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The CADE ATP System Competition (CASC) is an
annual evaluation of fully automatic, classical logic Au-
tomated Theorem Proving (ATP) systems. CASC-25
was the twentieth competition in the CASC series.
Twenty-seven ATP systems and system variants com-
peted in the various competition divisions. An outline
of the competition design, and a commentated sum-
mary of the results, are presented.
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1. Introduction

The CADE ATP System Competition (CASC)
is the annual evaluation of fully automatic, classi-
cal logic Automated Theorem Proving (ATP) sys-
tems – the world championship for such systems.
One purpose of CASC is to provide a public eval-
uation of the relative capabilities of ATP systems.
Additionally, CASC aims to stimulate ATP re-
search, to motivate development and implementa-
tion of robust ATP systems that are useful and eas-
ily deployed in applications, to provide an inspiring
environment for personal interaction between ATP
researchers, and to expose ATP systems within
and beyond the ATP community. Fulfillment of
these objectives provides insight and stimulus for
the development of more powerful ATP systems,
leading to increased and more effective use. CASC-
25 was held on 4th August 2015 in Berlin, Ger-
many, as part of the 25th International Conference
on Automated Deduction (CADE-25). CASC-25
was the twentieth competition in the CASC se-
ries; see [14] and citations therein for informa-
tion about individual previous competitions. The

CASC-25 web site provides access to all competi-
tion resources: http://www.tptp.org/CASC/25.

CASC is divided into divisions according to
problem and system characteristics. There are
competition divisions in which the systems are ex-
plicitly ranked, and a demonstration division in
which systems demonstrate their abilities without
being ranked. (The demonstration division is for
systems that cannot be entered into the competi-
tion divisions for any reason, e.g., the system runs
on specialist hardware, or the entrant is a com-
petition organizer or panel member. In CASC-25
there were no systems in the demonstration di-
vision.) Each competition division uses problems
that have certain logical, language, and syntactic
characteristics, so that the systems that compete
in the division are, in principle, able to attempt all
the problems in the division. Some divisions are
further divided into problem categories that make
it possible to analyze, at a more fine-grained level,
which systems work well for what types of prob-
lems. The demonstration division uses the same
problems as the competition divisions – the entry
specifies which competition divisions’ problems are
to be used. Table 1 catalogs the divisions and prob-
lem categories of CASC-25. The example problems
can be viewed online at http://www.tptp.org/

cgi-bin/SeeTPTP?Category=Problems.
Twenty-seven ATP systems and system vari-

ants, listed in Table 2, competed in the vari-
ous competition divisions. The division winners
of CASC-J7 (the previous CASC) were automati-
cally entered to provide benchmarks against which
progress can be judged. (As the LTB division
had been suspended since CASC-24 in 2013, the
CASC-24 LTB winner was entered.) Additionally,
Prover9 2009-11A is entered every year as a fixed
point against which progress can be judged (this
is the fourth year that Prover9 has been used as
the fixed point - in prior years Otter was used).
System descriptions of the entered systems are in
[13] and on the CASC-25 web site.

AI Communications
ISSN 0921-7126, IOS Press. All rights reserved



2 Sutcliffe & Urban / CASC-25

Division Problems Problem Categories

THF Typed Higher-order Form theorems (axioms

with a provable conjecture).

TNE – THF with No Equality, e.g., NUM738^1.

TEQ – THF with EQuality, e.g., SET171^3.

THN Typed Higher-order form Non-theorems (ax-
ioms with a countersatisfiable conjecture, and

satisfiable axiom sets).

TNN – THN with No equality, e.g., CSR142^3.
TNQ – THN with eQuality, e.g., PHI003^3.

TFA Typed First-order form theorems with

Arithmetic (axioms with a provable conjec-

ture).

TFI – TFA with only Integer arithmetic, e.g., DAT016=1.

TFR – TFA with only Rational arithmetic, e.g., ARI621=2.

TFE – TFA with only rEal arithmetic, e.g., MSC022=2.

TFN Typed First-order form Non-theorems with

arithmetic (axioms with a countersatisfiable

conjecture, and satisfiable axiom sets).

TIN – TFN with only Integer arithmetic, e.g., ARI127=1.

TRN – TNN with only Rational arithmetic, e.g., ARI575=2.

TEN – TFN with only rEal arithmetic, e.g., ARI575=3.

FOF First-Order Form theorems (axioms with a

provable conjecture).

FNE – FOF with No Equality, e.g., COM003+1.

FEQ – FOF with EQuality, e.g., SEU147+3.

FNT FOF Non-Theorems (axioms with a counter-

satisfiable conjecture, and satisfiable axioms

sets).

FNN – FNT with No equality, e.g., KRS173+1.

FNQ – FNT with eQuality, e.g., MGT033+2.

EPR Effectively PRopositional theorems and non-

theorems in clause normal form (unsatisfiable

and satisfiable clause sets). Effectively propo-
sitional means that the problems are known

to be reducible to propositional problems, e.g.,

CNF problems that have no functions with ar-
ity greater than zero.

EPT – Effectively Propositional Theorems (unsatisfiable clause

sets), e.g., PUZ037-3.

EPS – Effectively Propositional non-theorems (Satisfiable clause
sets), e.g., GRP123-2.005.

LTB First-order form theorems (axioms with a
provable conjecture) from Large Theories, pre-

sented in Batches. A large theory has many

functors and predicates, and many axioms of
which typically only a few are required for the

proof of a theorem. Problems in a batch all use

a common core set of axioms, and the prob-
lems in a batch are given to the ATP system

all at once.

HLL – Problems exported from HOL Light.

HL4 – Problems exported from HOL 4.
ISA – Problems exported from ISAbelle.

MZR – Problems exported from the Mizar Mathematical Library.

(See Section 2.2 for details of these problems’ sources.)

Table 1

Divisions and Problem categories

CASC-25 was organized by Geoff Sutcliffe, as-

sisted by Josef Urban (who was responsible for the

LTB division), and overseen by a panel consist-

ing of Pascal Fontaine, Aart Middeldorp, and Neil

Murray. The competition was run on computers

provided by the StarExec project [9] at the Univer-

sity of Iowa, and by the Department of Computer

Science at the University of Manchester.

This paper is organized as follows: Section 2 out-

lines the design and organization of CASC-25. Sec-

tion 3 provides a commentated summary of the re-

sults. Section 4 contains short descriptions of three

of the ATP systems. Section 5 concludes and dis-

cusses plans for future CASCs.

2. Outline of Design and Organization

The design and organization of CASC has

evolved over the years to a sophisticated state. An

outline of the CASC-25 design and organization is

provided here. The details are in [13] and on the

CASC-25 web site. Important changes for CASC-

25 were:

– The Typed Higher-order form Non-theorems

(THN) and Typed First-order form Non-

theorems (TFN) divisions were added.

– The Large Theory Batch (LTB) division re-

turned from its one year hiatus.

– The Unit Equality (UEQ) division returned

to its hiatus state.



Sutcliffe & Urban / CASC-25 3
A

T
P

S
y
st

em
D

iv
is

io
n
s

E
n
tr

a
n
t

(A
ss

o
ci

a
te

s)
E

n
tr

a
n
t’

s
A

ffi
li
a
ti

o
n

B
ea

g
le

0
.9

.2
2

T
F
A

T
F

N
P

et
er

B
a
u
m

g
a
rt

n
er

(J
o
sh

u
a

B
a
x
)

N
IC

T
A

a
n
d

A
N

U
C

V
C

4
1
.4

T
F
A

C
A

S
C

C
A

S
C

-J
7

T
F
A

w
in

n
er

C
V

C
4

1
.5

T
F
A

T
F

N
F

O
F

F
N

T
A

n
d
re

w
R

ey
n
o
ld

s
(C

la
rk

B
a
rr

et
t,

E
P

F
L

C
es

a
re

T
in

el
li
,

T
im

K
in

g
)

E
1
.9

.1
F

O
F

F
N

T
E

P
R

L
T

B
S
te

p
h
a
n

S
ch

u
lz

D
H

B
W

S
tu

tt
g
a
rt

eP
ri

n
ce

ss
1
.0

F
O

F
P

et
er

B
a
ck

em
a
n

(P
h
il
ip

p
R

ü
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2.1. System Delivery, Execution, and Evaluation

The non-LTB divisions’ systems were delivered
to the competition organizer as StarExec instal-
lation packages, which the organizer installed and
tested on StarExec. Source code was delivered sep-
arately for archiving on the competition web site.
The LTB division’s systems were delivered to the
competition coorganizer as source code installa-
tion packages, which the coorganizer installed and
tested on the Manchester cluster. (The Manchester
cluster was used for the LTB division because the
StarExec execution model does not support the
batch mode of the LTB division.)

The ATP systems entered into CASC are re-
quired to be sound and fully automatic. They are
executed as black boxes, on one problem (non-
LTB) or one problem batch (LTB) at a time. Any
command line parameters have to be the same
for all problems/batches in each division. The sys-
tems are tested for soundness by submitting non-
theorems to the systems in the THF, TFA, FOF,
EPR, and LTB divisions, and theorems to the sys-
tems in the THN, TFN, FNT, and EPR divisions.
Claiming to have found a proof of a non-theorem
or a disproof of a theorem indicates unsoundness.
For the second year in a row, no systems failed this
soundness testing. Note that the soundness test-
ing for CASC-25 was more extensive than in previ-
ous years, using 50 problems in each problem cat-
egory, thanks to the available computing power in
StarExec.

The THF, TFA, FOF, FNT, and LTB divisions
were ranked according to the number of prob-
lems solved with an acceptable proof/model out-
put. (The models are “counter-models” for prob-
lems with an unprovable conjecture, and “models”
for satisfiable axiom sets.) The THN, TFN, and
EPR divisions were ranked according to the num-
ber of problems solved, but not necessarily accom-
panied by a proof or model (but systems that do
output proofs/models are highlighted in the pre-
sentation of results). Ties were broken according
to the average time taken over problems solved
(CPU time for non-LTB divisions, wall clock time
for the LTB division). Trophies were awarded to
the division winners.

In addition to the ranking criteria, three other
measures were made and are presented in the
results: The state-of-the-art (SoTA) contribution
quantifies the unique abilities of each system. For

each problem solved by a system, its SoTA con-
tribution for the problem is the reciprocal of the
number of systems that solved the problem, so
that if a system is the only one to solve a prob-
lem then its SoTA contribution for the problem is
1.00, and if all the systems solve a problem their
SoTA contribution for the problem is the inverse
of the number of systems. A system’s overall SoTA
contribution is its average SoTA contribution over
the problems it solved. The efficiency measure is a
combined measure that balances the time taken for
each problem solved against the number of prob-
lems solved. It is the average solution rate over the
problems solved (the solution rate for one prob-
lem is the inverse of the time taken to solve it),
multiplied by the fraction of problems solved. In
the LTB division, which imposes a wall clock time
limit (see Section 2.3), the core usage measures
the extent to which the systems take advantage of
the multiple cores. It is the average ratio of CPU
time to wall clock time taken, over the problems
solved. The LTB division ran on quad-core com-
puters, thus the maximal core usage was 4.0.

2.2. Problems

The problems for the non-LTB divisions were
taken from the Thousands of Problems for Theo-
rem Provers (TPTP) problem library [11], v6.2.0.
The TPTP version used for CASC is not released
until after the competition has started, so that new
problems have not been seen by the entrants. The
problems have to meet certain criteria to be eli-
gible for selection, as listed below. The problems
used are randomly selected from the eligible prob-
lems based on a seed supplied by the competition
panel.

– The TPTP tags problems that are designed
specifically to be suited or ill-suited to some
ATP system, calculus, or control strategy as
biased, and they are not eligible.

– The problems have to be syntactically non-
propositional to be eligible. (There are very
few propositional problems in the TPTP any-
way.)

– Each TPTP problem has a difficulty rating
[15] that is based on ATP system performance
data in the Thousands of Solutions from The-
orem Provers (TSTP) solution library [12].
The ratings range from 0.00 (easy) to 1.00
(unsolved). Difficult problems with a rating in
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the range 0.21 to 0.99 are eligible. Problems
of lesser and greater ratings might also be eli-
gible in some divisions if there are not enough
problems with ratings in that range. Devel-
opers can submit their systems in advance of
CASC (by a published deadline) so that the
systems’ performance data is used when com-
puting the difficulty ratings.

– The selection is constrained so that no divi-
sion or category contains an excessive number
of very similar problems [10].

– The selection is biased to select problems that
are new in the TPTP version used, until 50%
of the problems in each problem category have
been selected, after which random selection
(from old and new problems) continues. The
number of new problems used depends on how
many new problems are eligible and the limi-
tation on very similar problems.

The numbers of problems used in each division and
problem category are roughly proportional to the
numbers of eligible problems, subject to the limita-
tion on the number of very similar problems. The
problems are given to the ATP systems in TPTP
format, in increasing order of TPTP difficulty rat-
ing.

The problems for the LTB division were taken
from publicly available problem sets: the HLL
problem category used the HH7150 problem set1;
the HL4 problem category used the H4H13897
problem set2; the ISA problem category used the
SH5795 problem set3; the MZR problem category
used the MPTP2078 problem set4. The problems
in each category have consistent symbol usage, and
almost consistent axiom naming, between prob-
lems. In order to facilitate and promote learning
from previous proofs, each problem category was
accompanied by a set of 1000 training problems
and their solutions, which could be used for tun-
ing and training during (typically at the start of)
the competition. Entrants were expected to hon-
estly not use any other of the (publicly available)
problems for tuning or training before the com-
petition. The problems had to meet certain crite-
ria to be eligible for selection, as listed below. The
problems used were randomly selected from the el-
igible problems based on a seed supplied by the
competition panel.

1https://github.com/JUrban/HH7150
2https://github.com/JUrban/H4H13897
3http://mws.cs.ru.nl/~urban/isaltb/SH5795.tar.gz
4https://github.com/JUrban/MPTP2078

– Problems that are solvable in 60s by at least
one of the non-LTB versions of the systems
were used for the training sets. One thousand
such problems were selected at random for the
training set in each problem category. Prob-
lems that were used in training sets were not
eligible.

– Problems that are solvable in 60s by at least
one of the non-LTB versions of the systems
were eligible for selection. 70% of the selected
problems were from this group.

– Problems that are not solvable in 60s by any
of the non-LTB versions of the systems were
eligible for selection. 30% of the selected prob-
lems were from this group.

The problems are given to the ATP systems in
TPTP format, in the natural order of their export
from the underlying library. (This models the work
of LTB-like systems when used to assist in formal
proof development).

Table 3 gives the numbers of eligible problems,
the maximal numbers that could be used after
taking into account the limitation on very similar
problems (in the context of the numbers of prob-
lems used), and the numbers of problems used, in
each division and category. There were very few
new problems in CASC-25, due to limited growth
of the TPTP in the preceding year. In the TFR
problem category there were very few usable prob-
lems, so an excess of very similar problems was
selected.

2.3. Resources

The non-LTB divisions’ computers had four
(a quad-core chip) Intel(R) Xeon(R) E5-2609,
2.40GHz CPUs, 256GB memory, and ran the
Red Hat Enterprise Linux Workstation release
6.3 (Santiago) operating system, kernel 2.6.32-
431.1.2.el6.x86 64. A 300s CPU time limit was im-
posed for each system on each problem. A wall
clock time limit of 600s was also imposed to limit
very high memory usage that causes swapping.

The LTB division’s computers had four (a quad-
core chip) Intel(R) Xeon(R) L5410, 2.333GHz
CPUs, 12GB memory, and ran the Linux 2.6.29.4-
167.fc11.x86 64 operating system. A 60s wall clock
time limit was imposed for each system on each
problem, and an overall wall clock time limit of
24000s (400 problems times 60s) was imposed on
each problem category. The use of a wall clock time
limit encourages the use of the multiple cores that
are available.
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Division THF THN TFA TFN FOF FNT EPR LTB

Category TNE TEQ TNN TNQ TFI TFR TFE TIN TRN TEN FNE FEQ FNN FNQ EPT EPS HLL HL4 ISA MZR

Eligible 124 595 25 228 207 42 16 19 3 2 373 3456 114 92 174 91 7150 13897 5795 2078

Usable 124 595 25 228 207 19 15 19 3 2 373 3456 114 92 174 24 - - - -

New 0 7 0 5 5 0 0 0 0 0 1 0 2 0 0 0 - - - -

Used 100 300 25 175 150 35 15 15 3 2 150 250 110 90 125 75 400 400 400 400

New 0 7 0 5 5 0 0 0 0 0 1 0 2 0 0 0 - - - -

Table 3

Numbers of eligible and used problems

3. Results

For each ATP system, for each problem, four
items of data were recorded: whether or not the
problem was solved, the CPU time taken, the wall
clock time taken, and whether or not a proof or
model was output. This section summarizes the
results, and provides commentary. The result ta-
bles below give the number of problems solved
in the division, the average time over problems
solved, whether or not proofs or models were out-
put, the state-of-the-art contribution, the micro-
efficiency, the core usage (LTB only), the number
of new problems solved, and the number of prob-
lems solved in each problem category. In each of
the results tables, the CASC-J7 winner is empha-
sized. Detailed results, including the systems’ out-
put files, are available from the CASC-25 web site.

3.1. The THF Division

Table 4 summarizes the results of the THF di-
vision. Satallax 2.8 differed from the previous ver-
sion Satallax 2.7 only in its proof output. Satallax-
MaLeS solved more problems than Satallax 2.7
in CASC-J7, so it is not surprising that Satallax-
MaLeS solved more problems than Satallax 2.8 in
CASC-25. However, in CASC-J7 the THF divi-
sion’s ranking was based on problems solved, with-
out requiring proofs to be output, and Satallax-
MaLeS does not output proofs. Thus Satallax was
the winner of this THF division. Generally, there
has not been significant progress in the THF sys-
tems in the last year. Next year it is expected that
the new LEO-III system [17] will be entered, which
might produce some new results.

The SoTA contribution values are all very sim-
ilar, indicating that all the systems have similar
degrees of unique capability. Isabelle has a signif-
icantly lower micro-efficiency, reflecting its higher

ATP System THF Avg Prfs SOTA µ New TNE TEQ

/400 CPU out Con. Eff. /7 /100 /300

Satallax 2.8 271 15.0 268 0.36 390 4 71 200

LEO-II 1.6.2 195 12.3 191 0.36 366 3 49 146

Sat’x-MaLeS 1.3 285 21.7 0 0.35 240 4 71 214

Isabelle 2015 267 61.0 0 0.38 30 4 66 201

Table 4

THF division results

average CPU time caused by a long start-up time,
and a strategy schedule in which often the sixth
or seventh strategy (the z3 and cvc4 strategies)
solves the problem, i.e., the time spent on earlier
strategies in the schedule is “wasted”. A better
tuned strategy schedule would improve Isabelle’s
performance. The systems’ abilities to solve the
new problems, and their performances in the two
problem categories, align with their overall perfor-
mances. This suggests that there is no specific tun-
ing to existing TPTP problems, or specialization
to problems with or without equality.

The individual problem results show that 32
problems were unsolved, 95 problems were solved
by all the systems, and 49 problems were solved by
only one system. Of those 49 unique solutions, 17
were by Isabelle, 13 by LEO-II, 12 by Satallax, and
7 by Satallax-MaLeS. The unique solutions sug-
gest that a portfolio approach would be effective
for these THF problems. Giving Isabelle, LEO-II,
and Satallax 100s each would solve 352 problems.

3.2. The THN Division

Table 5 summarizes the results of the THN di-
vision. Nitpick’s dominant performance is a conse-
quence of Nitpick’s overwhelming influence on the
TPTP problem ratings for this type of problem,
and hence the eligibility of the problems for CASC.
There is very little diversity of systems for this
type of problem, and this division will be placed in
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ATP System THN Avg Mdls SOTA µ New TNN TNQ

/200 CPU out Con. Eff. /5 /25 /175

Nitpick 2015 200 7.9 X 0.70 130 5 25 175

Refute 2015 74 24.3 × 0.49 29 2 25 49

Satallax 2.8 49 0.1 × 0.48 242 2 5 44

Table 5

THN division results

a hiatus state until there has been further develop-
ment. However, credit given where credit due, and
it is worth noting that Nitpick uniquely solved 82
problems, and output models for all the problems.

3.3. The TFA Division

Table 6 summarizes the results of the TFA di-
vision. The winner, VampireZ3, is a newcomer
to CASC. It benefits from being “built on the
shoulders of giants”, the well known Vampire [6]
and Z3 [5] systems. VampireZ3 leveraged the new
AVATAR architecture in Vampire [16], using Z3
to guide splitting decisions so that the first-order
solver deals with sets of clauses whose ground
part is consistent with the theories of equality and
arithmetic. This approach seems to have great po-
tential. A brief system description of VampireZ3
is provided in Section 4. CVC4 1.4, which won
the TFA division of CASC-J7, was relegated to
the bottom of the table because it does not out-
put proofs - this was not required in CASC-J7.
In terms of numbers of problems solved there is
clear evidence of progress in this important area of
ATP, with four of this year’s systems solving more
problems than CVC4 1.4. In particular, CVC4 1.5
has improved greatly over CVC4 1.4, due to the
addition of a new instantiation-based technique [7]
that was optimized for quantifiers in pure linear
arithmetic, and improved implementations of the
various E-matching techniques that are effective
on problems combining arithmetic with function
symbols. The importance of TFA problems in ap-
plication domains is growing, and this division will
be emphasized in CASC-J8 (the next CASC).

The SOTA contributions are all very simi-
lar, indicating similar levels of unique capability.
Princess is the only system whose efficiency is no-
tably lower. The main differences between the per-
formances of the systems are in the TFI problem
category. The TFI category had the most eligible
problems, indicating that this kind of problem is
important to users and developers. The five new

problems are all TFI problems that verify proper-
ties of the SPARCT2 RTL chip. These problems
were hard for Beagle and Princess because they
have a large combinatorial search space, and make
little use of arithmetic. The need for proof out-
put for users (both human and machine) of these
ATP systems is well understood, and it is pleas-
ing to note that six of the systems output proofs,
including the newcomer ZenonArith. Like Vam-
pireZ3, ZenonArith is “built on the shoulders of a
giant”, viz. Zenon [3]. A brief system description
of ZenonArith is provided in Section 4.

The individual problem results show that 4
problems were unsolved, 41 problems were solved
by all the systems, and 7 problems were solved by
only one system. Of those 7 unique solutions, 3
were by CVC4 1.5, 2 by Beagle, and 1 by each of
VampireZ3 and CVC4 1.4. A portfolio of these five
systems, giving each 60s, would solve 196 prob-
lems.

3.4. The TFN Division

Table 7 summarizes the results of the TFN di-
vision. The obvious deficiency of this division was
the small number of eligible problems, which will
hopefully be remedied in the TPTP in time for
CASC-J8 – users and developers are encouraged
to submit suitable problems to the TPTP. CVC4
solved all of the 10 problems that any of the sys-
tems solved, and solved them all in 0.1s. These
10 problems are all purely arithmetical without
function symbols, and the new instantiation-based
technique that was effective in the TFA division
(see Section 3.3) was again effective here. There
were 7 software verification problems that none of
the systems could solve, but which are considered
to be relatively simple problems for infinite state
model checkers. They were eligible for CASC be-
cause they have been solved by Z3, which was not
entered into the competition.

None of the systems output models, which is
an important capability in applications. A future
TFN division will, like the FNT division, require
models to be output. Like TFA problems, the im-
portance of this type of problem in application do-
mains is growing, and this division will be empha-
sized alongside the TFA division in CASC-J8.
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ATP System TFA Avg Prfs SOTA µ New TFI TFR TFE

/200 CPU out Con. Eff. /5 /150 /35 /15

VampireZ3 1.0 172 11.9 172 0.21 478 4 126 34 12

CVC4 1.5 163 17.3 163 0.21 424 3 116 35 12

Vampire 4.0 160 10.8 160 0.20 422 4 114 34 12

Beagle 0.9.22 131 21.8 131 0.18 275 0 81 35 15

SPASS+T 2.2.22 108 10.0 108 0.14 186 2 60 35 13

ZenonArith 0.1.0 60 2.9 60 0.14 281 2 12 35 13

Princess 150706 143 17.4 0 0.18 152 0 100 33 10

CVC4 1.4 131 10.7 0 0.17 395 4 84 35 12

Table 6

TFA division results

ATP System TFN Avg Mdls SOTA µ TIN TRN TEN

/20 CPU out Con. Eff. /15 /3 /2

CVC4 1.5 10 0.0 × 0.50 500 8 1 1

Princess 150706 6 1.0 × 0.42 200 6 0 0

Beagle 0.9.22 6 1.3 × 0.42 183 4 1 1

Table 7

TFN division results

3.5. The FOF Division

Table 8 summarizes the results of the FOF di-
vision. Vampire 4.0 beat Vampire 2.6, which was
the winner of the FOF division for the last three
years. Vampire 4.0 had a low average proof time,
the highest SOTA contribution, and the second
highest efficiency. Vampire 4.0 is clearly the new
powerhouse in FOF ATP. However, the old Vam-
pire 2.6 still had the highest efficiency, due to
lower CPU times for the easier problems, and it
also solved the most FNE problems. Both Vam-
pires failed to output proofs for some of the prob-
lems solved. For Vampire 2.6, as was noted in the
CASC-J7 report [14], some proofs were not out-
put within the time limit because they are very
large. For Vampire 4.0 some proofs were not out-
put due to a bug, which has been repaired in Vam-
pire 4.1. ePrincess, the winner of the “best new-
comer” award for CASC-25, performed reasonably
well in this tough division. Like the other newcom-
ers (VampireZ3 and ZenonArith in the TFA divi-
sion) ePrincess is “built on the shoulders of a gi-
ant”, viz. Princess [8]. A brief system description
of ePrincess is provided in Section 4. The problem
category results align well with the overall results,
with only iProver having a notable preference for
FNE problems.

The individual problem results show that 7
problems were unsolved, 2 problems were solved

by all the systems, and 10 problems were solved
by only one system. Of those 10 unique solutions,
4 were by each of Vampire 4.0 and E, and 2 were
by Vampire 2.6. Although ET did not have any
unique solutions, it would provide a useful contri-
bution to a portfolio; the two Vampires and ET,
giving each 100s, would solve 387 problems.

3.6. The FNT Division

Table 9 summarizes the results of the FNT di-
vision. This is the first time Vampire has won
this division. The main reason for Vampire’s im-
proved performance is the addition of a finite
model builder, which solves the majority of prob-
lems – 91 of the 106 problems solved in the FNN
problem category, and 61 of the 89 problems solved
in the FNQ problem category. It is also pleasing to
see that the new version of iProver beat last year’s
winning version by a substantial margin. The im-
provements made to iProver include incremental fi-
nite model finding, improved sort inference using a
propositional SAT solver, improved strategies, and
the use of competition parallelism (as opposed to
sequential strategy scheduling). There has clearly
been progress in this area of ATP, in contrast to
the apparent stagnation last year.

Vampire does not only solve the most problems,
it also has the highest SOTA contribution and the
highest efficiency. The problem category rankings
align with the overall ranking, indicating no spe-
cialization to problems with or without equality.
It is pleasing to note that all the systems output
models.

The individual problem results show that only
2 problems were unsolved, 9 problems were solved
by all the systems, and 17 problems were solved
by only one system. Of those 17 unique solutions,
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ATP System FOF Avg Prfs SOTA µ New FNE FEQ

/400 CPU out Con. Eff. /1 /150 /250

Vampire 4.0 380 12.2 374 0.20 552 1 139 241

Vampire 2.6 371 14.9 368 0.19 574 1 144 227

E 1.9.1 316 20.2 316 0.17 450 1 122 194

ET 0.2 303 21.0 303 0.16 344 0 119 184

CVC4 1.5 257 33.4 256 0.15 287 0 111 146

iProver 2.0 222 21.1 217 0.14 215 1 125 97

leanCoP 2.2 159 46.8 159 0.12 150 0 85 74

iProverM’lo 0.7-0.3 127 30.2 127 0.12 136 1 91 36

Prover9 1109a 111 28.0 111 0.14 138 0 29 82

ePrincess 1.0 113 48.4 88 0.13 19 0 35 78

Muscadet 4.5 37 7.3 37 0.11 70 0 18 19

Geo-III 2015E 37 38.8 37 0.14 50 0 15 22

Table 8

FOF division results

16 were by Vampire, and 1 by CVC4. A portfolio
approach does not help.

ATP System FNT Avg Mdls SOTA µ New FNN FNQ

/200 CPU out Con. Eff. /2 /110 /90

Vampire 4.0 195 39.0 195 0.37 368 2 106 89

iProver 2.0 163 44.1 163 0.29 226 2 92 71

iProver 1.0 134 80.0 134 0.28 39 2 77 57

CVC4 1.5 71 57.8 71 0.25 121 2 21 50

E 1.9.1 51 9.6 51 0.33 127 0 32 19

Geo-III 2015E 38 21.9 38 0.20 112 0 8 30

Table 9

FNT division results

3.7. The EPR Division

Table 10 summarizes the results of the EPR di-
vision. As for the FNT division, this is the first
time that Vampire has won the division. General
improvements in the implementation of AVATAR
and its SAT solvers have improved Vampire’s abil-
ity to find refutations (in the EPT category) and
saturations (in the EPS category) for EPR prob-
lems. In the EPS category, Vampire’s new fi-
nite model builder solved 15 of the 69 problems
that Vampire solved, and a subsequent experiment
showed that it could have solved 38 problems if
placed earlier in the strategy schedule. iProver 0.9
was the winner of the last five years of the EPR
division, and earlier versions won for two years be-
fore that. It is disappointing that the new iProver
2.0 was beaten by the old version, due to a weaker
performance in the EPT problem category.

The individual problem results show that 6
problems were unsolved, 7 problems were solved
by all the systems, and 24 problems were solved by
only one system. Of those 24 unique solutions, 23
were by Vampire, and 1 by iProver 0.9. A portfolio
approach does not help.

ATP System EPR Avg Pr M SOTA µ EPT EPS

/200 CPU out Con. Eff. /125 /75

Vampire 4.0 192 27.6 X X 0.39 445 123 69

iProver 0.9 161 27.9 × X 0.30 250 106 55

iProver 2.0 153 36.6 X X 0.28 242 96 57

E 1.9.1 101 11.1 X X 0.25 327 61 40

Geo-III 2015E 9 86.7 X X 0.21 11 1 8

Table 10

EPR division results

3.8. The LTB Division

Table 11 summarizes the results of the LTB di-
vision. Vampire clearly dominated the division. It
was noted in Section 3.5 that Vampire 4.0 had a
bug that caused some problems to be solved but
with no proof output - this bug was fixed in the
version used in the LTB division. The previous
winner, MaLARea, suffered from some component
software failures in the HL4 problem category, but
otherwise still performed well. MaLARea solved
the most problems in the MZR problem category,
where it benefited from machine learning on the
large number of proofs provided with the 1000
training problems. The top three systems made use
of the available cores, with core usages over 3.0.
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The individual problem results show that 280
problems were unsolved (82 HLL, 68 HL4, 64 ISA,
66 MZR), 237 problems were solved by all the sys-
tems (53 HLL, 8 HL4, 19 ISA, 157 MZR), and 313
problems were solved by only one system (86 HLL,
125 HL4, 54 ISA, 48 MZR). Of those 313 unique
solutions, 214 were by Vampire, 77 by MaLARea,
16 by E, and 6 by iProver. The HLL category has
the most to gain from a portfolio approach; giving
Vampire and MaLARea 30s each would solve 299
HLL problems.

4. System Descriptions

There were three newcomers in CASC-25, all
of which are “built on the shoulders of giants”,
as noted in Sections 3.3 and 3.5. They are Vam-
pireZ3 1.0, ZenonArith 0.1.0, and ePrincess 1.0
(which won the best newcomer prize). It is inter-
esting to understand how these systems have been
constructed, taking advantage of the existing “gi-
ant” capabilities. The following brief descriptions
of these systems were written by their developers.
VampireZ3 1.0 is a combination of Vampire 4.0

[6] and Z3 4.3.1 [5]. A key to the recent suc-
cess of Vampire 4.0 is its usage of AVATAR [16],
which uses a SAT solver to make splitting deci-
sions. VampireZ3 leverages this architecture. In
“plain” Vampire AVATAR works by representing
the first-order search space in the SAT solver,
using propositional symbols to consistently name
variable-disjoint components. The model produced
by the SAT solver is then used to (iteratively) se-
lect a subset of components for proof search. In
VampireZ3, the Z3 SMT solver is used in place of
the SAT solver, and the ground components are
translated into Z3 terms (the non-ground compo-
nents continue to be represented by propositional
symbols). This means Z3’s efficient methods for
ground reasoning with equality and theories are
exposed by AVATAR, as the SMT solver only pro-
duces theory-consistent models. Of the 172 prob-
lems that VampireZ3 solved in the TFA division,
only 81 were solved by strategies making use of Z3.
VampireZ3 1.0 can use any strategy available to
Vampire 4.0, including using a SAT solver for split-
ting, and evidently these strategies proved useful.
For reasoning with theories Vampire 4.0 uses a
combination of evaluation, theory axiom introduc-
tion and simple instantiation. VampireZ3’s success

can be attributed to the combination of Vampire’s
efficient quantifier reasoning with Z3’s powerful
ground theory reasoning.

ZenonArith 0.1.0 [4] is an extension of the
tableau-based Zenon ATP system [3] to linear
arithmetic. The extension uses the simplex algo-
rithm as a decision procedure to solve problems
over rationals, and a branch-and-bound approach
to solve problems over integers. It is also able to
handle real linear arithmetic, which coincides with
the rational fragment of linear arithmetic due to
the syntactical restrictions of the TPTP input for-
mat for reals. The extension consists of a smooth
integration of arithmetic deductive rules to the
usual tableau rules, so that there is a natural in-
terleaving between the arithmetic and regular an-
alytic rules. Universally quantified formulae are
handled by translating the unsatisfiability expla-
nations from the simplex algorithm into inference
rules. Instantiation for the existentially quantified
formulae is achieved by trying to solve sets of for-
mulae that cover all branches of a derivation tree.
ZenonArith is implemented in OCaml, and uses
the Zarith library to handle arbitrary precision in-
tegers and rationals. An incremental implementa-
tion of the simplex algorithm in OCaml is used as
the decision procedure over linear arithmetic. The
underlying Zenon system provides a built-in notion
of types for terms, and inference rules that discrim-
inate over the types of expressions. ZenonArith can
automatically output Coq proof scripts, which can
be checked by the Coq proof assistant. While quite
simple, the approaches of ZenonArith work quite
well over rational and real systems, as can be seen
in the competition results. The branch-and-bound
strategy used for integer systems seems less effec-
tive.

ePrincess 1.0 [2] is a theorem prover for first-
order logic with equality. It is an extension of the
Princess theorem prover [8], which uses a combi-
nation of techniques from the areas of first-order
reasoning and SMT solving. The main underly-
ing calculus is a free-variable, backtracking-free,
tableau calculus. ePrincess extends the calculus in
Princess with rules for handling equality, based on
a complete procedure utilizing Bounded Rigid E-
Unification (BREU) as a foundation of the unifi-
cation step. The two different procedures for solv-
ing BREU problems from [1] have been imple-
mented. ePrincess 1.0 competed in the FOF divi-
sion where its performance was promising enough
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ATP System LTB Avg Avg Prfs SOTA µ Core HLL HL4 ISA MZR

/1600 CPU WC out Con. Eff. Usage /400 /400 /400 /400

Vampire 4.0 1208 24.1 6.5 1208 0.49 387 3.7 279 322 319 288

MaLARea 0.5 837 27.9 8.3 837 0.41 96 3.4 243 9 280 305

E 1.9.1 799 27.8 7.4 799 0.36 214 3.8 154 214 202 229

iProver 2.0 352 30.4 13.0 352 0.29 51 2.3 59 77 21 195

Table 11

LTB division results

to earn the “best newcomer” award. It was shown
to be stronger on problems that include equality,
which is to be expected since the BREU calculus
focusses on first-order logic with equality. While
the number of problems solved is not yet close to
the top-performers, it was enough to show that
ePrincess is competitive with other tableaux sys-
tems on problems with equality.

5. Conclusion

CASC-25 was the twentieth large scale compe-
tition for fully automatic, classical logic ATP sys-
tems. CASC-J7 fulfilled its objectives by evaluat-
ing the relative abilities of current ATP systems,
and stimulating development and interest in ATP.

The highlight of CASC-25 was the dominance
of Vampire 4.0, and the developers have set a new
high standard for others to follow. This dominant
performance by Vampire does raise some concern
that other developers will lose hope of winning,
and CASC will lose some of its attraction. How-
ever, the TFA and TFN divisions will be empha-
sized next year in CASC-J8, and the THF division
is still in relative infancy. There’s a lot of space
out there for new ideas and implementations!

While the design of CASC is mature and stable,
each year’s experiences lead to ideas for changes
and improvements. Some changes that are being
considered for CASC-J8 are:

– The TFA and TFN divisions will be empha-
sized (hopefully with real cash prizes).

– The THN division will go into hiatus state.
– In order to motivate the development of sys-

tems that take advantage of multiple cores, a
ranking based on wall clock time will be done
in the FOF and FNT divisions.

As always, the ongoing success and utility of
CASC depends on ongoing contributions of prob-
lems to the TPTP. The automated reasoning com-

munity is encouraged to continue making contribu-
tions of all types of problems. In particular, typed
first-order problems with arithmetic, i.e., suitable
for the TFA and TFN divisions, are needed.
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