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Abstract—This paper presents a new image based visual servoing (IBVS) control  scheme for omnidirectional wheeled 

mobile robots with four swedish wheels. The contribution is the proposal of a scheme that consider the overall dynamic of 

the system; this means, we put together mechanical and electrical dynamics. The actuators are direct current (DC) motors, 

which imply that the system input signals are armature voltage applied to DC motors. In our control scheme the PD control 

law and eye-to-hand camera configuration are used to compute the armature voltages and to measure system states, 

respectively. Stability proof is performed via Lypunov direct method and LaSalle’s invariance principle. Simulation and 

experimental results were performed in order to validate the theoretical proposal and to show the good performance of the 

posture errors. 
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I. INTRODUCTION 

Wheeled mobile robots (WMR) are robotic systems with free motion in a plane, and they have capacity to reach every 

position on the same plane. WMR issues are about how to move them, because they may have or not may have limited 

trajectories to perform.  In our case, we are going to study  the omnidirectional mobile robots (OMR)[1] whose trajectories 

are not limited. In a more particular way, it is emphasized in OMR with four swedish wheels [2]. The methodology proposed 

in [3], was chosen to obtain the dynamic model, together with the direct current (DC) motor equations presented in [4]. 

In order to acquire WMR posture by means of computer vision, it is possible to implement global vision systems (GVS). The 

GVS fits in the intelligent space concept [5], [6]. An intelligent space is comprised by sensors (e.g. cameras, microphones, 

ultrasound or laser range finder), computer, actuators and communication devices. The sensors are used to identificate and 

track the objects in the space and/or to receive orders from operators. The computer acquires information from sensors, 

performs image processing, computes control law and communicates with actuators. The intelligent space interacts with 

objects through robotic platforms (e.g. WMR) that provide services like carrying or delivering loads. GVS are used in 

robotics soccer competitions to acquire the posture of every robot on the playground [7], [8]. So, GVS are a good option to 

obtain the posture measurement of WMR. 

The contribution of our paper is the proposal of a new control scheme to OMR posture control in voltage mode, requiring 

only vision system measurements. Furthermore, in our control scheme, the DC motors do not require encoders or drivers 

with current loop or velocity loop. Document is structured as follow. Section 2 presents the problem statement and the 

dynamic model in image space too. Control law and stability proof is presented in Section 3. Simulation and experimental 

results are showed in Section 4. Finally, Section 5 shows our conclusions.  

II. PROBLEM STATEMENT 

First, the dynamic model of the OMR including actuator dynamics is presented. After, camera model  (thin lens[9]) and 

camera configuration (Eye-to-Hand[10]) are explained.  

2.1 Dynamic model 

Consider an OMR with a two dimensional cartesian coordinate frame called Σ𝑊  whose center is 𝑂𝑊  and its axes are labeled 

as 𝑊1and 𝑊2. These axes describe a plane where the OMR has free motion. OMR posture on the plane is denoted by 

𝝃 =   𝑥 𝑦 𝜃 ⊤ (seeFig.1). 

Let𝝃 ∈ ℝ𝟑 and 𝝃 ∈ ℝ3are the velocity and acceleration vector of the OMR respectively,𝒖 =  𝑢1 𝑢2 𝑢3 𝑢4 ⊤   isthe 

armature voltages vector applied to DC motors. The wheels and actuators (DC motors) are labeled as it is depicted in 
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Fig.2Error! Reference source not found..The dynamic model is an Euler-Lagrange system, given by the following state 

space representation: 

𝑑

𝑑𝑡
𝝃 =  𝝃                        (1) 

𝑑

𝑑𝑡
𝑀𝝃  =  

𝑘𝑎

𝑅𝑎
𝑅𝑅

𝑊 𝜃 𝐸⊤𝒖 − 𝐶 𝜃  𝝃 − 𝐷𝝃                 (2) 

Where 𝑀 ∈ ℝ3×3 is the diagonal positive definite inertia matrix, 𝐶: ℝ → ℝ3×3 is the skew-symmetric gyroscopic matrix, 

𝐷 ∈ ℝ3×3 is the symmetric damping matrix, 𝐸 ∈ ℝ4×3 is the jacobian matrix, 𝑅𝑅
𝑊 𝜃  is the rotation matrix from Σ𝑅  to Σ𝑊 , 

𝑅𝑎 ∈ ℝ is the armature resistance constant and 𝑘𝑎 ∈ ℝ is the torque constant for each DC motor. 

 
FIG.1: OMR free body diagram 

 

 

FIG.2: Wheel configuration 

2.2 Camera model 

Consider the scene depicted in Fig.3. The camera is fixed on the ceiling and oriented to see the robot. The configuration of 

the camera in Fig.3 is called Eye-to-Hand, in the literature[10]. A photoelectric sensor inside of the camera acquires the scene 

image. In order to obtain the construction model of the scene image, it is necessary to have the knowledge of extrinsic 

parameters and intrinsic parameters.  First, the coordinate frame Σ𝐶 is engaged on the sensor surface, the distance 𝑍𝐶3 and 

angle𝛾of Σ𝑐 respect to Σ𝑊  are the extrinsic parameters. Let 𝜆 ∈ ℝ+ be the distance between camera lens and photoelectric 

sensor, 𝛼𝑢  , 𝛼𝑣 ∈  ℝ+ be the constants that convert from cartesian space to image space. These latter parameters are called: 

intrinsic parameters. 

 

FIG.3: Configuration Eye-to-Hand 

 

 

 

 

 

 

FIG.4: Computer screen 

In order to convert from cartesian space to image space (see Fig.4), we define 𝝃𝑓 ∈ ℝ3 forthe OMR posture in image space 

and it is obtained as follow: 
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𝝃𝑓  =   

𝑥𝑓
𝑦𝑓

𝜃𝑓

  =  𝐾𝐶𝑅𝑊
𝐹  𝜃𝑐  

𝑥
𝑦

𝜃 + 𝛾
                   (3) 

With 

𝐾𝑐 =

 
 
 
 

𝛼𝑢𝜆

𝑍𝑐3−𝜆
0 0

0
𝛼𝑣𝜆

𝑍𝑐3−𝜆
0

0 0 1 
 
 
 

,          𝑅𝑊
𝐹  𝛾 =   

cos 𝛾 − sin 𝛾 0

− sin 𝛾 −cos 𝛾 0
0 0 1

 . 

In order to express the dynamic model (1) and (2) in image space, first and second time derivatives from (3) are computed as 

follow: 

𝝃 𝑓 =  

𝑥 𝑓
𝑦 𝑓

𝜃 𝑓

 = 𝐾𝐶𝑅𝑊
𝐹  𝛾 𝝃 ,          𝝃 𝑓 =  

𝑥 𝑓
𝑦 𝑓

𝜃 𝑓

 = 𝐾𝐶𝑅𝑊
𝐹  𝛾 𝝃 .             (4) 

Solving for 𝝃 y 𝝃 , we have 

𝝃 = 𝐾𝐶
−1𝑅𝐹

𝑊 𝛾 𝝃 𝑓 ,          𝝃 = 𝐾𝐶
−1𝑅𝐹

𝑊 𝛾 𝝃 𝑓                 (5) 

where 𝑅𝐹
𝑊  𝛾 =  𝑅𝑊

𝐹   𝛾  
⊤

. Pre-multiplying (2) with 𝑅𝑊
𝐹   𝛾 and substituting equation (5) the state space representation is 

rewritten as follows: 

𝑑

𝑑𝑡
𝝃𝑓 = 𝝃 𝑓                         (6) 

𝑑

𝑑𝑡
𝑀𝐾𝐶

−1𝝃 𝑓 =
𝑘𝑎

𝑅𝑎
𝑅𝑅

𝐹 𝜃𝑓 𝐸
⊤𝒖 − 𝐶 𝜃  𝐾𝐶

−1𝝃 𝑓 − 𝐷𝐾𝐶
−1𝝃 𝑓              (7) 

with 

𝑅𝑅
𝐹 𝜃𝑓 =   

cos 𝜃𝑓 − sin 𝜃𝑓 0

− sin 𝜃𝑓 −cos 𝜃𝑓 0

0 0 1

 .  

Note that (6) and (7) are the open loop dynamic model of a time invariant system, the input signal 𝒖 is a vector with the four 

armature voltage of actuators; and the mechanical, electrical and camera parameters are involved in (7).  

III. POSTURE CONTROL 

3.1 Controller 

Let 𝝃𝒇
∗ ∈ ℝ3 be the desired posture vector in image space,𝝃 𝒇 ≜ 𝝃𝒇

∗ − 𝝃𝒇be the posture error vector. The aim of our proposed 

control scheme is to lead the posture error toward zero (i.e. lim𝑡→∞ 𝝃 = 0). The proposed control law is given by 

𝒖 =  𝐺𝑅𝑅
𝐹 𝜃𝑓  𝐾𝑝𝝃 𝑓 − 𝐾𝑑𝝃 𝑓                    (8) 

with 

𝐺 =  

1 1 1
1 −1 −1
1 1 −1
1 −1 1

 ,          𝐾𝑝 =  

𝑘𝑝1 0 0

0 𝑘𝑝2 0

0 0 𝑘𝑝3

 ,          𝐾𝑑 =  

𝑘𝑑1 0 0
0 𝑘𝑑2 0
0 0 𝑘𝑑3

 ,  

where 𝑘𝑝1, 𝑘𝑝2, 𝑘𝑝3, 𝑘𝑑1, 𝑘𝑑2 ,𝑘𝑑3 ∈ ℝ are positive gains. Substituting the control law (8) in dynamic model (7) we obtain 

closed loop dynamics. It is shown as follows 
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𝑑

𝑑𝑡
𝝃 𝑓 = −𝝃 𝑓                        (9) 

𝑑

𝑑𝑡
𝑀𝐾𝐶

−1𝝃 𝑓 = Λ 𝐾𝑝𝝃 𝑓 − 𝐾𝑑𝝃 𝑓  − 𝐶 𝜃  𝐾𝐶
−1𝝃 𝑓 − 𝐷𝐾𝐶

−1𝝃 𝑓             (10) 

With Λ =
𝑘𝑎

𝑅𝑎
𝑅𝑅

𝐹 𝜃𝑓 𝐸
𝑇𝐺𝑅𝑅

𝐹(𝜃𝑓) =
𝑘𝑎

𝑅𝑎
𝐸⊤𝐺  a diagonal positive definite matrix. The closed loop dynamics (9)-(10) has a 

unique equilibrium in 𝝃 𝒇 = 𝟎 ∈ ℝ3and𝝃 𝑓 = 𝟎 ∈ ℝ3.  

3.2 Stability proof 

The control law (8) is a PD control law to been implemented in over actuated systems (the number of the degree of freedom 

is lower than the number of actuators or number of control signals). In order to demonstrate stability of the equilibrium, we 

use the following Lyapunov function candidate 

𝑉 𝝃 𝑓 , 𝝃 𝑓 =
1

2
𝝃 𝑓
⊤𝑀𝐾𝐶

−1𝝃 𝑓 +
1

2
𝝃 𝑓
⊤Λ𝐾𝑝𝝃 𝑓                 (11) 

whose total time derivative along of the trajectories of the closed loop equations (9) and (10) is: 

𝑉  𝝃 𝑓 , 𝝃 𝑓 = −𝝃 𝑓
⊤ Λ𝐾𝑑 + 𝐷 𝝃 𝑓                   (12) 

By satisfying the inequality Λ𝐾𝑑 + 𝐷 > 0, the equilibrium stability is guaranteed. Thus, in order to study asymptotic stability 

we can apply the  LaSalle’s invariance principle [11]. Toward this end, notice that in the set 

𝑺 =   
𝝃 𝑓

𝝃 𝒇
 : 𝑽  𝝃 𝑓 , 𝝃 𝑓 = 𝟎 =  𝝃 𝑓 ∈ ℝ3and𝝃 𝑓 = 𝟎 ∈ ℝ𝟑             (13) 

the largest invariant set 𝑺  is the origin of the closed loop system (9)-(10); i.e., 𝑺 =  𝝃 𝑓 = 𝟎 ∈ ℝ3and𝝃 𝑓 = 𝟎 ∈ ℝ𝟑 . So, in 

accordance with the Corollary 4.2 of[11](see page 129 of [11]) the equilibrium  𝝃 𝑓 𝝃 𝒇 
⊤

=   𝟎 𝟎 ⊤ ∈ ℝ6 is globally 

asymptotically stable. 

IV. SIMULATIONS AND EXPERIMENTAL RESULTS 

Our proposed control scheme is depicted in FIG.5. Simulation was performed in MatLab/Simulink. Used notation and  

parameter values, are shown in TABLE 1. The dynamic model matrices are as follow:  

𝑀 = diag{𝑚𝑅  +  4 𝑚𝑅1,  𝑚𝑅  +  4 𝑚𝑅1, 4 (𝑚𝑅1𝑙1
2  +  𝑚𝑅1𝑙2

2 + 𝐼𝑅𝑧1)  +  𝐼𝑅𝑧 }   +   𝐼𝑅𝑦1  +  𝐽𝑚𝑟𝑒
2 𝐸⊤  𝐸  

𝐸 =
1

𝑟
 

1 1 𝐿
1 −1 −𝐿
1 1 −𝐿
1 −1 𝐿

 ,      𝐶 𝜃  =  
4

𝑟2
𝐼𝑅𝑦1 + 𝐽𝑚𝑟𝑒

2𝜃  𝐵, 𝐷 = 𝑟𝑒
2  

𝑘𝑎𝑘𝑏

𝑅𝑎

+ 𝑘𝑣 𝐸⊤𝐸,     

𝐵 =  
0 −1 0
1 0 0
0 0 0

 ,           𝐿 = 𝑙1 + 𝑙2 . 

 

 

FIG.5: PROPOSED CONTROL SCHEME 

Experimental results were performed with a RTSVC based software[12] in order to capture and process the images; the 

desired posture vector is 𝝃𝑓
∗ =  43 53 0 ⊤ with initial condition given by𝝃𝑓0 =   280 210 176 ⊤. Gain values are 
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𝑘𝑝1 = 0.5, 𝑘𝑝2 = 0.5, 𝑘𝑝3 = 10.0, 𝑘𝑑1 = 0.005, 𝑘𝑑2 = 0.005 and 𝑘𝑑3 = 1. The experiment was carried out during 10 

seconds with a sample time of 10 milliseconds. Obtained results are depicted in FIG.6, where blue lines are the reference, red 

lines are the experimental results and green lines are the simulation results. The position (i.e. 𝑥𝑓  and 𝑦𝑓) achieves the 

reference in simulation and experimentation in 1.5 seconds and 3 seconds, respectively. In contrast, the simulation result in 

orientation (i.e., 𝜃𝑓) is achieved around 2.5 second and the experimental result has a steady value error reached at 4 seconds, 

because voltage armature computed by the control law is lower for moving the OMR; this is due to the non-modeled static 

friction in the DC motor axes. FIG.7 shows the accomplished path, where red dots represent the position of OMR geometric 

center and green dots represent the position of OMR front part. 

TABLE 1 

MECHANICAL AND ELECTRICAL PARAMETERS 
Parameter Symbol Value Units 

Mass of the body 𝑚𝑅 2.8 Kg 

Mass of the wheels 𝑚𝑅1 0.38 Kg 

Inertia of the body 𝐼𝑅𝑧  0.060848 Kg −  m2 

Wheels inertia in axis rotor 𝐼𝑅𝑦1 0.000324 Kg −  m2 

Wheels inertial in perpendicular axis rotor 𝐼𝑅𝑧1 0.000469 Kg −  m2 

Distance in 𝑅1 𝑙1 0.1524 m 

Distance in 𝑅2 𝑙2 0.1505 m 

Wheels radius 𝑟 0.42 m 

Rotor Inertia 𝐽𝑚  5.7 × 10−7 Kg −  m2 

Back-EMF Constant 𝑘𝑏  0.01336 N s
rad  

Torque Constant 𝑘𝑎  0.0134 N m
A  

Armature resistance 𝑅𝑎  1.9 Ω 

Viscous friction 𝑘𝑣  0.001 N m s
rad  

Gear ratio 𝑟𝑒  64 1 

V. CONCLUSIONS 

We have presented a new IBVS scheme for OMR with four swedish wheels. The PD control law was implemented with 

errors in image space. Stability was proven via Lyapunov direct method, and globally asymptotically stability of the closed 

loop system was established by using the LaSalle’s invariance principle. Positive PD gains of the controller are sufficient to 

guarantee asymptotic stability in accordance with the stability proof. Simulations show satisfactory results because the states 

achieved the desired states. Experimental results show a steady state error in the orientation variable, the position reaches to 

desired position. Steady state error is due to non-modeled static friction in the DC motors axes. As long as, the states are 

brought closer to desired states, the computed armature voltage by control law decreases. The above implies that the voltage 

is insufficient to move the remaining angle. A possible solution could be to implement functions like hyperbolic tangent to 

keep a higher voltage near of desired posture. 

 
FIG.6: SIMULATION AND EXPERIMENTAL RESULTS 
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FIG.7 PERFORMED PATH ACQUIRED BY THE CAMERA 
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