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ABSTRACT 

 
In this paper, we seek to find a computationally light centrality metric that could serve as an alternate for 

the computationally heavy betweenness centrality (BWC) metric. In this pursuit, in the first half of the 

paper, we evaluate the correlation coefficient between BWC and the other commonly used centrality 

metrics such as Degree Centrality (DEG), Closeness Centrality (CLC), Farness Centrality (FRC), 

Clustering Coefficient Centrality (CCC) and Eigenvector Centrality (EVC). We observe BWC to be highly 

correlated with DEG for synthetic networks generated based on the Erdos-Renyi model (for random 

networks) and Watts-Strogatz model (for small-world networks). In the second half of the paper, we 

conduct a regression analysis for BWC with that of a recently proposed centrality metric called the 

localized clustering coefficient complement-based degree centrality (LCC'DC) for a suite of 47 real-world 

networks. The R-Squared metric and Correlation coefficient for the LCC'DC-BWC regression has been 

observed to be appreciably greater than those observed for the DEG-BWC regression. We also observe the 

LCC'DC-BWC regression to incur relatively a lower value for the standard error of residuals for a 

majority of the real-world networks.  
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1. INTRODUCTION 

 
Over the past decades, a large number of centrality measures have been introduced and developed 

to quantify the significance and importance of the nodes in various networks. Betweenness 

centrality (BWC) is one of the most widely used measures, first developed in the 1970s by 

Freeman [1] and Anthonisse [2], independently. BWC is a measure of the degree to which a node 

functions as the mediation node by calculating the fraction score of all shortest paths (geodesic) 

between other pairs of nodes that go through it. It is expected that the network would be 

disconnected if one or two nodes with high BWC were removed. Thus one can expect that a node 

with high BWC does not belong to one of the dense groups, but connects them. For the rest of the 

paper, the terms 'node' and 'vertex', 'link' and 'edge', 'network' and 'graph' are used 

interchangeably. They mean the same. 

 

BWC has been widely applied to a large number of complex network analyses. For instance, it 

has been proposed as an indicator of the “interdisciplinary” nature of scientific journals [3]. In 

general, BWC of the nodes in a network increases with connectivity as a power law with an 

exponent η [4]. Thus, it is known to be computationally time consuming to obtain exact BWC: 
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O(nm) time for unweighted graphs and O(nm + n2logn) time for weighted graphs, where n is the 

number of vertices and m is the number of edges in the network [5][6][14]. In the first half of this 

paper, we focus on analyzing the correlation between BWC and five well-known centrality 

measures, including eigenvector centrality (EVC), degree centrality (DEG), clustering coefficient 

centrality (CCC), farness centrality (FRC), and closeness centrality (CLC) for synthetic networks 

generated from theoretical models for random network and small-world networks. In the second 

half of this paper, we conduct a comprehensive regression analysis to demonstrate that the 

recently proposed localized clustering coefficient complement-based degree centrality (LCC'DC) 

[28] could serve as a viable alternative for BWC and be used to predict the BWC of the vertices 

in real-world networks. 

 

2. COMPUTATION OF BETWEENNESS CENTRALITY 

 
The computation of BWC in this paper follows the algorithm by Brandes (2001) [5]. If the 

number of shortest paths between two nodes i and j that pass through node k as the intermediate 

node is denoted as gij
k and the total number of geodesic between the two nodes i and j is denoted 

as gij, then the BWC for node k is defined as 

 

 
 

 
 

Figure 1: Representative Example to Compute the Betweenness Centrality of the Vertices in a Network 

 

The representative BWC calculation is illustrated in Figure 1. On the basis of the algorithm 

proposed by Brandes (2001) [5], breadth-first search is involved in the computation. It is clear 

that BWC is different to degree-based ranking as shown in Figure 1. Nodes 3 and 4 have highest 

degree in this present network; however, node 3 has highest BWC. Nodes 0, 1, 5, and 6 each has a 

degree of 2, but with a BWC of 0. 
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3. CORRELATION ANALYSIS FOR THEORETICAL NETWORKS 

 
3.1. Analysis on Random Networks   

 
Firstly, random networks were simulated to investigate all the six centrality measures including 

BWC, EVC, DEG, CCC, FRC, and CLC. In this section, networks with 100 nodes were 

simulated. Particularly, the probability of linkage between nodes is varied from 0.05 to 0.9 to 

evaluate above mentioned centrality measures. The probability of linkage is increased from 0.05 

to 0.1 by 0.01; from 0.1 to 0.9 by 0.1. Representative random networks are shown in Figure 2 

with a ranking factor of BWC. Correlation between BWC and other five measures, including 

DEG, EVC, CCC, FRC, and CLC, was then determined. Average correlation coefficient value 

was calculated based on 100 trials.  

 

 
 

Figure 2: Simulation of Random Networks with Various Probability of Linkage Values 

[Ranking Factor is Betweenness Centrality] 
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Figure 3: Correlation Coefficient between BWC and the other Five Centrality Measures: DEG, EVC, CCC, 

FRC and CLC on Random Networks with Various Probability of Linkage Values 

 

As shown in Figure 3, BWC is highly correlated to all measures except CCC. Our data suggests a 

strong correlation between BWC and DEG, ranging from 0.9316 to 0.9513. The highest 

correlation of BWC to FRC, CLC, and EVC reaches -0.9576, -0.9495, and 0.94, respectively. The 

negative correlation indicates that an increase in one variable reliably predicts a decrease in the 

other one. A high value in negative correlation still suggests high correlation. It is pretty sure that 

we can select DEG, FRC, CLC, EVC as alternatives to BWC in random networks. 

 

3.2. Analysis on Small-World Networks 

 
We investigated on small-world networks evolved from regular network. Similar to random 

network simulation, 100 nodes with a k-regular value (initial number of links per node) of 10 are 

set for small-world network simulation. In this section, the probability of rewiring was varied 

from 0.01 to 0.09 with increment of 0.01; and from 0.1 to 0.9 with increment of 0.1. 

Representative small-world networks are shown in Figure 4 with a ranking factor of BWC. 

Correlation between BWC and the other five measures, including DEG, EVC, CCC, FRC, and 

CLC, was then calculated. Average correlation coefficient value was calculated based on 100 

trials. 
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Figure 4: Simulation of Small-World Networks with Various Probability of Rewiring Values 

[Ranking Factor is Betweenness Centrality] 

 

For small-world networks, there is a strong correlation between BWC and the other centrality 

metrics, except EVC, at a probability of rewiring lower than 0.2. The correlation coefficient was 

larger than 0.51 when the probability of rewiring reaches 0.2 for DEG, FRC, CLC, and CCC. The 

highest correlation coefficient of BWC to DEG, FRC, and CLC reaches to 0.5325, -0.7499, and -

0.7348 at probability of rewiring of 0.08. The correlation between BWC and CCC decreases from 

0.8131 to 0.0683 along with the increase of probability of rewiring. 

 

In a previous work, a transformation between small-world network and random network was 

revealed [15]. It was found that simulated network from a regular network would be small-world 

network when the probability of rewiring is from 0.01 to 0.1; however, it changes to random 

network when the probability of rewiring is between 0.1 and 1.0. In this study, we also observed a 

clear turning point at probability of rewiring of 0.1 as shown in Figure 5. Overall, we could 
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preferably use CCC as alternative to BWC at probability of rewiring lower than 0.07. At a critical 

probability of rewiring lower than 0.2, we still could use DEG, FRC, CLC, and CCC as 

alternatives.  

 

 
 

Figure 5: Correlation Coefficient between BWC and the other Five Centrality Measures, including DEG, 

EVC, CCC, FRC and CLC, on Small-World Networks with Various Probability of Rewiring Values 

 

4. REGRESSION ANALYSIS FOR REAL-WORLD NETWORKS 

 
In a recent work [28], the first author of this paper had proposed a novel centrality metric called 

localized clustering coefficient complement-based degree centrality (denoted LCC'DC) that has 

been demonstrated to exhibit the strongest correlation with node betweenness centrality 

(compared to the other centrality metrics discussed in this paper so far). The localized clustering 

coefficient (LCC) for a node is a measure of the probability that any two neighbors of the node 

are connected. The LCC of a node is a measured as the ratio of the actual number of links 

between any two neighbors of the node to that of the maximum possible number of links between 

any two neighbors of the node. The localized clustering coefficient complement (denoted LCC') 

is 1-LCC. Hence, LCC'DC for a node is the product of LCC' and DEG, the degree centrality of 

the node. Figure 6 shows an example to compute the LCC'DC values of the vertices in a sample 

graph. Note that LCC of a vertex with degree 1 is 1.0. 
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Figure 6: Example to Illustrate the Computation of the LCC'DC Metric 

 

In this section, we conduct linear regression analysis between the BWC and LCC'DC values vis-

a-vis the DEG values for a suite of 47 real-world networks. In other words, we fit a straight line to 

predict the BWC values for the nodes using the LCC'DC values and compare the goodness of the 

fitted straight line with that of straight line fitted using the DEG values. We normalize the values 

for the BWC, LCC'DC and DEG metrics (i.e., the values for all the three metrics are normalized 

to a range of 0...1). We use the Ordinary Least Squares (OLS) method for the linear regression 

[30]; the objective of this regression model is to minimize the sum of the squares of the residuals 

(in the context of this paper, the residual for a node is the difference between the actual BWC 

value and the BWC value predicted based on the best fitting straight line). The goodness of the 

regression is evaluated with respect to the Estimated Standard Error of the Residuals (Standard 

deviation of the residuals), Coefficient of Determination (R-Squared metric), Pearson's 

correlation coefficient (square root of the R-Squared value) and the goodness fraction (fraction of 

the nodes for which the predicted BWC value is within the threshold error of the actual value). 

The R-Squared (ranges from 0...1) metric indicates the proportion of variation in the dependent 

variable that is predictable from the independent variable. As stated earlier, the primary objective 

of the OLS method of linear regression is to fit a straight line that would lower the Estimated 

Standard Error of the Residuals to as low as possible. The strength of the Standard Error of the 

Residuals metric is that it could be computed using the same unit as that of the dependent variable 

and it would be a relatively an apt metric to interpret the goodness of the fit. Moreover, as we use 

normalized values of the dependent and independent variables for the centrality metrics to fit the 

regression line, the Standard Error of the Residuals (SER) could be directly construe the range of 

the predicted values vis-a-vis the actual values. For example, if the Standard Error of the 

Residuals is 0.05, we could say that in a scale of 0....1 for the actual values of the BWC metric, 

the predicted values for the BWC metric are more likely to be ± 0.05 of the actual values. We also 

calculate the fraction of nodes (called the goodness fraction) for which the predicted BWC values 

are indeed ± SER of the actual BWC values. All the 47 real-world network graphs analyzed in 

this section are modeled as undirected graphs. Table 1 lists the networks (and the acronym code) 

along with the number of nodes and edges, average degree (kavg) and spectral radius ratio for node 

degree (λsp) [10]: a measure of variation in the degree of the nodes; the farther is this value from 

1.0, the larger is the variation in node degree. A more detailed description of the networks can be 

found in [22]. The regression analysis is conducted using the Java Apache Commons Math 

package [31]. 
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Table 1: Properties of the Real-World Network Graphs used for Regression Analysis 

 
 

# Network Name Code # Nodes # Edges kavg λsp 

1 Word Adjacency Net. ADJ 112 425 7.589 1.73 

2 Anna Karnenina Net. AKN 140 494 7.057 2.48 

3 Band Jazz Net. JBN 198 2742 27.697 1.45 

4 C. Elegans Neural Net. CEN 297 2148 14.465 1.68 

5 Centrality Literature Net. CLN 118 613 10.39 2.03 

6 Citation Graph Drawing Net. CGD 259 640 4.942 2.24 

7 Copperfield Net. CFN 89 407 9.146 1.83 

8 Dolphin Net. DON 62 159 5.129 1.40 

9 Drug Net. DRN 212 284 2.679 2.76 

10 Dutch Literature 1976 Net. DLN 37 81 4.378 1.49 

11 Erdos Collaboration Net. ERD 433 1314 6.069 3.00 

12 High School Friendship Net. FMH 147 202 2.748 2.81 

13 Hi-Tech Firm Friendship Net. FHT 33 91 5.515 1.57 

14 Flying Teams Cadet Net. FTC 48 170 7.083 1.21 

15 US Football Net. FON 115 613 10.661 1.01 

16 College Dorm Fraternity Net. CDF 58 967 33.345 1.11 

17 Graph Drawing 1996 Net. GD96 180 228 2.533 2.38 

18 Gleiser Marvel Universe Net. MUN 167 301 3.605 2.54 

19 Graph and Digraph Glossary Net. GD01 101 190 3.762 1.80 

20 Hypertext 2009 Net. HTN 115 2164 37.635 1.21 

21 Huckleberry Coappearance Net. HCN 76 302 7.947 1.66 

22 Infectious Socio-patterns Net. ISP 309 1924 12.453 1.69 

23 Karate Club Net. KCN 34 78 4.588 1.47 

24 Korea Family Planning Net. KFP 37 85 4.595 1.70 

25 Les Miserables Net. LMN 77 254 6.597 1.82 

26 Macaque Dominance Net. MDN 62 1167 37.645 1.04 

27 Madrid Train Bombing Net. MTB 64 295 9.219 1.95 

28 Manufac. Company Employee Net. MCE 77 1549 40.23 1.12 

29 Social Networks Journal Co-Authors MSJ 475 625 2.632 3.48 

30 Author Facebook Net. AFB 171 940 10.994 2.29 

31 Mexican Political Elite Net. MPN 35 117 6.686 1.23 

32 Modern Math Method Net. MMN 30 61 4.067 1.59 

33 US Politics Books Net. PBN 105 441 8.4 1.42 

34 Primary School Contact Net. PSN 238 5539 46.546 1.22 

35 Prison Friendship Net. PFN 67 142 4.239 1.32 

36 San Juan Sur Family Net. SJN 75 155 4.133 1.29 

37 Scotland Corporate Interlocks Net. SDI 230 359 3.122 1.94 

38 Senator Press Release Net. SPR 92 477 10.37 1.57 

39 Soccer World Cup 1998 Net. SWC 35 118 6.743 1.45 

40 Sawmill Strike Communication Net. SSM 24 38 3.167 1.22 

41 Taro Exchange Net. TEN 22 39 3.545 1.06 

42 Teenage Female Friendship Net. TWF 47 77 3.277 1.49 

43 UK Faculty Friendship Net. UKF 83 578 13.928 1.35 

44 US Airports 1997 Net. APN 332 2126 12.807 3.22 

45 Residence Hall Friendship Net. RHF 217 1839 16.949 1.27 

46 Windsurfers Beach Net. WSB 43 336 15.628 1.22 

47 World Trade Metal Net. WTN 80 875 21.875 1.38 
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Table 2: Regression Analysis Results for {LCC'DC vs. DEG} and BWC: R-Squared and estimated 

Standard Error of Residuals (SER) as well as Computation Time of Centrality Metrics 
 

# Net. 

Code 

R-Squared Metric Std. Error Residuals (SER) Computation Time (milli sec.) 

LCC'DC DEG LCC'DC DEG BWC LCC'DC DEG 

1 ADJ 0.865 0.838 0.032 0.035 261.67 0.840 0.016 

2 AKN 0.899 0.796 0.026 0.038 378.56 1.287 0.021 

3 JBN 0.574 0.372 0.043 0.052 2006.85 9.336 0.039 

4 CEN 0.666 0.609 0.033 0.035 5837.20 3.576 0.047 

5 CLN 0.787 0.681 0.038 0.047 194.83 0.183 0.019 

6 CGD 0.739 0.636 0.025 0.029 5123.47 0.258 0.049 

7 CFN 0.805 0.652 0.047 0.063 42.96 0.113 0.017 

8 DON 0.503 0.357 0.071 0.081 19.28 0.038 0.010 

9 DRN 0.485 0.422 0.038 0.041 3944.56 0.171 0.046 

10 DLN 0.716 0.626 0.066 0.076 3.16 0.022 0.005 

11 ERD 0.690 0.611 0.023 0.026 21956.46 0.507 0.075 

12 FMH 0.515 0.397 0.045 0.051 940.77 0.132 0.032 

13 FHT 0.810 0.666 0.059 0.079 2.80 0.021 0.005 

14 FTC 0.834 0.613 0.043 0.066 8.67 0.034 0.007 

15 FON 0.453 0.079 0.028 0.037 148.68 0.165 0.016 

16 CDF 0.874 0.734 0.029 0.042 24.68 0.276 0.018 

17 GD96 0.887 0.905 0.024 0.022 870.43 0.131 0.025 

18 MUN 0.741 0.495 0.039 0.054 274.62 0.122 0.025 

19 GD01 0.891 0.868 0.035 0.038 21.18 0.039 0.011 

20 HTN 0.781 0.687 0.036 0.043 211.62 0.745 0.017 

21 HCN 0.881 0.687 0.040 0.064 23.23 0.073 0.011 

22 ISP 0.259 0.220 0.044 0.045 6413.78 0.458 0.047 

23 KCN 0.866 0.843 0.058 0.063 2.35 0.020 0.005 

24 KFP 0.498 0.218 0.090 0.113 3.41 0.024 0.006 

25 LMN 0.867 0.558 0.040 0.073 30.03 0.060 0.011 

26 MDN 0.963 0.875 0.011 0.020 33.81 0.379 0.009 

27 MTB 0.764 0.531 0.053 0.074 22.31 0.051 0.010 

28 MCE 0.887 0.784 0.034 0.047 55.96 0.449 0.012 

29 MSJ 0.372 0.154 0.036 0.041 13454.64 0.345 0.068 

30 AFB 0.295 0.067 0.059 0.068 705.27 0.219 0.038 

31 MPN 0.885 0.795 0.049 0.065 2.93 0.021 0.005 

32 MMN 0.788 0.709 0.060 0.070 2.47 0.019 0.014 

33 PBN 0.606 0.507 0.050 0.056 107.30 0.117 0.016 

34 PSN 0.780 0.702 0.021 0.025 3426.78 2.560 0.032 

35 PFN 0.778 0.721 0.044 0.049 21.72 0.034 0.010 

36 SJN 0.742 0.660 0.047 0.054 32.46 0.049 0.017 

37 SDI 0.532 0.543 0.037 0.036 2489.91 0.162 0.036 

38 SPR 0.775 0.697 0.041 0.048 69.01 0.117 0.014 

39 SWC 0.859 0.820 0.054 0.061 3.05 0.022 0.005 

40 SSM 0.717 0.723 0.099 0.098 0.78 0.012 0.005 

41 TEN 0.888 0.738 0.048 0.073 0.67 0.010 0.003 

42 TWF 0.484 0.047 0.081 0.111 3.58 0.021 0.007 

43 UKF 0.824 0.611 0.042 0.062 51.65 0.161 0.011 

44 APN 0.681 0.496 0.030 0.038 7075.86 0.942 0.047 

45 RHF 0.816 0.707 0.023 0.029 2025.47 0.455 0.037 

46 WSB 0.899 0.802 0.038 0.054 7.44 0.057 0.006 

47 WTN 0.890 0.824 0.035 0.044 54.09 0.251 0.012 
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Table 2 presents the R-Squared values and the estimated Standard Error of the Residuals (SER) as 

well as the running time (in milliseconds) of the methods to determine the BWC, LCC'DC and 

DEG. We have highlighted the cells for which the R-Squared values are high as well as the cells 

for which we incur a lower SER value (both of which indicating the corresponding centrality 

metric has a better goodness of fit). The execution time of the LCC'DC method is significantly 

smaller than that of the BWC method; nevertheless the DEG metric incurs the smallest of the 

execution time.  

 

We will follow the convention proposed by Evans [29] to assess the strength of the correlation 

between two datasets based on the values for the correlation coefficient. As the R-Squared metric 

is simply the square of the Pearson's correlation coefficient (in the case of the OLS linear 

regression with intercept being considered as part of the model), we propose to adopt the square 

of the boundary values for each of the ranges proposed for the correlation coefficient as the 

ranges for the level of association with respect to the R-Squared metric. Accordingly, the range of 

values for the strength of the correlation (with respect to the Pearson's correlation coefficient) and 

the strength of the association (with respect to the R-Squared metric) are shown in Table 3. Note 

that the R-Squared metric for OLS linear regression with intercept model always takes the values 

between 0...1 (as it is simply the square of the Pearson's correlation coefficient whose values 

range from -1....1).  

 
Table 3: Range of Correlation Coefficient Values for the Level of Correlation and the Range of R-Squared 

Values for the Level of Association 

 

Range of  

Correlation 

Coefficient  

Level of 

Correlation 
 

Range of  

Correlation  

Coefficient 

Level of  

Correlation 
 

Range of  

R-Squared 

Values 

Level of 

Association 

0.80 to 1.00   
Very Strong 

Positive 
 -1.00 to -0.80 

Very Strong 

Negative 
 0.64 to 1.00 Very Strong 

0.60 to 0.79 
Strong 

Positive 
 -0.79 to -0.60 

Strong 

Negative 
 0.36 to 0.63 Strong 

0.40 to 0.59 
Moderate 

Positive 
 -0.59 to -0.40 

Moderate 

Negative 
 0.16 to 0.35 Moderate 

0.20 to 0.39 
Weak 

Positive 
 -0.39 to -0.20 

Weak 

Negative 
 0.04 to 0.15 Weak 

0.00 to 0.19 
Very Weak 

Positive 
 -0.19 to -0.01 

Very Weak 

Negative 
 0.00 to 0.03 Very Weak 
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Figure 7: Distribution of the R-Squared Values for the LCC'DC - BWC OLS Regression Line vs. the DEG - 

BWC OLS Regression Line 

 

Figure 7 illustrates the comparison of the R-Squared values for the LCC'DC-BWC OLS 

regression line vs. the DEG-BWC OLS regression line. For 44 of the 47 real-world networks, we 

observe the R-Squared values for the LCC'DC-BWC OLS regression to be larger than that of the 

DEG-BWC OLS regression. For the LCC'DC-BWC OLS regression, we observe about 35 of the 

47 real-world networks to exhibit a R-Squared value of 0.64 or larger. In other words, about 

35/47 ~ 75% of the real-world networks have been observed to exhibit a very strong association 

between LCC'DC and BWC. On the other hand, for the DEG-BWC OLS regression: we observe 

only about 25 of the 47 real-world networks exhibit a R-Squared value of 0.64 or larger. That is, 

about 25/47 ~ only 53% of the real-world networks exhibit a very strong association between 

DEG and BWC. With respect to R-Squared values less than or equal to 0.15: we observe 4/47 ~ 

9% of the real-world networks to exhibit a weak to very weak association between DEG and 

BWC, whereas none of the real-world networks exhibit a weak to very weak association between 

LCC'DC and BWC. The minimum, maximum and median of the R-Squared values observed for 

the LCC'DC-BWC regression line fit are respectively 0.26, 0.96 and 0.78 (indicating about half of 

the real-world networks analyzed exhibit an R-Squared value of 0.78 or above). On the other 

hand, the minimum, maximum and median of the R-Squared values observed for the DEG-BWC 

regression are respectively 0.05, 0.90 and 0.66.  
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Figure 8: Distribution of the Standard Error of the Residuals (SER) Values for the LCC'DC - BWC OLS 

Regression Line vs. the DEG - BWC OLS Regression Line 

 

Figure 8 illustrates the comparison of the estimated Standard Error of the Residuals (SER) values 

for the LCC'DC-BWC OLS regression line vs. the DEG-BWC OLS regression line. Again, for 44 

of the 47 real-world networks (the same networks that we observed the R-Squared values to be 

larger), we observe the SER values for the LCC'DC-BWC OLS regression to be lower than that 

of the DEG-BWC OLS regression. Like the case of the R-Squared metric, for the LCC'DC-BWC 

OLS regression, we are more likely to be able to predict a BWC value that is ± 0.05 of the actual 

BWC values of the nodes (in the range of 0...1) for about 35/47 ~ 75% of the real-world 

networks. On the other hand, for the DEG-BWC OLS regression: we are more likely to be able to 

predict a BWC value that is ± 0.05 of the actual BWC values of the nodes for only about 23/47 ~ 

less than 50% of the real-world networks. The minimum, maximum and median of the SER 

values observed for the LCC'DC-BWC regression line fit are respectively 0.011, 0.099 and 0.04 

(indicating about half of the real-world networks analyzed exhibit an SER value of 0.04 or lower). 

On the other hand, the minimum, maximum and median of the SER values observed for the DEG-

BWC regression line fit are respectively 0.02, 0.113 and 0.051.  

 
Table 4: Regression Analysis Results for {LCC'DC vs. DEG} and BWC: Pearson's Correlation Coefficient, 

Goodness Fraction of Nodes as well as Parameters for LCC'DC-BWC Regression 

 

# 
Net. 

Code 

Pearson's Correlation 

Coefficient 

Goodness Fraction of 

Nodes 

Parameters for LCC'DC - 

BWC Regression 

LCC'DC DEG LCC'DC DEG Intercept: b0 Slope: b1 

1 ADJ 0.930 0.915 0.705 0.670 -0.040 1.196 

2 AKN 0.948 0.892 0.848 0.826 -0.007 0.977 

3 JBN 0.757 0.610 0.874 0.904 -0.020 0.980 

4 CEN 0.816 0.780 0.936 0.949 -0.027 1.067 

5 CLN 0.887 0.825 0.829 0.837 -0.022 1.025 

6 CGD 0.860 0.797 0.794 0.791 -0.006 0.970 

7 CFN 0.897 0.808 0.851 0.862 -0.022 0.957 

8 DON 0.709 0.598 0.871 0.823 -0.024 0.984 

9 DRN 0.696 0.649 0.913 0.899 -0.003 0.781 
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10 DLN 0.846 0.791 0.714 0.743 -0.025 1.041 

11 ERD 0.831 0.782 0.869 0.860 -0.005 0.919 

12 FMH 0.718 0.630 0.815 0.859 -0.004 0.789 

13 FHT 0.900 0.816 0.694 0.778 -0.017 1.009 

14 FTC 0.913 0.783 0.583 0.625 -0.054 1.255 

15 FON 0.673 0.282 0.687 0.713 -0.066 1.640 

16 CDF 0.935 0.857 0.724 0.741 -0.047 1.285 

17 GD96 0.942 0.951 0.900 0.900 -0.013 1.020 

18 MUN 0.861 0.704 0.879 0.867 -0.006 0.893 

19 GD01 0.944 0.932 0.750 0.736 -0.019 1.042 

20 HTN 0.884 0.829 0.947 0.947 -0.059 1.409 

21 HCN 0.938 0.829 0.878 0.824 -0.015 0.977 

22 ISP 0.509 0.469 0.913 0.922 -0.009 0.745 

23 KCN 0.930 0.918 0.824 0.853 -0.028 1.030 

24 KFP 0.705 0.467 0.795 0.692 -0.004 0.854 

25 LMN 0.931 0.747 0.857 0.857 -0.016 0.990 

26 MDN 0.982 0.935 0.774 0.710 -0.094 1.693 

27 MTB 0.874 0.729 0.871 0.729 -0.003 0.912 

28 MCE 0.942 0.885 0.727 0.740 -0.045 1.207 

29 MSJ 0.610 0.392 0.931 0.926 -0.001 0.636 

30 AFB 0.543 0.259 0.914 0.957 -0.013 0.695 

31 MPN 0.941 0.892 0.714 0.771 -0.086 1.327 

32 MMN 0.888 0.842 0.737 0.684 -0.050 1.167 

33 PBN 0.779 0.712 0.800 0.771 -0.011 0.935 

34 PSN 0.883 0.838 0.798 0.782 -0.016 1.141 

35 PFN 0.882 0.849 0.806 0.731 -0.027 1.103 

36 SJN 0.861 0.812 0.813 0.787 -0.045 1.206 

37 SDI 0.730 0.737 0.852 0.848 -0.018 1.023 

38 SPR 0.880 0.835 0.783 0.793 -0.038 1.179 

39 SWC 0.927 0.905 0.686 0.800 -0.058 1.186 

40 SSM 0.847 0.851 0.667 0.792 -0.070 1.112 

41 TEN 0.942 0.859 0.682 0.727 -0.097 1.364 

42 TWF 0.696 0.218 0.680 0.800 -0.001 0.830 

43 UKF 0.908 0.782 0.778 0.815 -0.052 1.229 

44 APN 0.825 0.705 0.901 0.883 -0.004 0.861 

45 RHF 0.903 0.841 0.783 0.760 -0.037 1.373 

46 WSB 0.948 0.895 0.767 0.767 -0.059 1.258 

47 WTN 0.944 0.908 0.800 0.763 -0.022 1.044 

 

Table 4 displays values for the Pearson's correlation coefficient (square root of the R-Squared 

values) and the Goodness Fraction (the fraction of nodes for which the predicted BWC value is 

within ± SER of the actual value). We also display the values for the regression parameters b0 and 

b1 obtained for each of the real-world networks with respect to the LCC'DC-BWC regression. We 

decided to use the positive values for the Pearson's correlation coefficient (square root of R-

Squared) because the slope (parameter b1) of the regression line is positive. We use the range of 

values proposed by Evans [29] for the levels of correlation (shown in Table 3) to determine the 

percentage of networks for which we observe a very strong correlation between the BWC and 

LCC'DC metrics vis-a-vis DEG.  

 

Figure 9 displays the distribution of the correlation coefficient values for LCC'DC vs. DEG. As in 

the case of the R-Squared metric, we observe about 75% (35 out of 47) of the real-world networks 
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exhibited a very strong correlation between LCC'DC and BWC; whereas, only about 53% (25 out 

of 47) of the real-world networks exhibited a very strong correlation between DEG and BWC. For 

25 of the 47 of the real-world networks, both the LCC'DC and DEG metrics exhibited a very 

strong correlation with BWC (basically for all the 25 real-world networks for which the DEG 

exhibited a very strong correlation). For 12 of the 47 real-world networks, both the LCC'DC and 

DEG do not exhibit a very strong correlation (basically for all the 12 real-world networks for 

which the LCC'DC did not exhibit a very strong correlation). Overall, there is no real-world 

network for which the DEG metric exhibited a very strong correlation and the LCC'DC metric did 

not exhibit a very strong correlation. Thus, the LCC'DC metric is a very promising metric to be 

considered an alternative measure of the BWC metric for complex real-world networks. 

 

 

 

Figure 9: Distribution of the Pearson's Correlation Coefficient Values for the LCC'DC - BWC OLS 

Regression Line vs. the DEG - BWC OLS Regression Line 

 

Figure 10 displays the distribution of values for the goodness fraction of the nodes for which the 

predicted BWC (based on the regression line) differs from that of the actual BWC by at most the 

SER value for the regression. The goodness fraction (ranges from 0...1) for both the regressions 

(LCC'DC and DEG-based) were observed to be very close to each other (as observed from most 

of the data points in Figure 10 lying close to the diagonal line), with each regression yielding a 

relatively slightly larger value for the goodness fraction for about 50% of the real-world 

networks. The median value for the goodness fraction of the nodes with both the regressions is 

close to 0.80; thus, for at least 50% of the real-world networks: for about 80% of the nodes, we 

are able to predict a BWC value that differs from the actual BWC value by at most the SER value.  
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Figure 10: Distribution of the Goodness Fraction of Nodes for the LCC'DC - BWC OLS Regression Line 

vs. the DEG - BWC OLS Regression Line 

 

 

Figure 11: Spectral Radius Ratio for Node Degree for a Network vs. Slope of the OLS LCC'DC-BWC 

Regression Line for the Network 

 

Figures 11 and 12 respectively illustrate the distribution of the spectral radius ratio for node 

degree (λsp) vs. the slope and intercept of the LCC'DC-BWC OLS regression line. We observe the 

slope and intercept of the regression line to respectively decrease and increase with increase in λsp. 

We confirm this through a more detailed look at the distribution of the actual normalized LCC'DC 

and BWC values for two sample networks: the MSJ network (McCarty Social Network Journal 

Authors) with λsp = 3.48 has a slope of 0.6362 and intercept of -0.0009 (see Figure 12) and the 

FON network (US Football Network) with λsp = 1.01 (see Figure 13) has a slope of 1.6397 and 

intercept of -0.0656. The intercept of the regression lines for all the 47 real-world networks is 

negative and the intercept approaches zero for networks with larger spectral radius ratio for node 

degree. A larger positive slope of the regression lines for networks with lower λsp values indicates 

that the BWC values are predicted to quickly increase with increase in the LCC'DC values of the 

vertices in such networks, compared to networks with higher λsp values.   
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Figure 12: Spectral Radius Ratio for Node Degree for a Network vs. Intercept of the OLS LCC'DC-BWC 

Regression Line for the Network 

 

 

 

Figure 13: Distribution of the Normalized LCC'DC and BWC Values as well as the  OLS LCC'DC-BWC 

Regression Line for the McCarty Social Journal Authors Network (λsp = 3.48) 
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Figure 13: Distribution of the Normalized LCC'DC and BWC Values as well as the  OLS LCC'DC-BWC 

Regression Line for the US Football Network (λsp = 1.01) 

 

4. RELATED WORK 

 
In [25], the authors evaluated the range-limited centrality measures of vertices and edges in 

complex networks: i.e., the centrality of the vertices based on their one-hop neighborhood, two-

hop neighborhood and etc. It has been observed for both unweighted and weighted network 

graphs: within smaller shortest path lengths, the ranking of the vertices based on the range-limited 

centrality measures becomes similar to the ranking of the vertices computed for the entire 

network. This results corroborates our finding in this paper regarding the correlation observed 

between LCC'DC and BWC. The LCC'DC metric studied in this paper is essentially computed 

based on the one-hop neighborhood of the vertices and it captures the fraction of the pairs of 

neighbors of the vertex that need to go through the vertex for shortest path communication and 

scaled to the degree of the vertex. 

 

In [26], the authors proposed the use of virtual nodes between weighted edges to transform a 

weighted graph of V vertices and E edges to an unweighted graph of unit edge weights so that one 

could run the O(V+E) breadth first search (BFS) algorithm [27] instead of the O(ElogV) Dijkstra 

algorithm [27] to determine the fraction of shortest paths (between any two vertices) going 

through a vertex. For example, if an edge x-y has weight 3, we introduce two virtual nodes v1, v2 

such that we replace the edge x-y of weight 3 with a sequence of edges x- v1- v2-y each of weight 

1. However, this transformation is scalable and time-saving only for light-weighted sparse 

network graphs (in [26]: the threshold edge weight has been shown to be logN/D + 1 where N and 

D are respectively the number of nodes and average degree of the nodes) and the number of 

virtual nodes introduced for weighted edges would become an overkill even for sparse graphs 

with larger edge weights or for dense graphs with even smaller edge weights.  

 

There are a few approaches/algorithms proposed to further develop the application of BWC. For 

instance, the random-walk betweenness measure calculated for all vertices in a network in worst-

case time O((m+n)n2) using matrix methods [8]. Others such as bounded-distance betweenness 

[9], distance-scaled betweenness [9], edge betweenness [11] and group betweenness [12] are also 

introduced. In [18], the authors used a metric called the "complex degree centrality" [20] for a co-

author network and observed this centrality to exhibit a correlation coefficient of 0.848 with the 

node betweenness metric. The complex degree centrality of a vertex (author) is computed as an 

entropy-based measure of the number of co-authors and the number of co-authored papers for the 
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author. Nevertheless, the computation cost of these betweenness measures is still high. It is more 

feasible if we could find another centrality measure with low computation cost that is highly 

correlated to BWC. It was shown that the BWC is related to the degree in social networks [13] 

and scale-free network [14]. However, there still lacks substantial support on the alternatives to 

BWC.  

 

BWC measures the interrelationships among vertices. The results of our simulation studies 

suggest that BWC is highly correlated to LCC'DC on most tested real-world networks with a 

correlation coefficient of 0.8 or above. Leydesdorff (2007) [3] also observed high correlation 

between BWC and DEG with a correlation coefficient value of 0.724 on Journal Citing Social 

Networks. Recently, Pozzi et al (2013) [16] observed a strong correlation of the centrality indices 

between unweighted BWC and DEG calculated on Planar Maximally Filtered Graphs (PMFG) 

with a value of 0.97. There is also a moderate correlation between BWC and CLC papered with a 

value of 0.54 [3]. CLC refers to the relatedness among a set of vertices, providing a global 

measure of relationships among all vertices. A good correlation between BWC and CLC is 

valuable when it comes to a connection between global and local view.  

 

There has been some works that also highlight independence of betweenness centrality from node 

degree. In [21], the authors observed that the scale-free social networks that have been observed 

to be assortative with respect to node degree (i.e., high-degree vertices are connected to high-

degree vertices and vice-versa) are not similarly observed to be assortative with respect to node 

betweenness (i.e., a node with high betweenness centrality is more likely to be connected with 

nodes of arbitrary betweenness centrality and need not be neighbors that also have high 

betweenness centrality). A similar observation has also been made in a recent study of the lead 

author in [22] to assess the assortativity of real-world networks with respect to different centrality 

metrics. The assortative index (correlation coefficient between vertices with respect to a particular 

centrality metric) with respect to betweenness centrality has been observed to be less than 0.5 for 

a majority of the real-world networks. In addition, in [23]: the correlation between degree 

centrality and betweenness centrality for fractal scale-free networks (both synthetic as well as 

real-world networks) has been observed to be weaker compared to the correlation observed for 

non-fractal scale-free networks. Fractal networks have self-similar network motifs at different 

scales (i.e., motifs of different sizes) [24]. 

 

In [17], the authors evaluated the impact of percentage of samples (like the fraction of nodes 

among the nodes in a network) that need to be used to construct a regression model to predict 

each of the commonly used centrality metrics. The regression model for a centrality metric is 

constructed based on the sample nodes randomly chosen and the values predicted from this model 

for the non-sampled nodes were compared with the actual value. Though several centrality 

metrics showed stable behavior (i.e., the metric values were predicted with appreciable accuracy 

with sampling), the Betweenness Centrality metric was observed to be unstable. That is, it was 

not possible to predict the BWC of the non-sampled vertices using the BWC of the sampled 

vertices. In another sampling related work, Bader et al [7] propose an adaptive sampling 

technique to pick a sequence of source-destination pairs (the subsequent pair in the sequence is 

decided based on the information gathered by running the single source shortest path problem for 

the pairs chosen until then) rather than considering all pairs of vertices or random pairs of vertices 

[19]. An adaptive sampling of the source-destination pairs of vertices has been observed [7] to 

produce a relatively better approximation to betweenness centrality compared to random 

sampling.  
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5. CONCLUSIONS 

 
The high-level contributions of this paper are that we have shown the computationally heavy 

betweenness centrality metric to be highly correlated with the degree centrality metric for 

synthetic networks generated from the theoretical random network and small-world network 

models and with that of the localized clustering coefficient complement-based degree centrality 

metric (LCC'DC) for real-world networks. As part of the regression analysis conducted for real-

world networks, we observe the LCC'DC metric to incur relatively larger R-Squared values and at 

the same time relatively smaller SER values (Standard error for residuals) compared to those for 

the degree centrality metric. We also propose an evaluation metric called the goodness fraction to 

estimate the fraction of nodes for which we are able to predict the BWC values that are within ± 

the SER values observed for the real-world networks. We find both the LCC'DC and DEG-based 

regression models to incur a larger value for the goodness fraction of nodes. For future work, we 

plan to identify computationally light metrics for other computationally heavy metrics like 

eigenvector centrality, closeness centrality and maximal clique size using correlation analysis and 

corroborate the identified correlations using regression analysis.   
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