Subterranean production of ³⁹Ar and implications for Doe Canyon well gas

Ondřej Šrámek 1 and William F. McDonough 2,3

1 Department of Geophysics, Charles University, Prague, Czech Republic, <u>ondrej.sramek@gmail.com</u> 2 Department of Geology, University of Maryland, College Park, Maryland USA, <u>mcdonoug@umd.edu</u> 3 Research Center of Neutrino Sciences and the Department of Earth Sciences, Tohoku University, Japan

³⁶Ar ... primordial, stable

³⁸Ar ... primordial, stable

⁴⁰Ar ... radiogenic, stable

 $^{37}Ar \dots radioactive, t_{1/2} = 35 d$

 $^{39}Ar ... radioactive, t_{1/2} = 269 y$

 $^{42}Ar ... radioactive, t_{1/2} = 32.9 y$

Argon

Atmosphere

Argon the third most abundant gas (~1%)

40Ar from degassing of Earth (decay of 40 K)

39Ar produced cosmogenically: 40 Ar(n,2n) 39 Ar

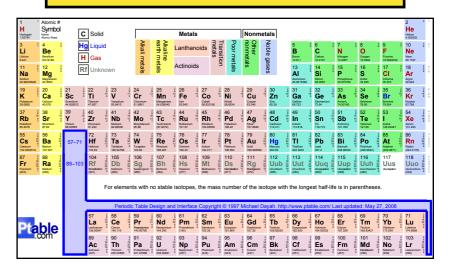
39Ar/Ar = 8 × 10- 16 → ~1 decay per sec per kg 40 Ar/ 36 Ar = 295

<u>Underground</u>

⁴⁰Ar produced by electron capture on ⁴⁰K

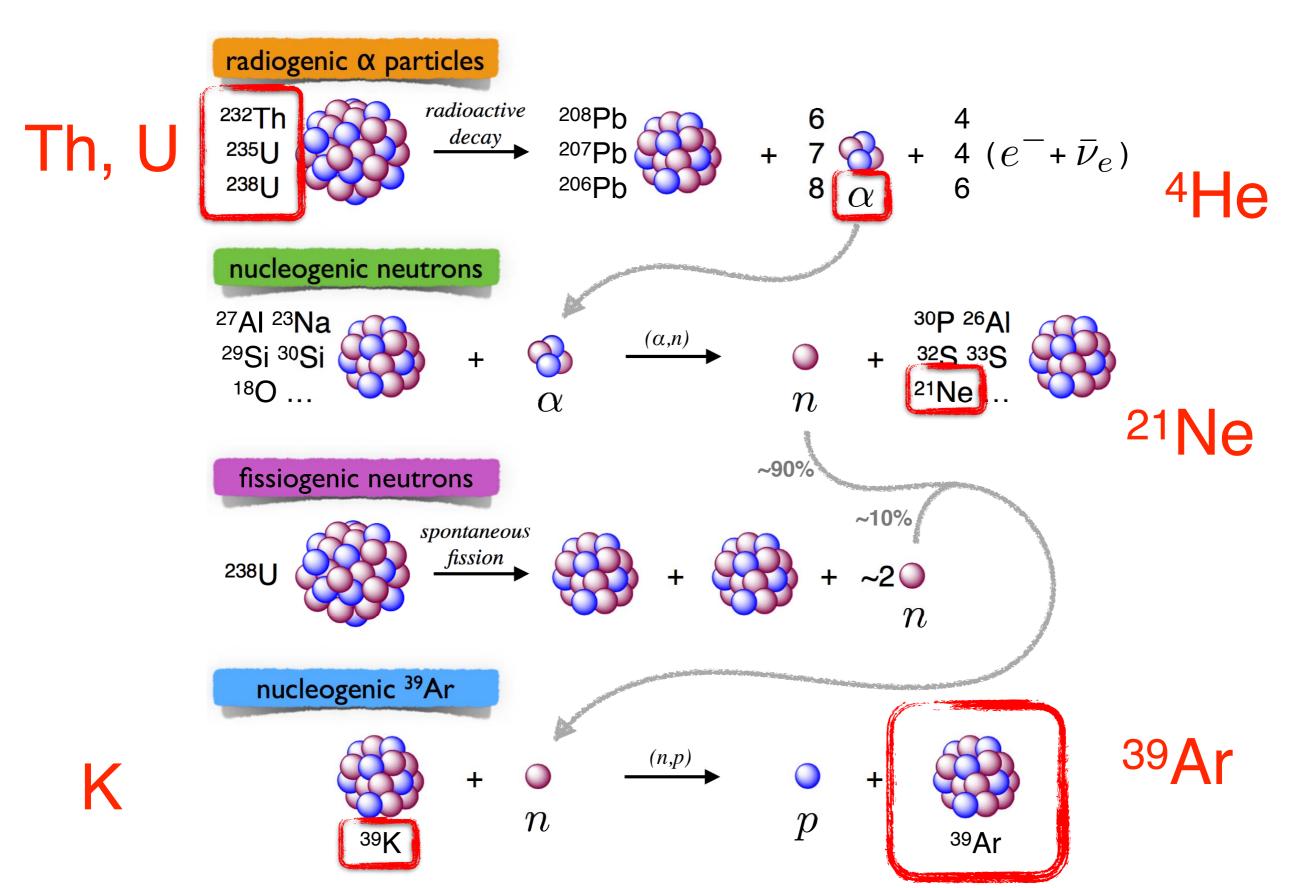
³⁹Ar nucleogenic production

Interest in ³⁹Ar


- Particle physics dark matter searches … seeking low radioactivity argon as target for WIMP detection
- Hydrology environmental radioactive tracer ...
 timescales and pathways of ground-water transport
- Geophysics underground ³⁹Ar of nucleogenic (and not cosmogenic) origin carries signature of source rock composition, esp. concentration in K, Th, U

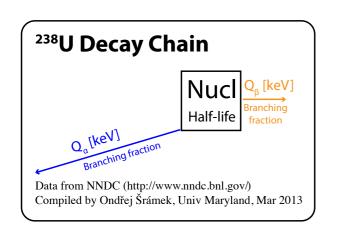
Geophysical interest

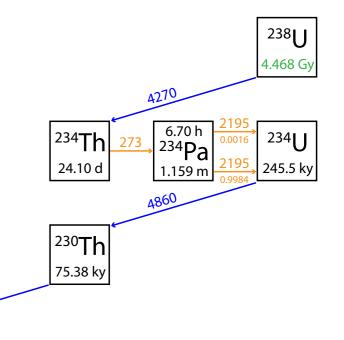
- O, Fe, Si, Mg make up 93% of Earth's mass
- + Al, Ca, Ni → 98% of Earth's mass
- tens ppb of **U** (~10⁻⁸)
- four times as much Th (Th/U ~ 4)
- a few hundred ppm K (K/U ~ 10⁴)
- Long-lived radionuclides ²³⁸U, ²³²Th, ⁴⁰K account for >99% of radiogenic heat produced in the Earth
- A factor of 3 uncertainty in the amount of U, Th, K in the Earth...
- How much power available to power plate tectonics, mantle convection?? Energy balance of the planet??

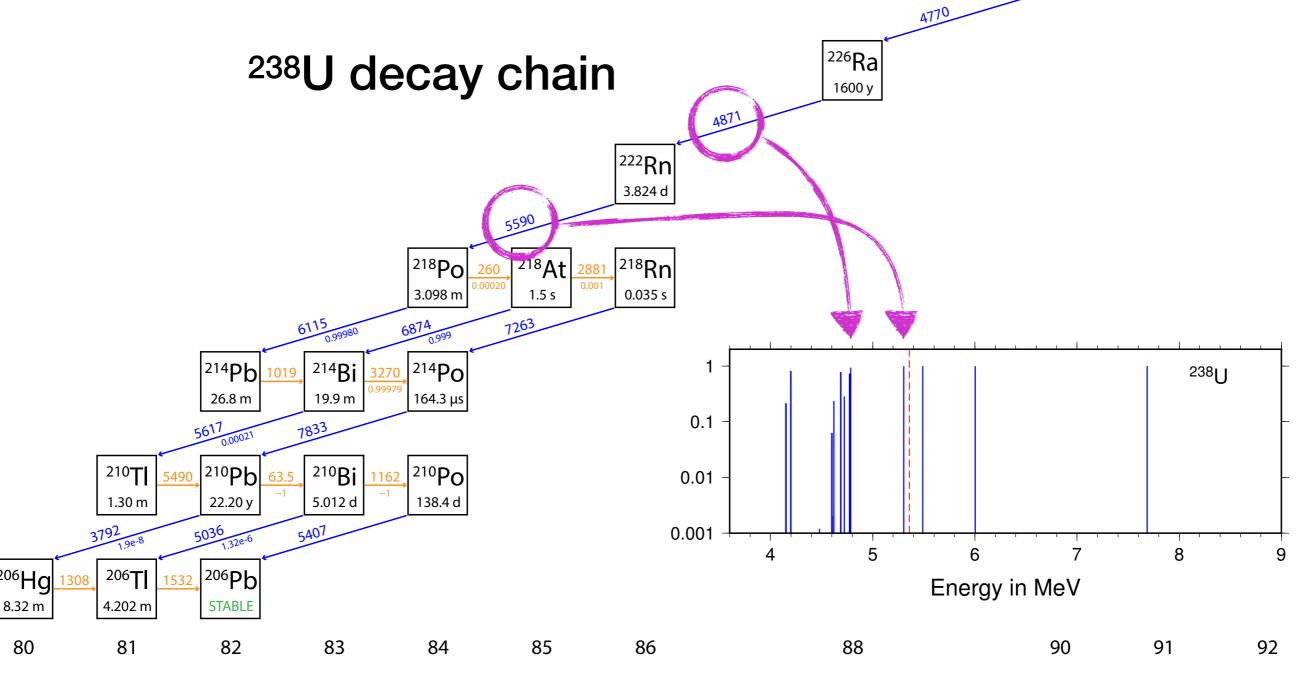

Dynamics and thermal evolution of the Earth

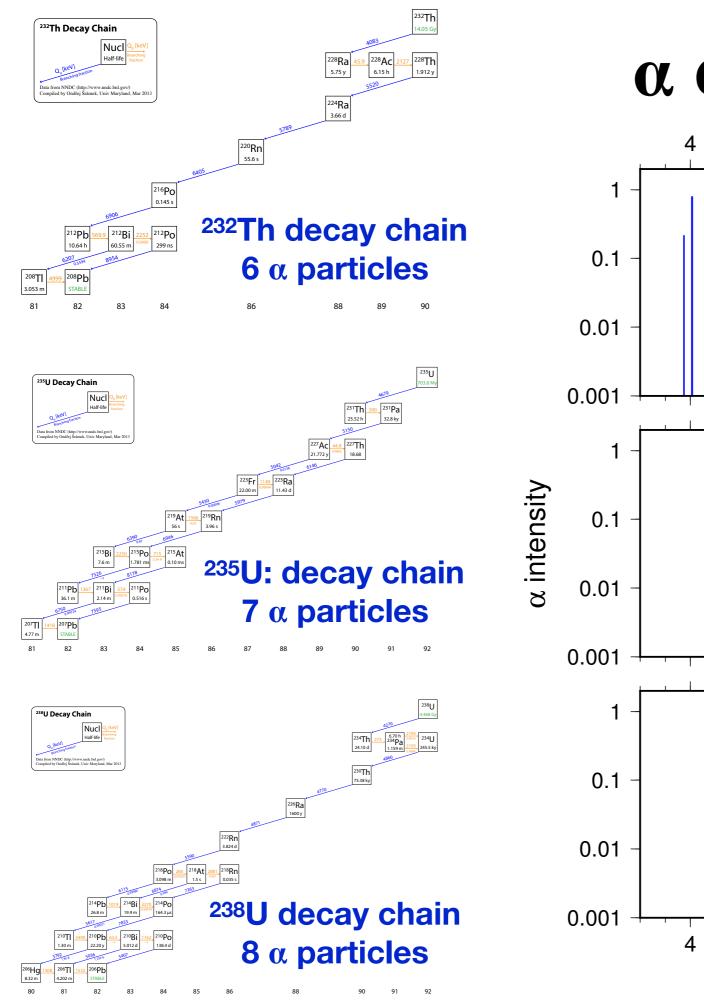
Chemistry of the Earth

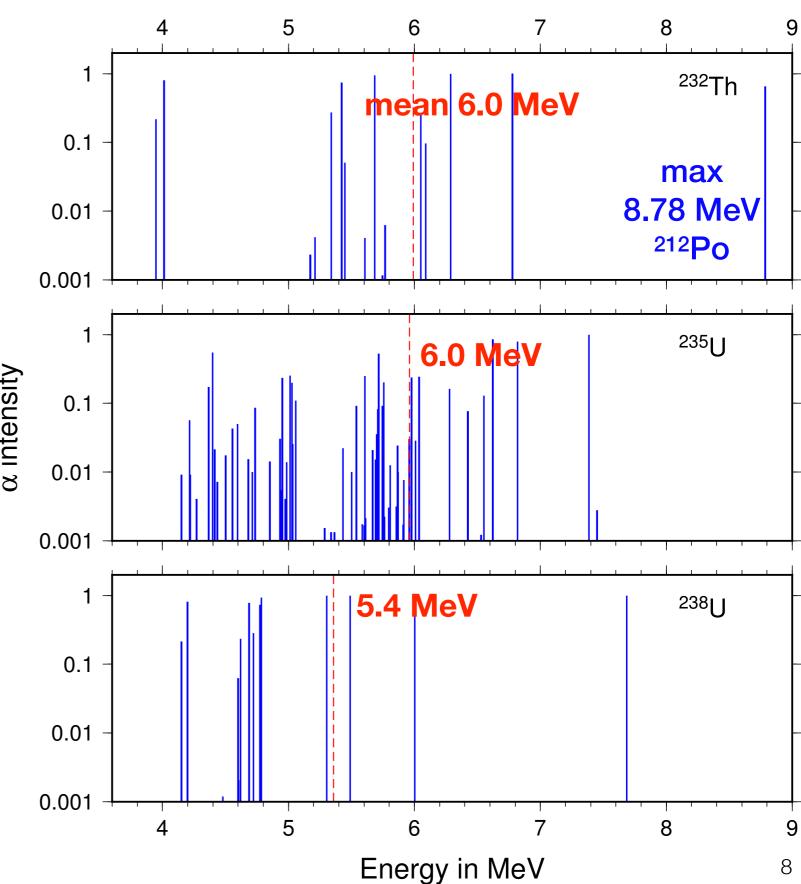
GEONEUTRINOS

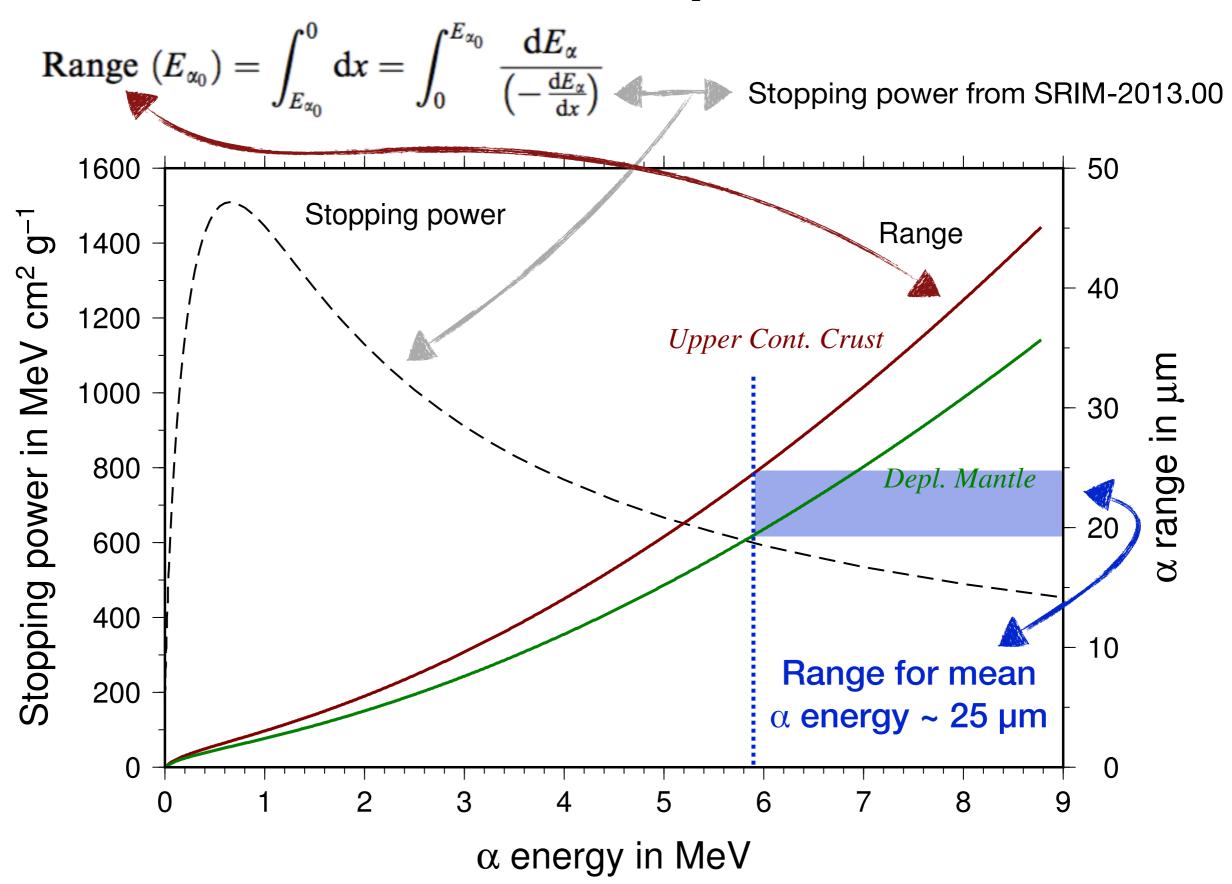

Underground production of noble gases


Calculating underground 39Ar production


- Natural α particle energy spectrum: decay chains and spontaneous fission, inputs from NuDat (<u>www.nndc.bnl.gov/nudat2</u>)
- Slowing and stopping of α particles: stopping power from SRIM-2013.00 (<u>www.srim.org</u>)
- Fast neutrons from (α,n) reactions on light targets:
 (α,n) cross sections from TALYS version 1.6 (www.talys.eu)
- ³⁹Ar from ³⁹K(n,p)³⁹Ar: using MCNP6, a general-purpose Monte Carlo N-Particle transport code (mcnp.lanl.gov)


Šrámek, Stevens, McDonough, Mukhopadhyay, Peterson 2017 Geochim.Cosmochim.Acta doi:10.1016/j.gca.2016.09.040 (arXiv:1509.07436)


Natural α production



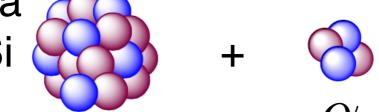
α energy spectrum

Travel distance of α particle in rock

⁴⁴Ca

⁴⁷Ti

$$(\alpha,n)$$


9.3791

325 335

30P 26AI

²¹Ne ...

(α,n) targets

Choice based on:

n

- natural abundance
- (α,n) cross section

Energy threshold

of endothermic reactions

$$E_{th}=-\frac{m_1+m_2}{m_2}Q$$

Coulomb barrier

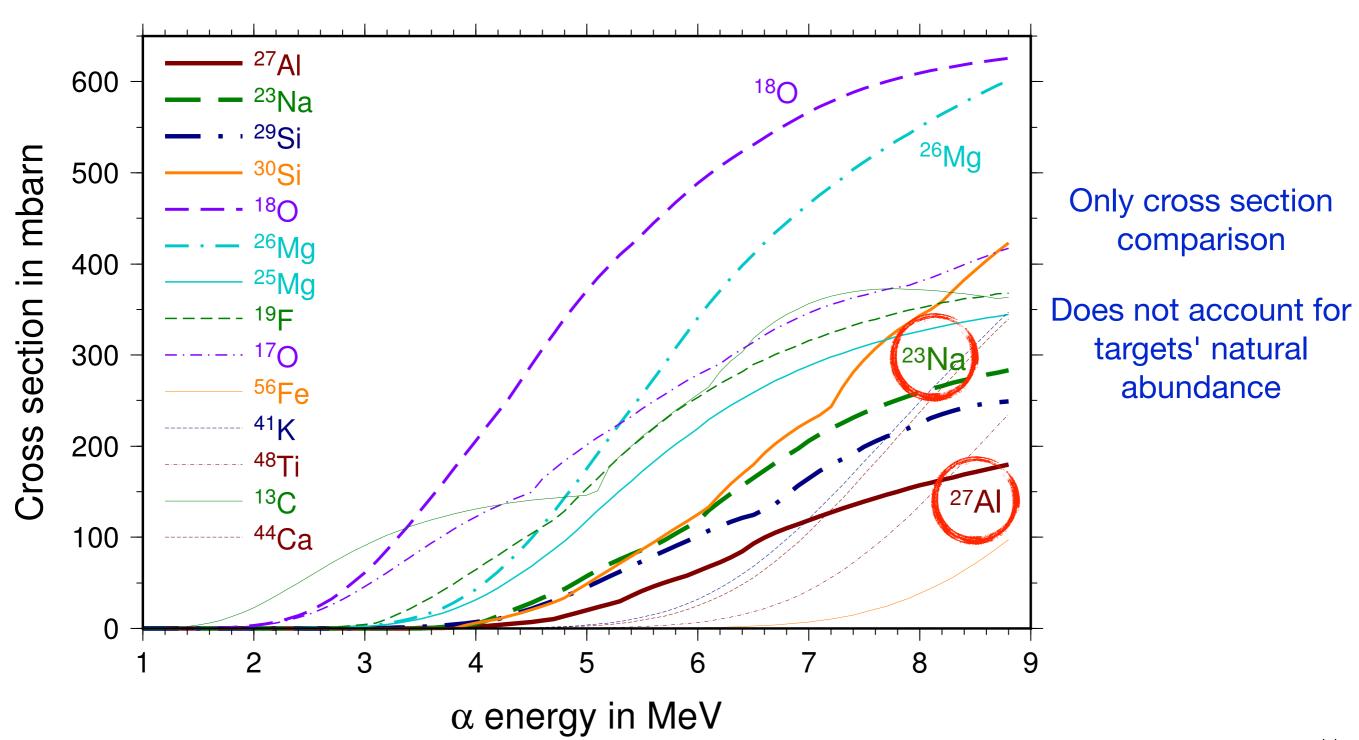
EM repulsion between α & target Restrictive for high Z targets.

$$V_C = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r} = 1.4400 \frac{Z_1 Z_2}{R_{int} [fm]} \text{ MeV}$$

= $\frac{1.4400 Z_1 Z_2}{1.2(A_1^{1/3} + A_2^{1/3})} \text{ MeV},$

⇒ Strong energy dependence

of (α,n) cross sections

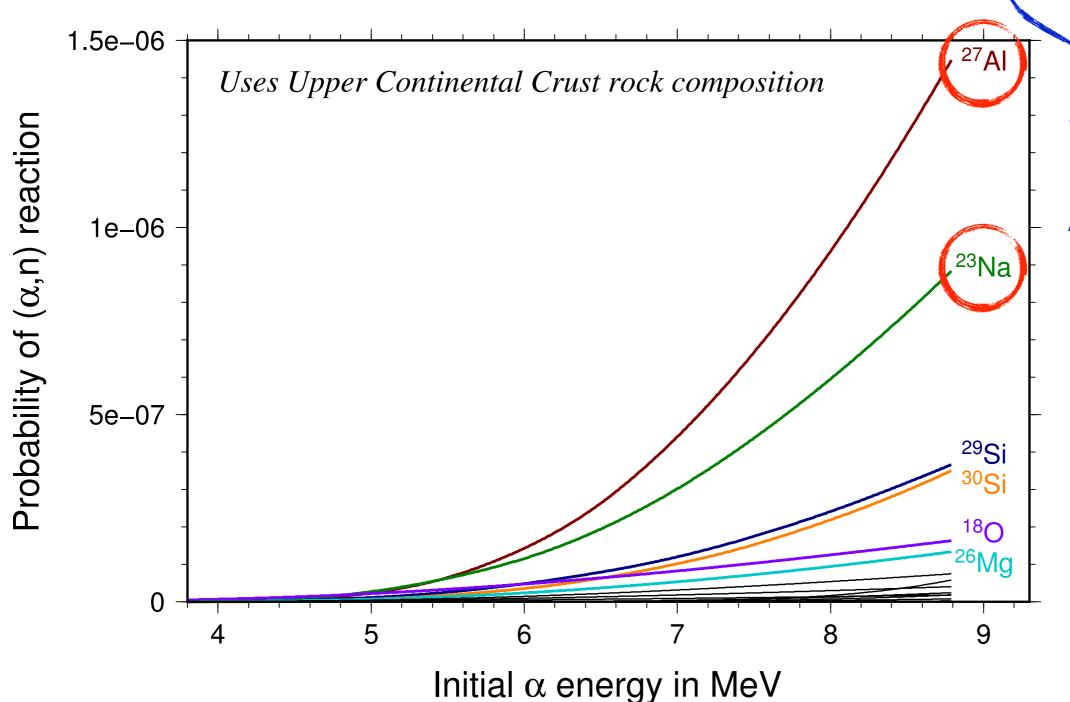

Target	Product	Q	E_{th}	V_C
²⁷ Al	$^{30}\text{P}^* \rightarrow ^{30}\text{Si}$	-2.6425	3.0345	6.8012
²³ Na	$^{26}\text{Al}^* \rightarrow ^{26}\text{Mg}$	-2.9659	3.4823	5.9577
²⁹ Si	^{32}S	-1.5258	1.7365	7.2107
30 Si	33 S	-3.4933	3.9598	7.1571
^{18}O	²¹ Ne	-0.6961	0.851	4.5626
26 Mg	²⁹ Si	0.0341	_	6.3298
25 Mg	28 Si	2.6536	_	6.3838
^{19}F	$^{22}\text{Na}^* \rightarrow ^{22}\text{Ne}$	-1.9513	2.3624	5.0754
^{17}O	²⁰ Ne	0.5867	_	4.6168
⁵⁶ Fe	$^{59}\text{Ni}^* \rightarrow ^{59}\text{Co}$	-5.0961	5.4607	11.5272
41 K	$^{44}\mathrm{Sc}^* \rightarrow ^{44}\mathrm{Ca}$	-3.3894	3.7206	9.0555
⁴⁸ Ti	$^{51}\mathrm{Cr}^* \rightarrow ^{51}\mathrm{V}$	-2.6853	2.9094	10.1118
13 C	$^{16}\mathbf{O}$	2.2156	_	3.656

-2.1825

2.3812

Cross section of (a,n) reaction

Calculated using TALYS version 1.6



(a,n) neutron production

Thick target neutron production function

Probability that α particle of an initial energy participates in (α,n)

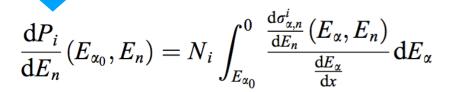
$$P_{i}(E_{\alpha_{0}}) = N_{i} \int_{E_{\alpha_{0}}}^{0} \frac{\sigma_{\alpha,n}^{i}(E_{\alpha})}{\frac{\mathrm{d}E_{\alpha}}{\mathrm{d}x}} \mathrm{d}E_{\alpha}$$

Atomic density of nuclide in rock

Accounts for rock composition

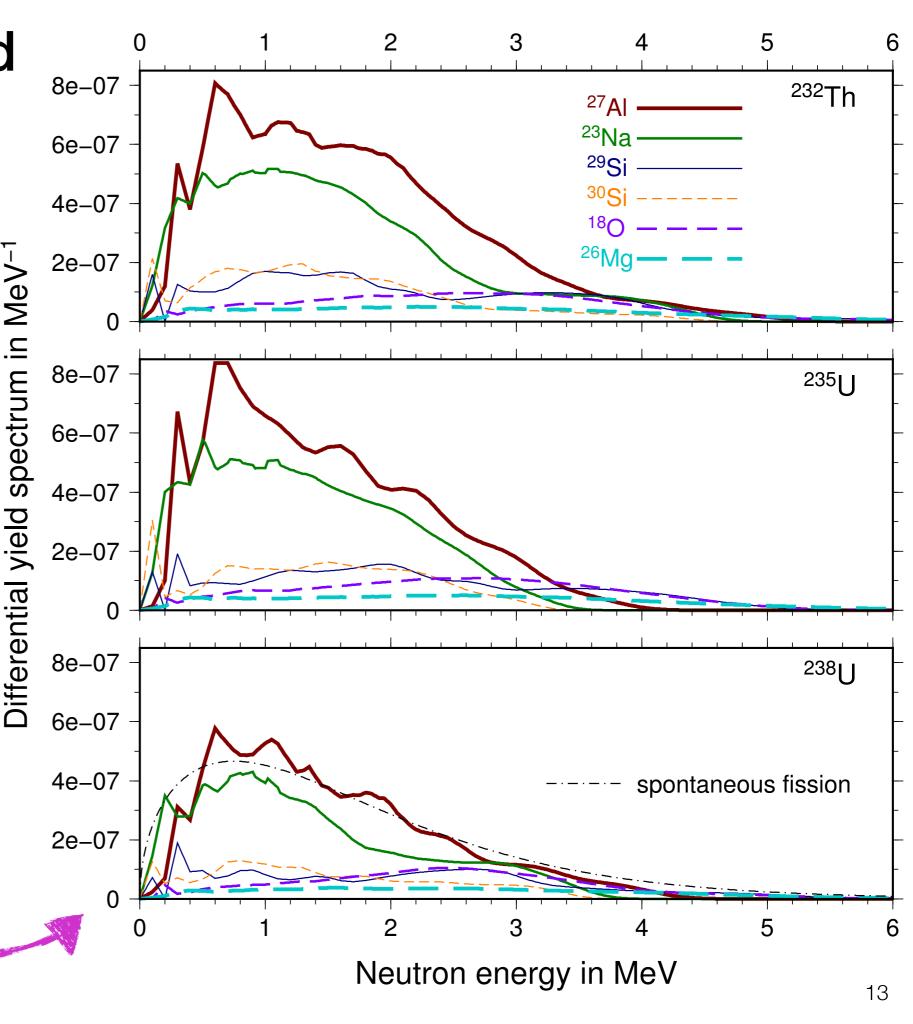
Neutron yield and neutron energy

Following α -decays down the decay chain


Neutron yield

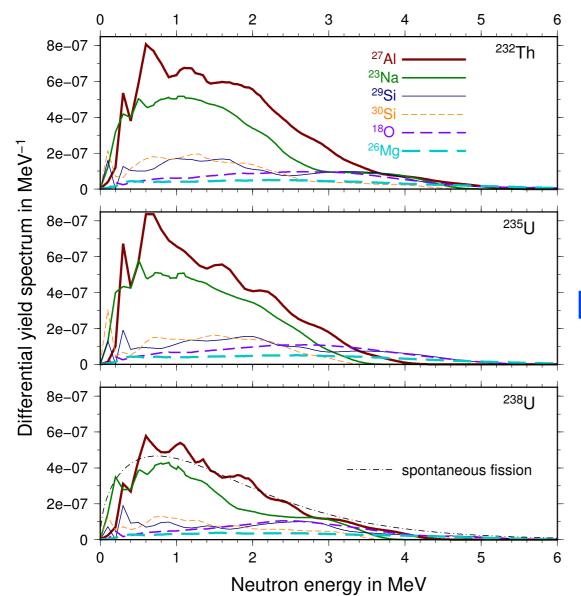
Neutrons per decay of 1 atom of parent radionuclide

$$Y_{\alpha,n}^i = \sum_{k=1}^{ ext{decays}} b_k \sum_{l=1}^{ ext{levels}} f_{kl} P_i(E_{kl})$$
 branching α intensity


Differential neutron production function

$$P_i(E_{\alpha_0}) = N_i \int_{E_{\alpha_0}}^0 \frac{\sigma_{\alpha,n}^i(E_{\alpha})}{\frac{\mathrm{d}E_{\alpha}}{\mathrm{d}x}} \mathrm{d}E_{\alpha}$$

Neutron yield spectrum


$$\frac{\mathrm{d}Y_{\alpha,n}^i}{\mathrm{d}E_n} = \dots$$

³⁹K(n,p)³⁹Ar

exothermic reaction Q = 217.6 keV

Neutron yield spectrum + rock composition

³⁹K is 93.3% of natural potassium, there is ~2 wt% of K in shallow continental crust (global average)

³⁹Ar yield per decay of 1 atom of ²³²Th / ²³⁵U / ²³⁸U

Results

Calculated with rock composition of Upper Continental Crust

Neutron yield per decay of 1 atom

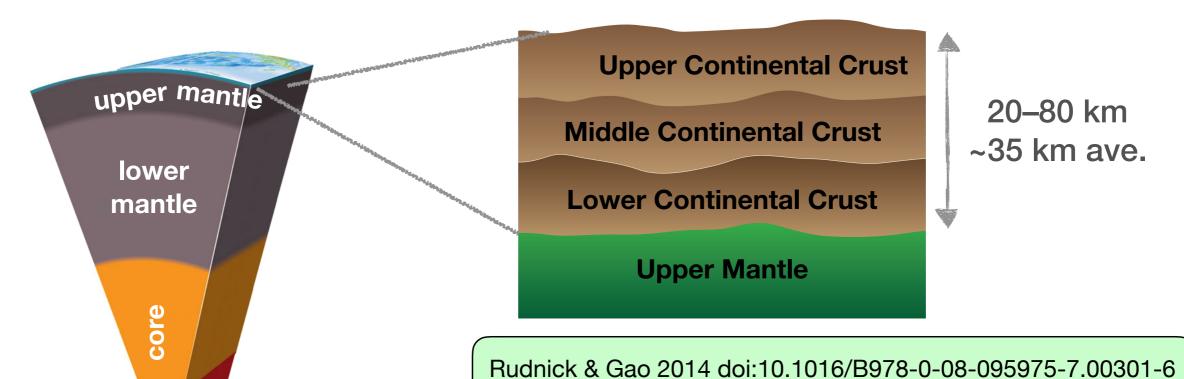
Neutron production rate per kg rock per year

39Ar production rate per kg rock per year

	Neutron yield (Y)			Neutron	Neutron production rate (S_n)			39 Ar production rate (S_{39Ar})			
Target	²³² Th	²³⁵ U	²³⁸ U	²³² Th	²³⁵ U	²³⁸ U	Sum	²³² Th	²³⁵ U	^{238}U	Sum
Upper Continental Crust											
27 Al	1.69e - 6	1.48e - 6	1.05e - 6	2265.0	72.8	1107.0	3445.0	5.15	0.12	2.00	7.27
²³ Na	1.15e - 6	1.07e - 6	7.66e - 7	1547.0	52.5	805.6	2405.0	2.99	0.07	1.22	4.27
²⁹ Si	4.74e - 7	4.32e - 7	$3.13e{-7}$	636.9	21.2	328.7	986.9	2.42	0.08	1.26	3.77
30 Si	4.09e - 7	$3.50e{-7}$	2.53e - 7	549.2	17.2	266.0	832.4	1.04	0.03	0.49	1.55
^{18}O	$3.28e{-7}$	$3.51e{-7}$	2.80e - 7	441.4	17.2	294.2	752.8	2.30	0.09	1.41	3.80
26 Mg	2.01e-7	1.99e - 7	$1.43e{-7}$	270.0	9.8	150.1	429.8	1.43	0.05	0.76	2.24
25 Mg	$1.18e{-7}$	1.19e - 7	8.53e - 8	158.1	5.8	89.8	253.7	1.00	0.04	0.59	1.64
¹⁹ F	6.95e - 8	7.18e - 8	5.36e - 8	93.4	3.5	56.4	153.3	0.24	0.01	0.11	0.36
$^{17}\mathbf{O}$	3.56e - 8	3.77e - 8	3.04e - 8	47.9	1.8	31.9	81.6	0.27	0.01	0.17	0.46
⁵⁶ Fe	3.86e - 8	7.11e - 9	9.45e - 9	51.9	0.3	9.9	62.1	0.06	0.00	0.00	0.07
41 K	1.99e - 8	1.14e - 8	9.81e - 9	26.7	0.6	10.3	37.6	0.06	0.00	0.02	0.08
⁴⁸ Ti	1.30e - 8	4.65e - 9	4.92e - 9	17.5	0.2	5.2	22.9	0.06	0.00	0.01	0.07
13 C	3.85e - 9	4.12e - 9	3.49e - 9	5.2	0.2	3.7	9.0	0.04	0.00	0.03	0.08
⁴⁴ Ca	5.97e - 9	3.14e - 9	2.82e - 9	8.0	0.2	3.0	11.2	0.02	0.00	0.01	0.03
SF	2.35e - 11	1.30e-10	1.14e-6	0.0	0.0	1198.0	1198.0	0.00	0.00	2.97	2.97
Total				6119	203	4360	10 680	17.1	0.49	11.1	28.7

~12% of fast neutrons from SF, the rest from (α ,n)

~11000 neutrons per year per kg rock ~30 ³⁹Ar atoms per year per kg rock


⁴He, n, ²¹Ne, ³⁹Ar production rates

Concentration of K, Th, U decreases with depth in the Earth

Weight fraction

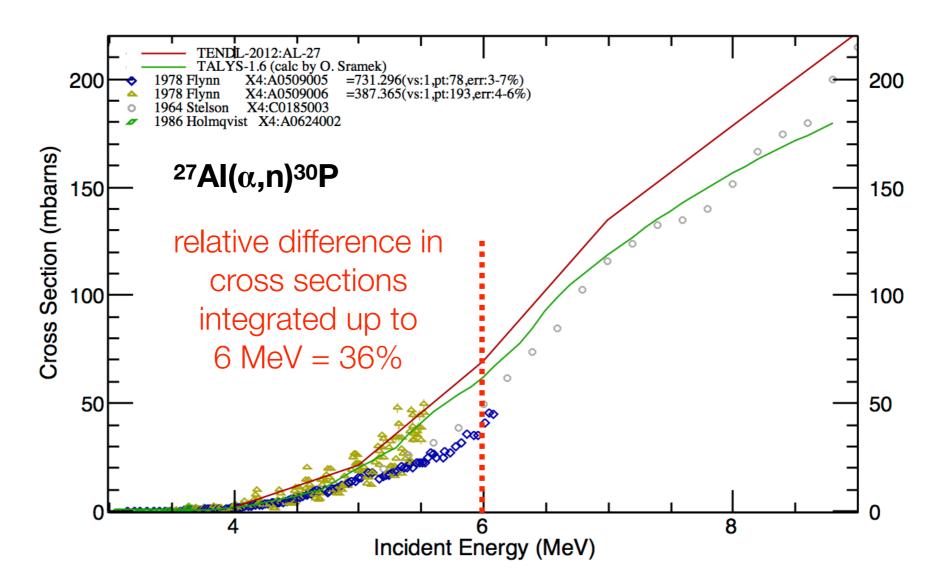
Production rates, 1/(yr kg)

K	Th	U	Composition	⁴ He	neutrons	²¹ Ne	³⁹ Ar
2.32 %	10.5 ppm	2.7 ppm	Upper Continental Crust	1.64×10^{10}	10680	753	28.7
1.91 %	6.5 ppm	1.3 ppm	Middle Continental Crust	8.98×10^9	6114	416	13.9
0.51 %	1.2 ppm	0.2 ppm	Lower Continental Crust	1.53×10^9	1129	70.2	0.749
650 ppm	210 ppb	70 ppb	Bulk Oceanic Crust	3.79×10^{8}	260	15.8	0.0235
60 ppm	13.7 ppb	4.7 ppb	Depleted Upper Mantle	2.51×10^7	22.4	1.06	0.000257

White & Klein 2014 doi:10.1016/B978-0-08-095975-7.00315-6

Salters & Stracke 2004 doi:10.1029/2003GC000597

16


Attempt at quantifying uncertainty

Assuming rock composition is known precisely (false...), what is uncertainty in the calculation?

- Half-lives, branching ratios, α intensities ... relatively small uncertainty <1%
- Stopping power for α particles ... ~3.5%
- Cross sections of (α,n) , (n,p) ... challenging to estimate

Cross sections from TALYS compared to experimental data from EXFOR database. Difference in integrated cross sections used as an estimate of uncertainty.

... not satisfying but perhaps best approach given the lack of consistent uncertainty estimates

Attempt at quantifying uncertainty

	Uncert. est.	Neutron	³⁹ Ar
	%	% contrib.	% contrib.
Decay data, α production	< 1		
Stopping power	3.5		
27 Al(α , n) cross section	36	32	25
23 Na(α , n) cross section	7.7	23	15
$^{29}\mathrm{Si}(\alpha,n)$ cross section	7.3	9.2	13
$^{30}\mathrm{Si}(\alpha,n)$ cross section	20	7.8	5.4
$^{18}O(\alpha, n)$ cross section	17	7.0	13
$^{26}{ m Mg}(\alpha,n)$ cross section	10^{\dagger}	4.0	7.8
$^{25}{ m Mg}(\alpha,n)$ cross section	10^{\dagger}	2.4	5.7
Spontaneous fission	1	11	10
Overall (α, n) , neutron production	12		
Overall (α, n) , ³⁹ Ar production	10		
39 K(n, p) cross section	28		
Neutron production calculation	13		
²¹ Ne production calculation	17 %		
³⁹ Ar production calculation	30		

Comparison to other studies

This study:

disagreement

Mei et al. 2009 <u>10.1016/j.nima.2009.04.032</u>

Granitic rock composition: ▶ neutron production rate 5500 5400 ± 700

Mei et al. 2010 <u>10.1103/PhysRevC.81.055802</u>

▶ ³⁹Ar production rate 7 16 ± 5

Yokochi et al. 2012 10.1016/j.gca.2012.04.034

Cont. crust composition: \rightarrow ³⁹Ar production rate 24 13 ± 3

Yokochi et al. 2014 10.1016/j.chemgeo.2014.02.004

"Lava Creek Tuff" rock > 39Ar production rate = 120 ± 60 140 ± 40

SLOWN2 code calculation, assumes mono-energetic 2 MeV neutrons

> 91 ± 26

35%

decrease

Units: neutrons/(kg yr) atoms/(kg yr)

Plug-in formulae

Example: α particles from ²³⁸U decay, neutrons by ¹⁸O(α ,n)

$$S_n = \chi_n(^{18}O,^{238}U) \times A_O \times A_U$$

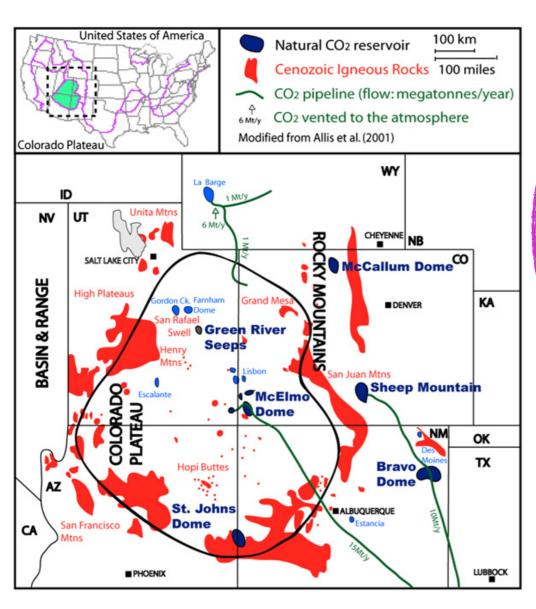
= $(2.27 \times 10^8) \times 0.480 \times 2.7 \times 10^{-6}$
= 294 neutrons/(year kg-rock)

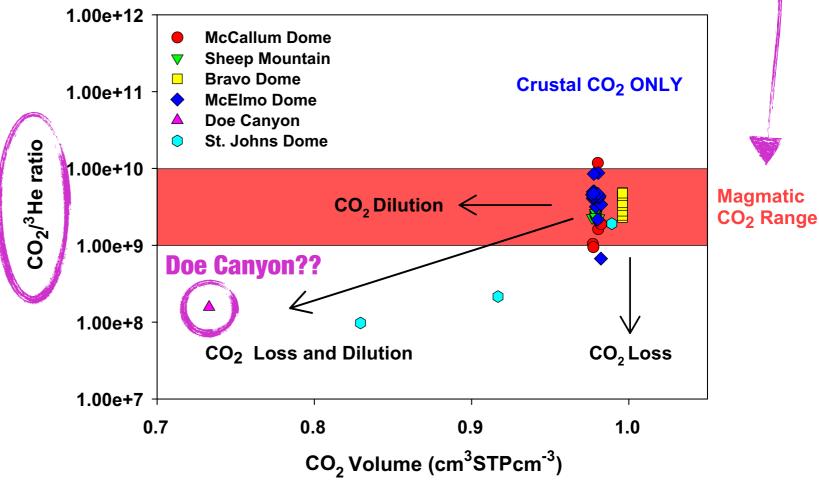
$$S_{39Ar} = \chi_{39Ar}(^{18}O,^{238}U) \times A_O \times A_U \times A_K$$

= $(4.68 \times 10^7) \times 0.480 \times 2.7 \times 10^{-6} \times 0.0232$
= 1.41 atoms/(year kg-rock)

Table of coefficients χ_n and χ_{39Ar}

		Neutron prod	uction		³⁹ Ar product	ion	
	Chain	²³² Th	²³⁵ U	²³⁸ U	²³² Th	^{235}U	^{238}U
(α, n) target	A	Th	U	U	Th	U	U
²⁷ A1	Al	2.65e+9	3.31e+8	5.03e+9	2.59e+8	2.36e+7	3.92e+8
²³ Na	Na	6.07e+9	8.02e + 8	1.23e+10	5.04e + 8	4.46e + 7	8.02e + 8
²⁹ Si	Si	1.95e+8	2.53e+7	3.91e+8	3.19e + 7	4.05e + 6	6.46e + 7
30 Si	Si	1.68e + 8	2.05e + 7	3.17e+8	1.37e + 7	1.35e+6	2.51e+7
18 O	O	8.77e + 7	1.33e+7	2.27e+8	1.97e + 7	2.89e + 6	4.68e+7
26 Mg	Mg	1.72e + 9	2.41e + 8	3.72e+9	3.92e + 8	5.43e + 7	8.13e+8
25 Mg	Mg	1.01e + 9	1.44e + 8	2.22e+9	2.75e + 8	4.04e + 7	6.33e + 8
¹⁹ F	F	1.60e + 10	2.34e + 9	3.75e + 10	1.78e + 9	2.06e + 8	3.17e + 9
¹⁷ O	O	9.50e + 6	1.43e + 6	2.47e + 7	2.34e+6	3.39e + 5	5.70e + 6
⁵⁶ Fe	Fe	1.28e + 8	3.35e + 6	9.55e+7	6.81e + 6	2.53e+4	1.62e + 6
41 K	K	1.10e + 8	8.92e + 6	1.64e + 8	1.06e + 7	4.72e + 5	1.22e + 7
⁴⁸ Ti	Ti	4.35e + 8	2.20e + 7	5.00e+8	5.88e + 7	2.29e+6	5.89e + 7
¹³ C	C	3.61e + 8	5.48e+7	9.96e+8	1.31e+8	2.10e + 7	4.02e + 8
⁴⁴ Ca	Ca	2.98e + 7	2.22e+6	4.29e+7	3.96e + 6	2.13e + 5	4.80e+6
SF	1	3.01e+3	2.37e+3	4.44e+8	2.88e+2	3.09e+2	4.73e+7


Origin of Colorado Plateau CO₂


- methanogenesis
- oil field biodegradation
- kerogene decarboxylation
- hydrocarbon oxidation
- decarbonation of marine carbonates
- degassing of magmatic bodies

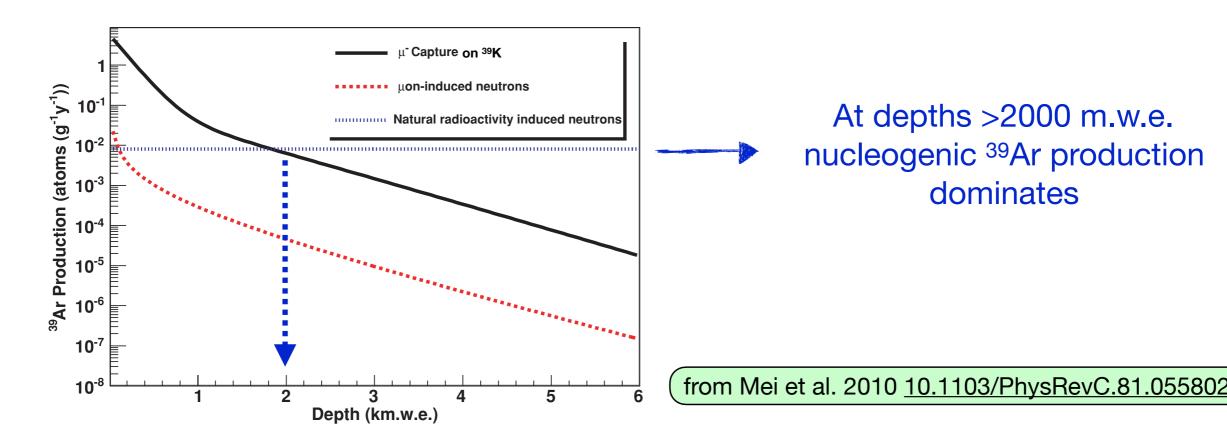
Largely magmatic origin

⇒ Mantle signature in accompanying gases

low CO₂/3He

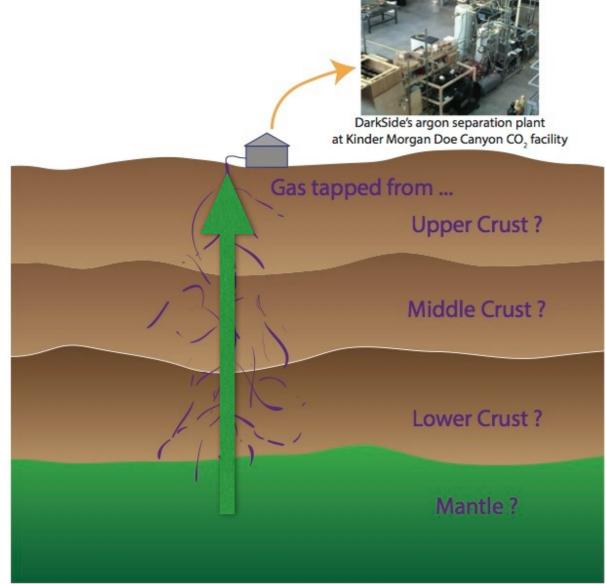
Gilfillan et al. 2008 10.1016/j.gca.2007.10.009

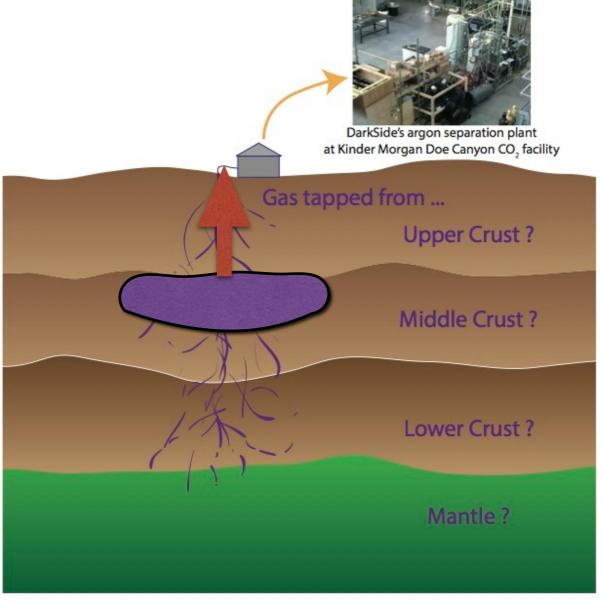
Doe Canyon CO2 well gas


- Gas from deep CO₂ wells, spec. Doe Canyon, shows low level of ³⁹Ar
- ³⁹Ar activity a factor of 1400 ± 200 below atmospheric

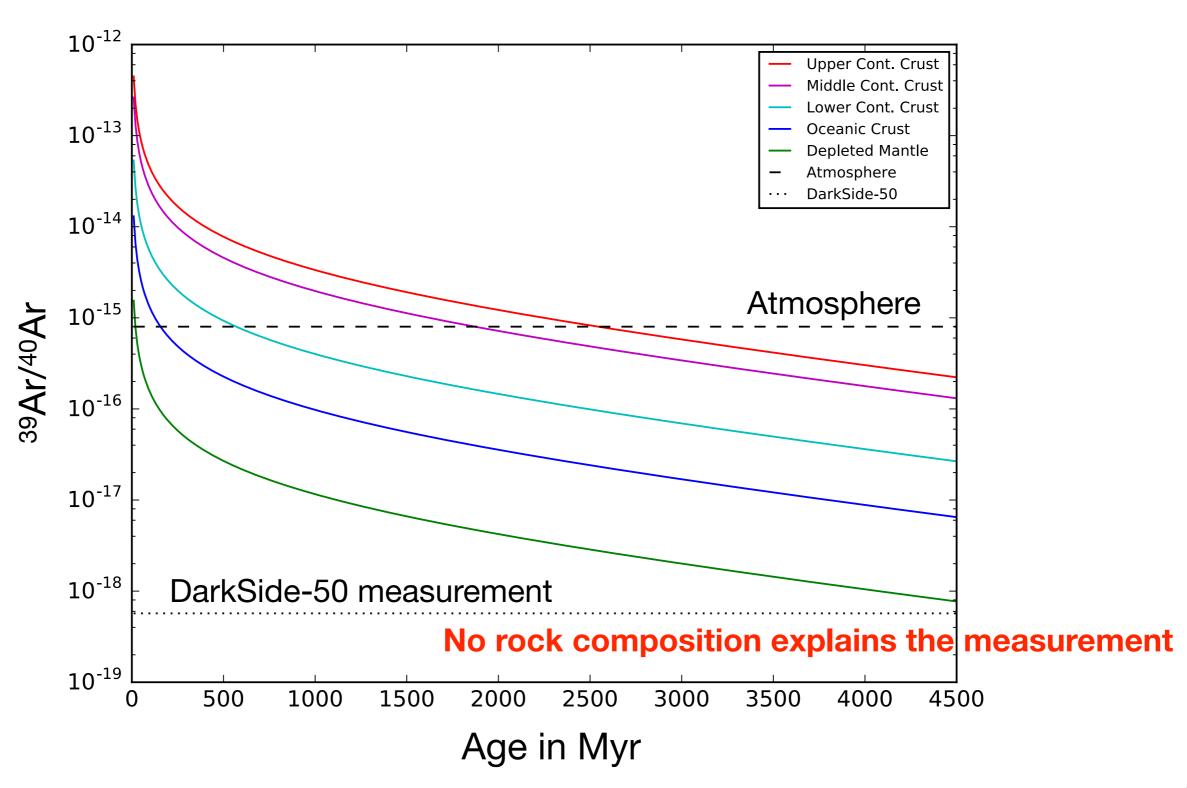
DarkSide-50: 2016 10.1103/PhysRevD.93.081101

Underground nucleogenic production in rock with sufficiently low K, Th, U concentration...?

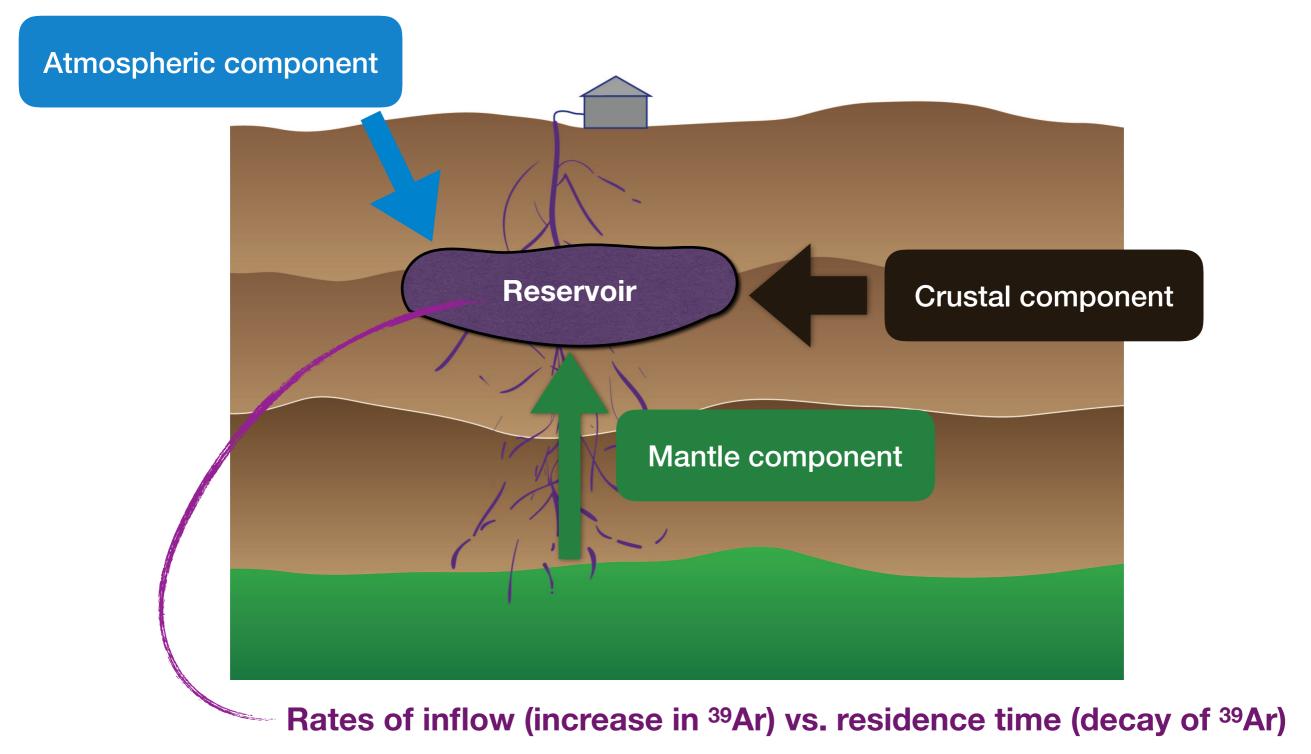

Gas sequestered underground (negligible cosmogenic replenishment) with limited exchange...?


Doe Canyon CO2 well gas

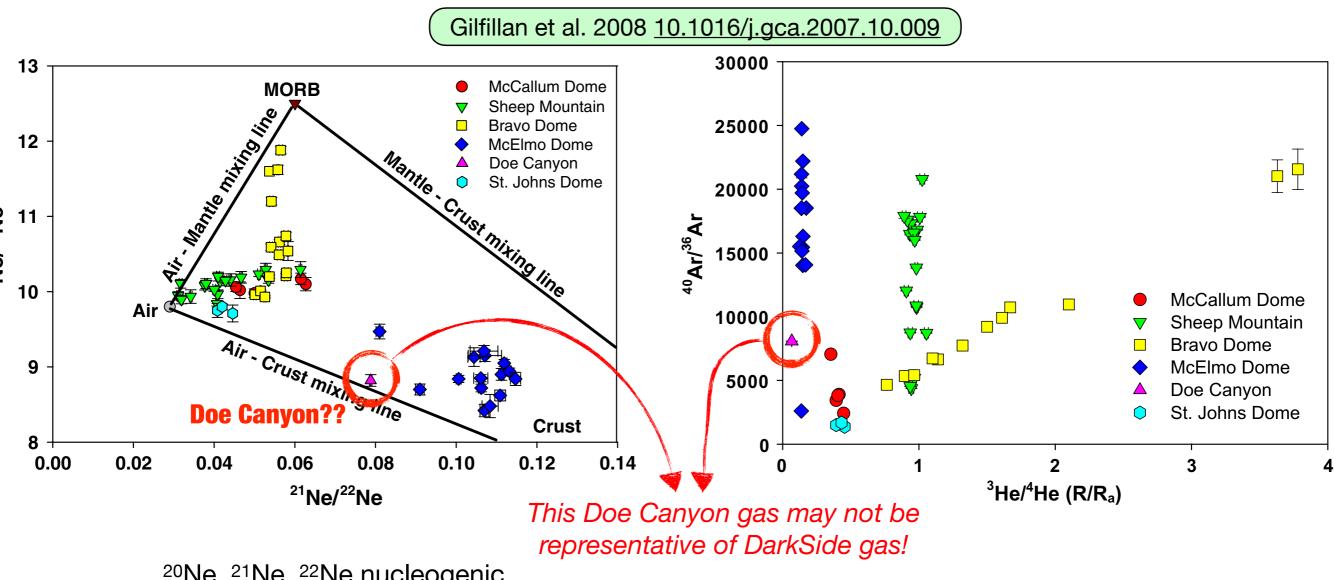
Message from the mantle?


Gas from low K, Th, U source rock?

Accumulation of gas in isolated reservoir in the crust?


Predicting ³⁹Ar/⁴⁰Ar produced underground

Accumulation of ³⁹Ar and ⁴⁰Ar over time from initially degassed rock



How to explain anomalously low ³⁹Ar?

Argon sequestered at depth with no ³⁹Ar production nor influx \rightarrow ³⁹Ar activity lowered by a factor of 1400 in **2800 years** (~10.5 half-lives with $t_{1/2} = 269$ yr)

Noble gas isotopic constraints

²⁰Ne, ²¹Ne, ²²Ne nucleogenic

Well defined end-member ratios for air, crust, mantle

³He, ³⁶Ar primordial ⁴He, ⁴⁰Ar radiogenic

Noble gas isotopes can provide some clues. Need measurements of actual DarkSide gas.

Summary

- Calculation of underground nucleogenic production of 39 Ar: α particles from natural radioactivity, fast neutrons from (α ,n) on light targets and from spontaneous fission, 39 Ar from 39 K(n,p)
- Evaluation for several representative rock compositions, plug-in formulae to evaluate for an arbitrary rock-like composition.
- Estimate of calculation uncertainty (30% for ³⁹Ar production rate) and comparison to previous results.
- Low ³⁹Ar level in Doe Canyon gas is puzzling isotopic composition suggests both atmospheric and crustal contribution to the magmatic origin gas, low ³⁹Ar requires »3000 year isolation.
- Possible scenario: Gas of magmatic origin with mantle signature, mixes with crustal and atmospheric components, sequestered in an underground reservoir for sufficient time.
- Measurement of noble gas isotopic composition of Doe Canyon well gas is needed.

Thank you.