, "Lossless test"
- Moved to coast by truck, transported by sea
 - Reduce possible cosmogenic activation
- Final ~10 kg flown
- Detector filled April 2015

DarkSide-50: The First Underground Argon-based Dark Matter Detector. Physics Letters B, 743 (2015) & Phys. Rev. D 93, 081101(R) (2016)

Tackling Future Challenges

Proudly Operated by Battelle Since 1965

VPSA Challenges:

- Operating R&D plant as production facility
- Lower production rate than expected
- Zeolite poisoning
 - Reduced adsorption efficacy over time
 - 900 lbs of zeolite was replaced 3 times

Contaminants found in Zeolite and Purification Systems									
C ₃ H ₈	C ₅ H ₁₀ O	C ₇ H ₁₄	C ₆ H ₁₂ O	C ₇ H ₁₆	C ₈ H ₁₈				
C ₅ H ₁₀ O	C ₅ H ₁₀ O	C ₆ H ₁₃ I	C ₆ H ₁₂ O	C ₆ H ₁₂ O	C ₈ H ₁₈				
C ₅ H ₁₂	C ₆ H ₁₄	C ₆ H ₁₃ I	C ₇ H ₁₆	C ₅ H ₈ O ₂	C ₆ H ₁₀ O ₂				
C ₆ H ₁₄	C ₆ H ₁₂ O	C ₇ H ₁₆	C ₆ H ₆	C ₈ H ₁₆	C ₈ H ₁₈				
C ₅ H ₁₀	C ₆ H ₁₂	C ₇ H ₁₆	C ₆ H ₆	C ₈ H ₁₆	C ₉ H ₂₀				

Distillation/Purification Challenges

- Unexpected helium and oxygen levels
- Minor contaminations in VPSA output clogged distillation column
- Low production rate from VPSA (recapture of UAr from waste streams)

Why Did We See Oxygen? One Possibility.

- Could all the ³⁹Ar have come from an air infiltration?
 - ³⁹Ar concentration air equivalent:

1.95 mols_{Air}/kg_{UAr}

- Air equivalent for O₂ contamination in CO₂
 - Assume all O₂ is from air
 - Precision gas analysis of CO₂ [one snapshot]:
 - O₂ = 6.7 ppm
 - Ar = 427 ppm
 - DS-50 target production history:
 - Always measured O₂/Ar ~1.5-2%

6.7 ppm_{O2} / 427 ppm_{UAr} \rightarrow 0.392 mols_{O2}/kg_{UAr} \rightarrow 1.87 mols_{Air}/kg_{UAr}

Why Did We See Oxygen? One Possibility.

- ³⁹Ar concentration air equivalent: **1.95 mols_{Air}/kg_{UAr}**
- O2 Contamination in Argon: 1.87 mols_{Air}/kg_{UAr}

Air equivalent for ⁸⁵Kr contamination

- Assume all ⁸⁵Kr is from air
 - ⁸⁵Kr concentration in air = 1.3 Bq/m³_{air}
 - 2.05 mBq/kg_{∪Ar} ➔ 0.070 mols_{Air}/kg_{∪Ar}
- Assume ⁸⁵Kr can absorb on zeolite ~ like N₂
 - N_2 reduction factor through VPSA = 35
- 0.070 mols_{Air}/kg_{UAr-DS50} × 35 = 2.45 mols_{Air}/kg_{UAr-CO2}
 - Very rough, NOT proof of contamination

LOGAN: The LOng-term Gas ANalyzer

Proudly Operated by Battelle Since 1965

Based on an SRS UGA

- Great for qualitative, or if well calibrated, quantitative, measurements
- Ruggedized
- Custom control software

Autonomous

UAr production – Onwards and Upwards

