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Abstract: I examine whether or not  it is appropriate to use extinction probabilities generated by populat ton 
viability analyseg based on best estimates for  model parameterg as criteria for  listing species in Red Data 
Book categories as recently proposed by the World Conservation Union. Such extinction probabilities are 
influenced by how accurately model parameters are estimated and by how accurately the models depict 
actual populat ion dynamic.~ I evaluate the effect o f  uncertainty in parameter estimation through simula- 
tion~ Simulations based on Steller sea lions were used to evaluate bias and precision in estimates o f  
probability o f  extinction and to consider the performance o f  two proposed classification scheme~ Extinction 
time estimates were biased (because o f  violation o f  the assumption o f  stable age distribution) and un- 
derestimated the variability o f  probability o f  extinction for  a given time (prima~ly because o f  uncertainty 
in parameter estimation). Bias and precision in extinction probabilities are important when these proba- 
bilities are used to compare the risk o f  extinction between specie~ Suggestions are given for  population 
viability analysis techniques that incorporate parameter uncertainty. I conclude that testing classification 
schemes with simulations using quantitative p e r f ~ c e  objectives should precede adoption o f  quantitative 
listing criteria 

Confiabilidad de  el uso del  anMisis de  Viabilidad Poblacional para clailicacion de  riesgo de  especies 

R e s u m e n :  En el presente trabajo se examin6 si es apropiado usar las probsbilidades de extinci6n generadas 
por  los andlisis de viabilidad poblaciona~ basados en las mejores estimaciones para los pardmetros del 
modelo, como criterios pars  el listado de especies en las categorias del Libro RoJo tal como fuera reciente- 
mente propuesto por  la Uni6n Internacional para ls  Conservaci6n de la NaturaleYxt Las probabilidades de 
extinci6n estdn influenciadas por  la exactitud con que son estfmados los pardmetros del m(m~lo y por  la 
exactitud con que el modelo describe la verdadera dindmica poblacionaL En este estudio se eval~o el efecto de 
la incertidumbre en la estimaci6n de los pardmetros por  medio de simulacione~ Se utilizaron simulaciones 
basadas en el le6n marino Steller para evaluar el sesgo y la precisi6n en las estimaciones de la probabilidad 
de extinci6n y para considerar el desempefio de dos esquemas de clasiflcaci6rL Las estimaciones del tiempo 
de extinci6n estuvieron sesgadas (debido a la vtolaci6n de la suposici6n de una distribuci6n de edades 
estable) y se subesttmaron la variabilidad de la probabilidad de extinci6n pars  un tterapo dado (debido 
principalmente a la incerttdumbre en la estimaci6n de los pardmetros). El sesgo y la precisi6n en las 
probabiltdades de extinci6~ son importantes cuando estas probabilidades son usadas para comparar el 
riesgo de extincibn entre especie£ Se sugieren t&cnicas de andlisis de viabilidad poblacional que incorporan 
la incertidumbre en los pardmetro£ Concluyo que el andlisis de los esquemas de clasificaci6n con simulaciones 
usando objetivos de desempefto cuantitativos, deberta preceder la adopci6n de criterios de listados 
cuantitatitaxg 
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Introduction 

The World Conservation Union (IUCN) is proposing to 
revise its scheme to classify species because new devel- 
opments in conservation biology allow for the develop- 
merit of more objective and scientifically-based meth- 
ods (Mace et al. 1992). Two schemes  have been  
proposed (Table 1) (Mace & Lande 1991; Mace et al. 
1992); their goal is to categorize species realistically 
based on their risk of  extinction. Although the schemes 
offer qualitative and quantitative criteria, I address only 
a single quantitative criteria: the probability of extinc- 
tion. The probability of a species going extinct, as esti- 
mated by a population viability analysis (PVA), is obvi- 
ously of crucial importance and seems to offer a sound 
scientific basis upon which to make conservation deci- 
sions. But can we rely on PVA? How well does it really 
work? Before we use PVA as a method for categorizing 
species, we need to know how well we can estimate 
extinction probabilities and whether  the categories, as 
defined by probabilities of  extinction in the proposed 
classification schemes--crit ical,  endangered, and vul- 
nerable,---do justice to the risk facing various species. 
Ideally, biologists should be able to test the perfor- 
mance of the two schemes against a range of scenarios 
representing the range of species to be categorized, and 
I demonstrate the benefits of doing this through com- 
puter simulations. Through these simulations we can 
see what could happen when we apply the proposed 
schemes to an endangered species. Although I use only 
a single model, the analysis reveals imprecision and bias 
in estimates of extinction probabilities and differences 
in results be tween the two proposed categorization 
schemes. 

Gilpin and Soul~ (1986)  created the process of PVA 
to provide a framework to integrate risk factors that 
contribute to the probability of  extinction. PVA plays a 
valuable role in identifying major population risk factors 
within a species (Boyce 1992; Armbruster & Lande 
1993; Haig et al. 1993). When we know little about 
important  factors, such as adult survival rate, it is 

Table 1. Listing criteria for probability of extinction in a 
#yea t~e. 

Classification Scheme b 

Category a Mace & Lande 1991 Mace et aL 1992 

Critical >50% in 5 years >50% in 5 years 
or 2 generations or 2 generations 

Endangered >20% in 20 years >20% in 20 years 
or 10 generations or 5 generations 

Vulnerable >10% in 100 years >10% in 50 years 
or 10 generations 

a Populations should be placed in a particular category ff the proba- 
bility of extinction matches one of the descriptions in the classifica- 
tion scheme. 

Number of years or  number  of generations, whichever is longer. 

Table 2. Age specifk birth and survhsd rates based on 
York (1994). 

Leslie A Leslie  B 

Age (years) Survival Fertll#y Survival Fertil#y 

0 0.740 0.000 0.471 0.000 
1 0.894 0.000 0.570 0.000 
2 0.946 0.000 0.603 0.000 
3 0.930 0.000 0.930 0.000 
4 0.909 0.909 0.909 0.045 
5 0.895 0.134 0.895 0.090 
6 0.884 0.221 0.884 0.177 
7 0.875 0.284 0.875 0.241 
8 0.867 0.282 0.867 0.282 
9 0.859 0.279 0.859 0.279 

10 0.853 0.277 0.853 0.277 
11 0.847 0.275 0.847 0.275 
12-31 0.841 0.273 0.841 0.273 

common practice to perform a sensitivity analysis span- 
ning the possible range of  values for adult survival rate 
(Ellis et al. 1993). Each estimate for adult survival rate 
produces a different distribution of  extinction times. 
This approach can indicate how sensitive extinction 
times are to changes in adult survival rate, but it does 
not address the question of  how to incorporate uncer- 
tainty in adult survival rate into a single distribution of 
extinction times. Usually, the PVA concludes with a dis- 
tribution of extinction times based on the best estimates 
of parameters. The problem is that the risk factors that 
drive a PVA are much better known for some species 
than for others. Comparisons among species may there- 
fore be misleading because the distribution of  extinc- 
tion times is based on a single set of parameter estimates 
and does not indicate the level of our ignorance con- 
cerning the species. If we are to use PVA as a common  
metric of risk among species, then we need to know 
how repeatable extinction-time estimates are within a 
species. This exercise follows the typical PVA protocol  
of using the best estimates for parameters to generate 
the distribution of extinction times. Although only a 
single species is considered, the exercise demonstrates 
the magnitude of the problem of the reliability of PVA 
extinction-probability estimates given the current PVA 
techniques. 

Methods 

Simulations are used to estimate precision and bias in 
estimated extinction times. I begin with a model with 
known parameters. This known model  stochastically 
generates a known distribution of extinction times. Data 
sampled from the known model are used to estimate 
parameters for a PVA. This estimated model produces an 
estimated extinction-t ime distribution. Through re- 
peated sampling of the known model, many data sets 
can be generated, and multiple estimated extinction dis- 
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tributions can be  produced.  These extinct ion distribu- 
tions can then be used to assess bias and precision in the 
est imated ext inct ion t ime distributions and to compare  
the per formance  of the proposed  classification schemes. 

The Known Model 

To lend realism to the quantity and quality of  data avail- 
able for analysis, I based the known model  on data used 
for risk assessment by the recovery  team for Steller sea 
lions ( E u m a t o m i a s  j u b a t u s  ) ( National Marine Fisheries 
Service 1992). Data for this species are quite good. 
Counts of  animals on  all Alaskan breeding rookeries 
have been  available since 1979 and for some rookeries 
date back to 1956. Counts are precise (coefficient of  
variation [CV] ~< 0.05) and clearly document  a dramatic 
decline that began in the eastern Aleutian Islands be- 
tween  1960 and 1975. There  are also data on age struc- 
ture before and after the decline that can be used to 
est imate bir th and survival rates (Calkins & Pitcher 
1982; Calkiqs & Goodwin  1988). For most  endangered 
species, fewer data of  poore r  quality are available. Any 
weaknesses revealed by these simulations will be  mag- 
nified for the typical poor ly-known species. 

I chose two features of  the collapse of  Steller sea lion 
populations to incorporate  in the model: the rate of  
decline and the spatial and temporal  structure of  the 
decline. In the known model,  populations were  gov- 
erned by  two Leslie matrices: Leslie A, which was zero 
growth (k  = 1), and Leslie B, which describes a decline 
(k  = 0.9). Lambda ( k )  is the discrete rate of  population 
growth and is the principal eigenvalue of the Leslie ma- 
trices. When the populat ion is in stable age distribution, 
the dynamics are exponential  growth: 

Nt  + l = k N  t (1 )  

where  N = populat ion size, t = time, and k = the 
discrete rate of  populat ion growth. The species is sub- 
divided into populations that change from Leslie A to 
Leslie B at dates est imated from the data in the recovery 
plan. Environmental  stochastici ty is incorpora ted  in 
first-year survival because survival of  pups is known to 
vary with  environmental  conditions in many seals and 
sea lions (Tril lmich & Ono  1991). 

Thirty stochastic replicates of  the known model  were  
run. Each replicate p roduced  a known extinction distri- 
bution. For each replicate, the following data were  sam- 
pled for use in the estimated model: ( 1 )  estimates of 
abundance were  recorded  for the years when  actual 
censuses occur red  (Tables 5, 8, and 9 in National Ma- 
rine Fisheries Service 1992; sampled from a lognormal 
dis t r ibut ion wi th  m e a n  = in[abundance  in known 
model], CV = 0.05), and ( 2 )  a random sample of  fe- 
males was taken f rom a single population before and 
after the start of  populat ion decline. These latter data 

are used for estimation of birth and death rates. Details 
of  this model  are given in Appendix 1. 

The gsttmated Model 

The form of the est imated model  was very similar to the 
known model  because plots of  populat ion trajectories 
strongly indicated that populat ions that remained at 
constant levels later exponentially declined. Data sam- 
pled from the known model  were  used to estimate (1 )  
the population growth rate for Leslie B, (2 )  the dates for 
the start of decline for each population, and (3 )  the 
age-specific birth and death rates for Leslie A and Leslie 
B. Details of  the estimation procedure  are given in Ap- 
pendix 2. Parameters were  est imated for each of  the 30 
replicates. For each replicate, 100 simulations were  run 
to obtain the estimated extinction distribution (sche- 
matic in Fi~ 1 ) .  Note that because PVAs always require 
parameter  estimation, the known model  is not  consid- 
ered a PVA. References to PVA results refer to the esti- 
mated model. 

Results 

Problems with bo th  bias and precision in probabilities 
of  extinction can be  seen in Fig. 2. Differences be tween  
curves in the known model  (Fig. 2A) arise f rom stochas- 
tic population dynamics. Differences be tween  curves in 
the estimated model  (Fig. 2B) arise f rom both  stochastic 
population dynamics and sampling error, which leads to 
uncertainty in parameter  estimation. Each of  the distri- 
butions in Figure 2B would  be the result of  a PVA that 
used the best  estimates for all parameters.  For the sake 
of clarity, consider the probabili ty of  extinct ion in 100 
years. Probabilities of  extinction in 100 years were,  for 
the known model,  mean = 0.76, range f rom 0.64 to 
0.82, and for the est imated model, mean  -- 0.50, range 
from O. 12 to 0.89. For this statistic, the median was very 
close to the mean, so statistics assuming a Gaussian dis- 
tribution are appropriate. The mean probabili ty of  ex- 
tinction in 100 years for the known model  (0 .76)  is 
significantly greater  than that from the estimated model  
(0.50) (Student 's t: p a 0.01, df  = 29). The negative 
bias in probabili ty of  extinction in 100 years in due to 
positive bias in est imates for k (es t imated  mean  = 
0.908, Student's t.. p ~ 0.01, df = 29, range 0.897 to 
0.916 [known mean = 0.900]). Probability of  extinc- 
tion in 100 years was also more  variable be tween  mod- 
els: variance in probabili ty of  extinction be tween  the 
estimated replicates (0.0514 ) was greater  than variance 
be tween  known replicates (0 .0018)  (F-test :p ~ 0.01, df 
= 29 ). The net result is that for any single PVA (Fig. 2B) 
the estimate of  the probabili ty of  extinction in 100 years 
is likely to be  low and could be  within a large range 
(probabilities from O. 12 to 0.89). Generat ion times (re- 
quired by the schemes, Table 1 ) estimated by the PVA 
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Fig~re!l. Schematic o f  a single replicate that is c~nprised o f  lO0 simulation~ Each replicate produces two ex. 
tinctio~ distribution~ one for  the known and one for  the estimated model (Fi~ 2A and 21}). Parameters are N 
= population siz~ k = population growth rat~ and 8 = year o f  start ofpopulation decline (c~ange from 

Leslie A to Leslie B). 

( m e a n =  10.48'1, range 8.977 to 11.692) did not sig- same category, ~ r  any given time the estimated proba- 
nificanfly differ from the known time (10.456). btlity of extinction varied widely. PVAs based on best 

Using the scheme of Mace and Lande ( 1991 ), all 30 estimates of parameters inadequately measure our true 
replicates of the known model produced endangered knowledge of the risk species face because unce~ainty 
classifications; 28 replicates of the estimated model pro- in parameter estimation is not incorporated into this 
duced endangered classifications and two produced vul- measure of risk. The Steller sea lion simulations demon- 
nerable classifications. Using the scheme of Mace et aL strate that use of probabilities of extinction from a single 
(1992), all replicates of the known model produced PVA that used best estimates of unktiown parameters 
vulnerable classifications; 28 replicates of the estimated may lead to widely differing results about species risk. 
model produced vulnerable classifications and two pro- For example, each of the distributions in Figure 2B rep- 
duced safe/low risk classifications, resent possible PVA estimates of extinction times. These 

' distributions arc simi!ar to what would be produced by 
commercial PVA packas~  Differences are caused by 

Discussion small differences in sampling from the known model. 
Estimates of probability of extinction in 100 years vary 

The results indicate that we are not ready to use PVAs, dramatically, from 0.12 to 0.89. In order to understand 
as they are currently done, to classify species. Although how to improve PVA estimates, I will first review what 
in this case most PVA replicates were classified in the caused the bias and precision problems in this example. 
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Cumulative extinction distributions for 30 replicates with 100 simulations per replicate o f  the known 
model (A) and the estimated model (13). 

Extinction distributions from PVAs are highly sensi- 
tive to K. Positive bias in the estimated k increases mean 
extinction t ime (Fig. 2B). Even small shifts in k cause 
large changes in the probabil i ty of  extinction in 100 
years  because  the  d is t r ibu t ions  have  small  ranges  
(known: mean = 47.133, CV -- 0.194; estimated: mean 
= 49.7, CV = 0.192). Within 50 years therefore, the 
probabili ty of  extinct ion went  f rom zero to one. This 
accounts for the relatively large range in percentage of 
ext inct ion in 100 years for even the known model. A 
seemingly trivial bias in ~ ( <  1% ) has a dramatic effect 
on bias of  the probabil i ty of  extinction. Use of the slope 
of a regression to estimate k assumes stable age distri- 
bution. The bias in k occur red  primarily because none 
of the populat ions had reached stable age distribution 
when  k was estimated. Not  including variance in pup 
survival in the est imated model  decreased percentage of 
extinct ion in 100 years by 1% and is therefore a minor 
contr ibutor  to the 36% difference in the mean percent-  
age of extinct ion in 100 years be tween  the known and 
es t imated ex t inc t ion  distributions.  Modelers  should 
consider whe the r  the assumption of stable age distribu- 
tion is likely to be  met  and consider the consequences 
of  violating this assumption. 

The difference be tween  the extinction distributions 
from the known and estimated models is not  only in the 
bias in probabil i ty of  extinction (indicated by the mean 
probabili ty of  extinct ion in 100 years)  but  is also in the 
precision of the probabil i ty of  extinction (indicated by 
the range in probabil i ty of  extinction in 100 years). The 
differences be tween  the curves for the known model  
(Fig. 2A) are caused by demographic  and environmental  
stochasticity. The greater  "width"  in the ext inct ion 
curves for the estimated model  (Fig. 2B) is due to un- 
certainty caused by paramete r  estimation. Thus, w e  
have considered two types of  uncertainty: uncertainty 
caused by the probabilistic nature of  biology and uncer- 

tainty caused by estimating parameters  used in models  
to depict  nature. It is the latter type that contr ibutes  
most  of the uncertainty in predicting extinction. We are, 
therefore, on shaky ground in estimating ext inct ion 
from any single distribution in Fig. 2B, that is in basing 
our estimates on a single PVA. 

Although current  PVA techniques are inadequate to 
estimate probabili ty of  extinction for use as a c o m m o n  
metric, incorporating uncertainty is not  an insurmount- 
able technical  problem.  Numerous  techniques  have 
been used to incorporate parameter  uncertainty into 
models  (Deriso et al. 1985; De la Mare 1989; Methot  
1989; Hilborn & Waiters 1992; Raftery et al. 1992; Wade 
1994). It  is beyond the scope of this paper  to introduce 
techniques to incorporate uncertainty in parameter  es- 
timation into extinction probabilities. It is useful, how- 
ever, to consider how changing PVA techniques affects 
the choice of  classification criteria. In the spirit of  un- 
derstanding the implications of including uncertainty in 
parameter  estimates into PVA, I use a very simple model  
as an example. For this hypothetical  model,  two pieces 
of  information are available: a t ime series of  abun- 
dance estimates (Fig. 3) and a range of estimates of  
variance in population growth rates taken f rom several 
different studies (0.05 ~< CV ~< 0.20). As more  data are 
acquired, parameter  estimates b e c o m e  more  certain. In 
order  to examine the effect of  uncertainty, I will com- 
pare two scenarios: a weB-known case with a 25-year 
t ime series available and a poorly-known case wi th  only 
the last 5 years of  abundance estimates available. Given 
the data, the probabili ty of  various growth rates is eval- 
uated to obtain probabili ty distributions for the two sce- 
narios (Fig. 4). For details on how to calculate such 
dis t r ibut ions,  see Raftery e t  al. ( 1 9 9 2 )  and Wade  
(1994).  For each scenario, 1000 simulations can be  
done  as follows: ( 1 ) randomly choose a mean popula- 
tion growth rate from the appropriate  distribution in 
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Figure 3. A randomly  generated t ime series o f  abun- 
dance estimatex Parameters fo r  the k n o w n  model  
were k = 0.9, CV for  k = 0.1, CV for  abundance es- 
t imate = 0.2. The est imated k f o r  the 25-year period 
= 0.89 [ l n ( - O . 1 1 5 ) ] , f o r  the las t f i veyears  = 0.97 
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Figure 4; (2 )  randomly choose a CV for growth rate 
from the uniform distribution f rom 0.05 to 0.20; (3 )  for 
each year within a simulation, choose an annual growth 
rate from the distribution described by the mean and CV 
just chosen; ( 4 )  projec t  the population until less than 
one individual remains. 

The resulting extinction distributions differ dramati- 
cally, reflecting our  greater  knowledge about the well- 
known case (Fig. 5). The known distribution (mean) ,  = 
0.9, CV = O. 1) is shown to highlight the effect of in- 
cluding uncertainty in parameter  estimates, although in 
practice scientists will never  know the true-parameters 
or resulting distribution. The most  obvious effect is that 
the range of possible extinction times is increased with 
increasing uncertainty. This appears visually as a flatten- 
ing of the cumulative extinction probabili ty curve. Our 
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for  a k n o w n  model  a n d  two models that  incorporate 
uncertainty in parameter  estimation, Both est imated 
models use a uni form distribution f o r  CV o f  k (0.05 

CV <. 0.20). Growth rates are chosen f r o m  the dis. 
trlbution in Figure 4 appropriate f o r  the number  
o f  years o f  available da ta  The distribution for  the 
poor ly  knoum case includes some probabi l i ty  o f  pos-  
itive exponential  growth (k  > 1), which results 
in infinite ext inct ion time£ 

ignorance about the species means that w e  may under- 
or overestimate extinction times. Decisions need to be  
made despite uncertainty. In order  to err  on the side of  
species conservation, decisions should be  based on cri- 
teria chosen to yield conservative decisions. Current  
criteria are based on a probabili ty of  extinction in a 
given time---for example a 20% chance in 100 years. 
Figure 5 shows that at 1OO years the curve that includes 
the most  uncertainty underest imates the probabili ty of  
extinction. The best  guarantee of  a conservative crite- 
rion would be to choose a low probabili ty of  extinction. 
For example, if our  classification criterion read "the year 
in which a population has a 5% chance of extinction is 
less than IOO years," we  would  have a good chance of 
making a conservative classification decision. Note that, 
using this criterion, the t ime to extinction increases as 
precision increases. For example,  the t ime to reach a 5% 
chance of extinction increases from 56 to 70 years as 
the case goes from poorly to well  known. Thus, this 
criterion provides an impetus to improve our  knowl- 
edge of the population. 

I have demonstrated that incorporating uncertainty in 
parameter  estimation is important,  and other  work  in- 
dicates that it should be  technically feasible. Uncertainty 
in model  choice, however,  may require more  than a 
technical fix to PVAs. The variance in ext inct ion esti- 
mates would have been  much  greater had I given the 30 
data sets to different modelers. The structure of  a PVA 
depends on many decisions made by the modeler  based 
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on her  or  his understanding of the population. What is 
the  app rop r i a t e  level  o f  complex i ty?  Is a densi ty-  
dependent  model  or  an exponential  model '  warranted? 
At their root  these questions concern  the philosophy of 
conservation: Should models  contain built-in conserva- 
tism? Should model  choice  reflect the cost  of  making 
mistakes in model  choice? I chose here  to address un- 
ce r ta in ty  in p a r a m e t e r  e s t ima t ion  that  can be  ap- 
proached with  standard scientific methods.  This alone 
was enough to answer the question of whether  or not 
we  are ready to use PVA to classify species. A full answer 
to how well  w e  can estimate extinct ion probabilities 
requires conservation biologists to come  to some con- 
sensus on model  choice, which  is both  a technical and 
philosophical problem.  

My second object ive was to assess whe ther  the pro- 
posed classification schemes did justice to the risk pre- 
sented to species. This simulation exercise  demon-  
strated not  only that the two schemes per form quite 
differently but  that the criteria for the scheme of Mace 
et al. (1992) ,  which  categorized two replicates as safe/ 
low risk, may be  insufficiently conservative ( that  is, 
not  accurately represent  the real risk to the species). 
Certainly using a suite of  models  representative of  the 
species to be  categorized would  provide further insights 
into the per formance  of the schemes. Comparison of 
different schemes would  be  greatly facilitated by the use 
of quantitative objectives. For example,  given a model  
with an actual probabil i ty of extinct ion that classifies it 
as endangered,  simulations will not be  classified as vul- 
nerable wi th  a probabil i ty of  more  than 5% nor as crit- 
ical wi th  a probabil i ty of  more  than 10%. Such an ap- 
proach using quantitative management  objectives has 
been  nicely demonst ra ted  in the revised management  
plan developed for the International Whaling Commis- 
sion for the commercia l  harvest  of  whales (Donovan 
1989). With quanti tat ive objectives,  not  only could 
scheme performance  be compared,  but  schemes could 
be  refined to give bet ter  performance.  

A final c o m m e n t  on including quantitative criteria in 
classification schemes  in an a t t empt  to make such 
schemes "more  object ive and scientifically-based" con- 
cerns the burden  of  p roof  (Belsky 1984). Numerous  
species, such as the Steller sea lion, could qualify for Red 
Data Book listing only under  quanti tat ive c r i t e r i a - -  
extinction probabil i ty or trends in abundance. Gather- 
ing data for such quantitative estimates is costly. Requir- 
ing a given probabi l i ty  of  ex t inc t ion  (o r  t r end)  as 
criteria for listing could, unless defined very carefully, 
put  the burden  of p roof  on scientists in a manner  det- 
r imental  to the species of  concern.  Being forthright 
about  uncertainty in estimating extinction probabilities 
will require conservat ion biologists to communica te  
dea r ly  to managers and policy makers why uncertainty 
is a necessary part  of  managing small populations and 

why  uncertainty must  be  directly addressed in laws and 
regulations that manage small populations. 
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Appendix 1. 
The Known Model 

Steller sea lion populations began declining in the  center  of  the spe- 
cies' range some  30 years ago and have not  yet  shown  decline in some 
areas (southeast  Alaska). The model  subdivided the  species into the 
six Alaska populat ions delineated in the  recovery plan: wes tern  Aleu- 
tian Islands (WAI), central Aleutian Islands (CAI), eastern Aleutian 
Islands (EAI), wes te rn  Gulf of  Alaska (WGA), central Gulf of  Alaska 
(CGA), southeast  Alaska (SEA) (National Marine Fisheries Service 
1992). I est imated dates for the  start of  decline for populations (Spop) 
from census  data (NMFS 1992), as follows: 

~pop = Ntlrst + r and  (2) 

t =  l°g~N--~tJ (3) 
l ogk  ' 

where  t -- years from Nft~t w h e n  k becomes  0.9, Nm~t = populat ion 
size from first census,  Nt , t  -- populat ion size from last census  (1992),  
and k = discrete rate of  populat ion growth (0.9). 

Start of  decline of south  east populat ion ( S s ~ )  (1997)  was esti- 
mated  by regressing the  8pop for o ther  populat ions against their dis- 
tance from EAI ( the populat ion wi th  the  earliest ~ i ) .  Leslie B as- 
sumed a multiplicative decrease in survival rates for ages zero to three 
and a decrease in fertility from age five through eight, relative to Leslie 
A (Table 2). The model  included variability in survival of  the  first age 
class (CV = 0.1 ). The variability in first-year survival necessi tated an 
iterative solution such that the  long te rm realized k = 0.9. 

I ran 30 replicates of  the  model. Each replicate started in stable age 
distribution for Leslie A. Simulations started in 1956, and abundances  
for each population were  assumed to be  the  same as they  were  for 
Nflrst. There was no movemen t  be tween  populations. Simulations were  
Monte Carlo and changed 8pop years after the  first census  f rom Leslie 
A to Leslie B for each populat iom For each replicate, data were  sam- 
pled and the age distribution of  populat ions in 1990 was saved. Start- 
ing from the same 1990 age-specific populat ion vector, 100 trials were  
run  of population trajectories to obtain a known extinct ion distribu- 
tion. 

Appendix 2 
T h e  E s t i m a t e d  M o d e l  

In 1976 and 1982, 120 females were  sampled from CGA (BEG A = 
1977, similar to actual data sampled),  and age and pregnancy status 
were  recorded. I est imated each populat ion 's  8po p ( excep t  SEA) by 
regressIng years w h e n  the populat ion size was significantly less than 
the  starting 1950s populat ion against time. ~pop was est imated as the  
year w h e n  the funct ion would  intersect  N~m. For Leslie B, k was 
est imated as the  mean  of  regressed slopes for the  populations. 8 s ~  was 
est imated by regressing 8pop for the  other  populat ions against their 
distance from EAI. Leslie A was est imated using the  1976 sample of 
CGA females and a program to estimate survival rates (Barlow & 
Boveng 1991 ). The likelihood of the decline being due  to reduct ions 
in age-specific birth or  death rates was investigated by compar ing the  
expected age distribution in 1982 to the  observed distribution us ing 
decreases in survival and birth rates for different combinat ions  of  ages. 
The change that generated the  highest  Kolmogorov-Smirnov proba- 
bility was used to generate Leslie R PVA simulations started in stable 
age distribution for the  est imated Leslie A in 1956. For each replicate, 
100 simulations were  run  to generate  the  est imated ext inct ion distri- 
bution. The PVA model  was a Monte Carlo simulation. No environ- 
mental  variability was included because there are no data on  variabU- 
ity in birth and death rates for Steller sea lions. 
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