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One major challenge with the use of microarray technology is the analysis of massive 
amounts of gene-expression data for various applications. This review addresses the key 
aspects of the microarray gene-expression data analysis for the two most common 
objectives: class comparison and class prediction. Class comparison mainly aims to select 
which genes are differentially expressed across experimental conditions. Gene selection is 
separated into two steps: gene ranking and assigning a significance level. Class prediction 
uses expression profiling analysis to develop a prediction model for patient selection, 
diagnostic prediction or prognostic classification. Development of a prediction model 
involves two components: model building and performance assessment.  It also describes 
two additional data analysis methods: gene-class testing and multiple ordering criteria.
The DNA microarray technology has been used
increasingly in disease diagnosis, studying bio-
logical functions, identifying biomarkers and
predicting clinical outcomes. One major chal-
lenge with the use of the microarray technology
is the analysis of a massive amount of data with
various sources of variability. A wide range of
gene-expression data analysis methods have been
proposed for various applications, ranging from
the simple fold-change for identifying differen-
tially expressed genes, to complex computational
algorithms for tumor classification. Recently, the
MicroArray Quality Control (MAQC) consor-
tium suggested: ‘Fold-change ranking plus a
nonstringent p-value cutoff can be used as a
baseline practice for generating more reproduci-
ble signature gene lists’ [1]. Many researchers
have questioned this approach [2,3]. This report
gives an overview of the microarray gene-expres-
sion data analysis and discusses several key
aspects of a successful data analysis. It will focus
on the two common goals, class comparison and
class prediction, and describe various data analy-
sis methods, including gene selection, multiple
testing, classification/prediction, gene-class
testing (GCT) and multiple ordering criteria.

Microarray gene-expression data
Microarray is a device that measures transcrip-
tion levels of hundreds or thousands of messen-
ger (m)RNAs within a biological sample. Gene-
expression levels are quantified from the image
excited by a laser scanner. Signal intensities
reflect the amount of transcript present for the
gene in the mRNA sample. A microarray study is
generally a comparative experiment, in which

the relative expression levels are compared
among the samples rather than the determina-
tion of absolute intensity measures of each
sample. In two-color array experiments, the
underlying principle is a competitive hybridiza-
tion between two samples. The measured inten-
sities reflect relative abundances of the two
samples. In one-color experiments, the intensity
is an absolute measure of gene expression; how-
ever, inferences are made regarding the expres-
sion levels for a gene in different samples but not
regarding the level of expression of one gene in
relation to other genes.

Experimental unit
In most microarray experiments, the experimen-
tal unit refers to an independent biological RNA
source (sample) to which the treatments are
applied [4,5]. The experimental unit may be rep-
resented by a tissue sample or a sample of cells
from a cell culture. The array is not the experi-
mental unit. However, in many studies, an array
and an experimental unit have a one-to-one cor-
respondence, so the array is not distinguishable
from the experimental in such studies. Analysis
of a microarray study involves an assessment of
variation of biological samples among the
experimental units. 

A microarray experiment is a multistep process
and each step is a potential source of variation.
The sources of variation associated with the assay
of mRNAs in each experimental unit are collec-
tively referred to as technical variation. The varia-
tion from different RNA sources is referred to as
biological variation. Replication is a key to the
reliability of the data and accuracy of data
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analysis. In parallel, there are two types of replica-
tion: technical replication and biological replica-
tion. Technical replication refers to replication in
which the mRNA is from the same pool. Techni-
cal replication is used to minimize technical arti-
facts. In microarray quality control experiments,
technical replication may be used to assess labora-
tory or platform reproducibility. The biological
variation in measured gene expression comes
from variation among the experimental units. It
reflects the variability among the different biolog-
ical samples used in the experiment. Different
biological samples represent independent biologi-
cal replicates to reflect the variability in the popu-
lation of interest. The common goal of
microarray studies is to make inference between
different populations. Biological replication is
used to allow the generalization of experimental
results from sample to population. Statistical tests
should be based on the biological variance and
the sample size refers to the number of biological
samples (experimental units). 

Preprocessing 
There are inherent characteristics of measured raw
intensity data that can affect the data analysis.
After data collection, many factors in generating
intensity measurements need to be considered
prior to data analysis. There are many experimen-
tal variables, such as differences in labeling,
hybridization and detection. Intensity measure-
ments should be adjusted to minimize systematic
biases. This adjustment is referred to as normaliza-
tion. Many normalization methods have been
proposed [6–9]. Proper normalization strategies
depend on the experimental design and the data
collection process. In addition, the intensities con-
tain background contribution that can be
addressed in diverse ways. There are low signal
intensities or inconsistent spots across arrays.
Finally, some arrays may have multiple probes that
measure the same gene; the intensities from these
probes can be combined to generate a single
expression level for the gene. Data preprocessing is
the first step of data analysis. There are many
options and methods for data filtering, local and
regional backgrounds, multiple probes and nor-
malization and transformation. Microarray plat-
form manufacturers also have recommended data
preprocessing protocols. Preprocessing attempts
to correct technical biases; an overcorrection by
introducing greater biases can result in different
study conclusions [10,11]. Finally, data quality is a
prerequisite for valid analysis and conclusions;
preprocessing cannot salvage poor quality data. 

Gene selection 
A microarray experiment is conducted to study
the changes in gene expressions under different
experimental conditions of interest. The main
objectives of most microarray studies can be classi-
fied broadly into the three applications: class com-
parison, class prediction and class discovery. Class
comparison aims at selecting over- or under-
expressed genes by comparing expression profiles
between different experimental samples (e.g., with
or without exposure to a specific drug or toxic
compound). Class prediction aims to predict the
class membership of a new sample from a gene-
expression prediction function. For example, per-
sonalized medicine may apply classification algo-
rithms to predict patient response to therapy for
treatment assignment. Class discovery usually
refers to identifying previously unknown sample
subtypes or refining an existing sample class from
the study of gene-expression profiles. In early
microarray studies, class discovery used clustering
methods, such as hierarchical clustering or
k-means, to group genes or samples with similar
expression patterns [12,13]. In clinical applications,
the main objective is to develop a prediction
model. For prediction purposes, the clustering
analysis is not efficient as it does not use the class
membership information.

A fundamental step in microarray data analy-
sis is to select a subset of genes from the original
gene set such that their expression levels are
related to the experimental conditions, that is, to
select a set of genes that shows differential
expressions under different conditions. Gene
selection can be separated into two steps. The
first step is to calculate a discriminatory score
that will rank the genes in order of evidence of
differential expressions. The second step is to
determine a threshold cutoff from the ranked
scores to select the differentially expressed genes. 

Gene ranking 
The most common microarray experiment is to
study changes in gene expression between two
biological samples (treatments or tissues). Follow-
ing image analysis, the intensity data are preproc-
essed and properly normalized. The data are
typically transformed in log2 scale. Differential
expression can be evaluated by comparing the dif-
ference between the mean expressions of the two
samples. The difference, denoted by M, represents
the fold-change between two samples. Owing to a
wide range of magnitudes and variability among
different genes in the array, the fold-changes
cmputed for different genes are not directly
Pharmacogenomics (2007)  8(5) future science groupfuture science group
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comparable as measures of evidence of differential
expressions. The M statistic can be standardized
by dividing scale parameters (e.g., standard devia-
tion), denoted by T = M/s. The T-statistic has the
general expression that represents the test statistics
for two sample comparisons (Box 1). The T-statis-
tic includes the fold-change M statistic as a special
case by setting s = 1; and T becomes student’s
T-statistic when s is the sample standard deviation
of the mean difference. Various T-statistic variants
have been proposed in microarray data
analysis [14–24]. Tusher and colleagues [16] pro-
posed the significance analysis of microarrays
(SAM) statistic, M/(s0+s), by adding a penalty s0
to the sample standard deviation in the denomi-
nator to account for a very small standard devia-
tion that results in a large T-value, where s0 is
computed from the data [101]. When sample size is
small, the variance estimate s2 may be imprecise; a
number of shrinkage estimators have been pro-
posed to improve reliability of variance estimates
[18–23]. A shrinkage variance estimator is a
weighted average of the within-gene variance and
a pooled variance from all genes. These methods
all seem to work well; they are particularly useful
when the sample size is small. The T statistic is a
measure for gene ranking but it does not provide a
criterion to determine a cutoff. 

Statistical significance testing is designed to
provide a cutoff by computing the p-value from
a statistic. The p-value is the probability of an
outcome as extreme as or more extreme than the
observed outcome, given no difference (null
hypothesis is true). A small p-value indicates evi-
dence of differential expressions, either over- or
under-expression. Thus, the genes can be ranked
according to the p-values. The p-value of a test
statistic is computed either from the distribution
of the test statistic or from re-sampling methods
(Box 2). The T-statistic and the corresponding
p-value may give slightly different rankings when
the p-values are computed from the re-sampling
method. In general, the p-value rankings com-
puted from the T-statistic or various T-variants
are similar, but the p-value ranking and the fold-
change rank from the M-statistic are somewhat
different [25]. 

Comparisons among several treatments or fac-
torial designs are analyzed in linear model frame-
work. Kerr and colleagues [26] proposed a single
analysis of variance (ANOVA) model for an
entire microarray experiment. Jin and
colleagues [27] fitted separate ANOVA models for
each gene. Tsai and colleagues [10] proposed a
generalized ANOVA model and performed the
analysis for each gene.

 comparing two samples.

ison, most statistics used in microarray data analysis have the expression of the T-statistic, T = M/s, where M 
-change) and s is an estimate of standard deviation of M. 
tistic becomes the fold-change M-statistic. The fold-change was used in earlier years as a criterion to select 
enes because of very few replications. The use of fold-change for gene ranking is deficient in some aspects 

or the variability of the expression levels among genes. It assumes all genes in the array have the same 
ber of replicates is small, genes with larger variances have a good chance of exhibiting larger fold-changes, 
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Assigning a significance level
A p-value cutoff divides the genes into two sets.
Ideally, the selected set would contain the differ-
entially expressed genes and the nonselected set
would contain the nondifferentially expressed
genes. However, the selected gene set will have
false positives; likewise, the nonselected genes
will have false negatives. Owing to the variation
of the biological data, it is not possible to have an
optimal cutoff that simultaneously minimizes
both false-positive and false-negative errors. The
tradeoff between the two errors depends on the
application. In class comparison, procedures that
allow very few false positives may be appropriate
when a small number of genes are selected to be
validated by a follow-up confirmation. However,
in the class prediction or class discovery setting,
where the intent is to develop genomic profiles
or classifiers, the omission of informative genes
would have a much more serious consequence
than the inclusion of noninformative genes. In
such cases, procedures with fewer false negatives
may be more desirable. 

The false-positive probability or p-value is
computed under testing a single gene. Since
hundreds or thousand of genes are tested, deter-
mining a cutoff should be in terms of an overall

false-positive error. The familywise error measure
is commonly used in testing multiple end points
when the number of tests is small. With a large
number of genes involved in the comparisons, the
false-discovery rate (FDR) error measure [28] is a
more useful approach for determining a signifi-
cance cutoff (Box 3). FDR is the probability of false
selections among those selected genes. This
approach allows the findings to be made, provided
that the investigator is willing to accept a small
fraction of false-positive findings. The FDR
approach can be used in two different ways, either
controlling FDR [28] or estimating FDR error
[29,30]. For the desired FDR level, Benjamini and
Hochberg [28] proposed a procedure to determine
the cutoff so that FDR is controlled on average.
On the other hand, Tsai and colleagues [30] pro-
posed a procedure to estimate the conditional
FDR for the desired selected number of genes. 

The FDR approach emphasizes the false-posi-
tive error in determining the cutoff. As a result of
small sample sizes, the FDR approach can result
in a short significant list and a large false-nega-
tive error. Delongchamp and colleagues pro-
posed a receiver-operating characteristic (ROC)
approach to determine an optimal cutoff based
on minimizing the total cost from making false-
positive and false-negative errors [31]. In the
ROC approach, the investigator is required to
specify the ratio of the cost for making a false-
positive error over the cost for making a false-
negative error and an estimate of the number of
nondifferentially expressed genes. Chen and col-
leagues  illustrated an application of the ROC
approach to determining a p-value cutoff [25].
The ROC approach is designed to reliably elimi-
nate most of the undifferentially expressed genes
from further consideration while essentially
keeping all genes whose functions are potentially
different in the biology under study.

Class comparison
Class comparison involves comparing expression
profiles from different exposure conditions or
different tissue types. The main interests are in
identifying genes whose expression levels are
altered by treatments and/or to establish expres-
sion profiles between classes. In this application,
gene selection often targets a limited number of
candidate differentially expressed genes for con-
firmation and further study. The FDR approach
is appropriate. The differentially expressed genes
so selected are referred to as statistically signifi-
cant. However, if an observed change is small
with a very small standard deviation, then the

-value.

tistic can be computed by two approaches: 
 or resampling method. In the mathematical 
on or its approximation of a test statistic is 
e p-value probability can be computed either by a 
 by statistical computation methods. For example, 
ion is mathematically derived under the assumption 
nsity data are normally distributed. The probability of 
omputed numerically. The shrinkage T-statistic, such 
T-statistic [20] or the moderated T-statistic [22], has a 
ibutions were derived by the authors under the 
owever, the distributions of many T-statistics do not 

tical expression; their probabilities cannot be 
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erved experimental outcomes. The p-value has the 
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ion for the underlying normalized intensity 
 shown to be more powerful than the parametric 
ple size is at least five [56]. When the sample size is 
ssible permutations is limited. In this case, the 
es infeasible. For small sample size experiments, the 
ned [20–23] by borrowing information is preferable.
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change can be identified as statistically signifi-
cant, even if it may not be significant ‘biologi-
cally’. In a two sample comparison, it is common
to use the p-value to decide a cutoff and then
focus on the genes that pass the cutoff with a
higher fold-change comparison. This analysis
can be plotted by the so-called volcano plot [27].
The approach of using the p-value cutoff as the
primary criterion and followed by the fold-
change provides the control of false-positive
error and, in the meantime, preserves the desired
biological significance. 

Recently, there appears to be interest in promot-
ing reproducibility of selected genes as a desirable
objective [1]. The MAQC Consortium [1] sug-
gested a fold-change cutoff with a nonstringent
p-value cutoff to improve reproducibility. Repro-
ducibility of a gene list is not the same as reproduc-
ibility of expression measurements and it does not
imply accuracy, sensitivity (the probability of
selecting truly differentially expressed genes) or
specificity (the probability of not-selecting truly
nondifferentially expressed genes). The MAQC
Consortium [1] used the percentage of overlapping
genes as the measure of reproducibility in the eval-
uation of a gene-selection procedure. There are
several problems with using the percentage of over-
lapping genes as a measure for a gene-selection

criterion. The percentage of overlapping genes can
increase or decrease irregularly as a cutoff changes;
it will be 100% reproducible if all genes are
selected, regardless of how many genes are truly
differentially expressed. The use of a particular
fold-change cutoff assumes that, for any given gene
that is biologically significant, its biologically
meaningful change between two experimental
conditions is judged by this same fold-change cut-
off. When there are no treatment effects, the fold-
change cutoff with a nonstringent p-value cutoff
could have a false discovery rate of 100%.
Fold-change cutoff is widely considered
inadequate [25,32,33]. The statistical (p-value)
approach is much more than a way of gene rank-
ing; it provides a measure to estimate the false-pos-
itive error probability for a decision. The approach
of using the p-value cutoff as the primary criterion
and followed by the fold-change or a pathway
analysis provides the control of false-positive error
and, in the meantime, preserves the desired
biological significance.

Class prediction 
Class prediction aims at developing a prediction
model that accurately predicts the class member-
ship of a new sample from the available gene-
expression data set. The prediction models can

ing.

 a p-value is defined under a single gene test. Since hundreds or thousands of p-values are calculated, simply 
ermine a cutoff without adjusting for the multiplicity testing effect will increase the chance of false positives. 
of 10,000 genes, there could be 100 apparent ‘significant’ expression changes found using a p-value cutoff 
one are differentially expressed. The family-wise error rate (FWE) and false-discovery rate (FDR) are two 
sitive error measures in the analysis of multiple end points (genes). 
commonly used in testing multiple clinical points. An FWE-controlled procedure guarantees that the 
re false positives is not greater than a predetermined level, regardless of how many genes are tested. In 

xperiments, the FWE approach could present a problem, since this analysis tends to screen out all but very 
treme differential expressions. 
e considers the expected proportion of false-positives among the selected genes [22]. Essentially, FDR 
 of false selections among those selected genes. The FDR approach allows the investigator to select the 
pressed genes, while accepting a small fraction of false findings. In the FDR approach, the genes are ranked 
s: p(1) ≤ … ≤ p(r) ≤ … ≤ p(m).The notation p(i) represents the i-th ordered p-value and m is the number of genes 
ple, p(1) is the smallest and p(2) is the second smallest. For the desired FDR level, a FDR-controlled procedure 
 p(r), such that (m * p(r)/r) ≤ FDR. Those r genes with p-values less than or equal to p(r) are selected as 
enes. The FDR approach can be used differently. For the desired selecting number of genes, Tsai and 
 a procedure to estimate the conditional FDR. In either use, if r is the number of genes selected, then an 
te is (m * p(r)/r). 
e array, denote m0 and m1 as the numbers of truly nondifferentially and differentially expressed genes, 
re selected and the probability of false-positive error for the last ranked gene is p(r), then the expected 
s for selecting r genes is m0*p(r). Given r selected genes, the expected number of true negatives is 
pected number of false negatives is (m–r)–(m0–m0*p(r)). Let CFP be the cost for making a false-positive error 
aking a false-negative error. The total expected cost for selecting the r (top-ranked) genes is the sum of the 
e false-negative cost. That is, COSTtotal = m0  p(r)  CFP + [(m–r) – (m0–m0*p(r))] * CFN. The optimal cut-off that 
cted cost can be estimated numerically. The receiver-operating characteristic approach requires the prior 

1. Hsueh and colleagues described several methods to estimate m0 [57]. 
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be used to discriminate between different bio-
logic phenotypes or to predict the diagnostic cat-
egory, prognostic stage of a patient or treatment
response. Development of a prediction model
involves two components: model building and
performance assessment. Typically, the data are
divided into a training set and a test set; the pre-
diction model is developed on the training set
and is then used to classify samples in the test set
to assess its predictive accuracy (Box 4). 

Model building
In most microarray studies, most genes in the
arrays are not differentially expressed; these genes
are irrelevant to the prediction. The use of all
genes can suppress or reduce the performance of a
prediction algorithm. Selection of discriminatory
(feature) genes is critical to the accuracy of predic-
tion. Depending on classification algorithms, two
general approaches are used for feature selection:
filters and wrappers. The filter approach filters out
irrelevant genes according to some predetermined
criterion, such as p-value cutoff. Alternatively,
genes can be selected based on the individual pre-
dictive accuracy by performing gene-by-gene pre-
diction using, for example, the simple logistic
regression. Classification algorithms, such as the
Fisher’s linear discriminant analysis, k-nearest-
neighbor and support vector machines [34–37], use
the filter approach without involving gene selec-
tion. Prediction models for cancer classification
mainly apply the filter approach, where the gene
set used in building the prediction model are
preselected. The wrapper approach finds a subset
of genes and evaluates its relevance while building
the prediction model. The classification algo-
rithms, such as stepwise logistic regression, classi-
fication tree [38,39] and support vector machines
with recursive feature elimination [40], used the
wrapper approach. 

For a selected classification algorithm with
appropriate gene selection method, the prediction
model is fit to the training data set. 

Performance assessment 
In the development of a prediction model, the
most important question is the ability of the
model to predict a future sample. To ensure an
unbiased assessment of accuracy, the prediction
model is developed in one data set; the prediction
model is applied to another data set to estimate
the predictive accuracy. The most straightforward
method of estimating the accuracy is the split-
sample validation in which one portion of the
data is held out (test dataset) while the classifier is

being developed on the remaining data (training
dataset) and then is tested on the test dataset [41].
In practice, data are often insufficient to split into
a training set and a test set for validation. Instead,
cross-validation is used to evaluate the perform-
ance of a prediction model. Cross-validation
involves repeatedly splitting the data into a train-
ing set containing most of samples and applying
the prediction rule to the test set made up of the
remaining samples. The predictive accuracy rates
are estimated from the test data [42]. 

In cross-validation, the test data must be com-
pletely independent of the training data from
which the prediction model is built. The cross-
validation needs to repeat all steps of model
development, including gene selection and model
construction, within each stage. In using the filter
approach, gene selection must be conducted in
the training set to avoid selection bias [43,44]. 

Future perspective
Normalization 
Normalization (transformation) has been an
active research area in microarray data analysis
since microarray technology was introduced [45].
The primary goal of normalization is to properly
eliminate or minimize the systematic variation,
such as microarray construction in probe printing,
sample preparation procedures, hybridization and
washing procedures, detecting method and so on.
As technology has improved with better experi-
mental design and control of sources of variability,
it has recently been recognized that, except for
technician factors, the biological variation is the
main source of variability. The recent MAQC
project used different manufacturer-recom-
mended normalization procedures for each plat-
form; the normalized intensity data within a
platform are highly consistent in two distinct bio-
logical samples. Tsai and colleagues showed that
an array-by-array Lowes normalization procedure
can have a large impact on the result of data anal-
ysis [10]. As the technology becomes mature, the
normalization factors may be incorporated in the
data analysis as covariates [46].

Gene-class testing
In class comparison, after selecting the list of signif-
icant genes, a GCT or over-representation analysis
often follows to determine whether any gene class
(e.g., a pathway) is over-represented in the signifi-
cant list compared with the whole list. The Fisher’s
exact test is typically used to assess the significance
for an over-representation class [47]. This approach
has several short comings [48–50]. First, the division
Pharmacogenomics (2007)  8(5) future science groupfuture science group



Key aspects of analyzing microarray gene expression data – REVIEW

future science groupfuture science group

Box 4. Class predict

Class prediction is used t
for performance assessm
set. The classification alg
prediction generally cons
selecting the predictor se

Classification involvin
classification algorithms
to be less than the num
differentially expressed: 
a classification algorithm
important issue in the d

The classification algo
based on a preselected 
Tree [38] and support vec
These algorithms find a 
optimal predictor subset
referred to as the filter a
training phase is referre

Assessment of the ac
fitting a prediction mod
number of genes far exc
new data. An unbiased a
prediction model it is be
for validation. Cross vali

In a V-fold cross-valida
V times. Each time, the p
set. After completion of
rule are computed acros
averages over the b trial
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expression groups is arbitrary; the genes in the non-
differential expression list are discarded, regardless
of their p-values. Second, the Fisher’s exact test
approach simply counts the number of genes in the
list; the order of genes is not taken into considera-
tion. Third, the correlation structure of genes is not
taken into consideration. 

GCT is a statistical approach to determine
whether some functionally predefined classes of
genes are differentially expressed. A gene class
refers to a group of genes with related functions
or a set of genes grouped together based on bio-
logically relevant information, such as a meta-
bolic pathway, protein complex or gene
ontology (GO) category. Several GCT proce-
dures have been proposed [48–50]. The proce-
dure uses a global test statistic to compute the
p-value of each gene class and the classes are
ranked accordingly. A typical GCT approach
can be summarized as follows: 

• All genes are ranked by computing a test sta-
tistic (or p-value) that measures the associa-
tion between the expressions and the
treatment conditions;

• For each gene class or functional category, a
class score is calculated as a summary measure
of the class;

• Resampling methods are used to generate the
null distribution of the class score for each
gene class; 

• Statistical significance is assessed by com-
paring the observed functional score with
the percentile of the null distribution of the
gene class. 

By considering the distribution of the entire
set of genes, this approach is more powerful and
interpretable. The success of a GCT requires
development of multivariate statistics and com-
putational algorithms for testing hundreds of
variables and a well-characterized gene class
mapped to microarray probes. 

Multivariate ordering criteria
A microarray experiment can generate different
gene lists by different filters, normalizations or
analysis methods for different study objectives. In
some studies, it may be interested in selecting a
subset of genes from the multiple gene lists. For
example, the fold-change and p-value are two

ion.

o predict the class membership of a new sample using a classification algorithm. As a result of insufficient data 
ent, in classification, the original sample data set is typically divided into two subsets: a training set and a test 
orithm is built from the training samples and then its prediction rule is applied to the test samples. Class 
ists of two components: building of a classification model, including determining a prediction algorithm, 
t and fitting the prediction model to training data and assessment of the performance of the prediction model. 
g a large number of predictors presents a challenge to the development of accurate classifiers. Traditional 
, such as the logistic regression and Fisher’s linear discriminant analysis [27], require the number of predictors 
ber of samples. In microarray experiments, a large number of genes are measured. Most genes are not 
they are noisy and not useful for prediction. The use of all genes can suppress or reduce the performance of 
. Selection of a subset of predictors to improve predictability, known as feature selection, has been an 

evelopment of prediction systems in data mining.
rithms, such as the logistic regression and Fisher’s linear discriminant classifiers, form the prediction rule 
set of predictors without involving selection of predictors. Some algorithms, such as the Classification 
tor machines with recursive feature elimination [40], have incorporated feature selection into model building. 
subset of predictors and evaluate its relevance for the classification; their classification rules are built from an 
. In feature selection, having the selection of predictor variable independent of the classification algorithm is 
pproach; having the selection of predictor variables incorporated while building the prediction model in the 
d to as the wrapper approach.
curacy of the prediction model is a critical step in the development of a prediction model. One problem in 
el to microarray data is over-fitting the data. Microarray gene-expression data are characterized by the 
eeding the number of samples. The predicted model can fit the original data well, but may predict poorly for 
ssessment of the accuracy of the prediction model is important. In the development and validation of a class 
st to have a sufficiently large collection of data. In practice, data are often insufficient to set aside a test set 
dation is used to evaluate the performance of a prediction model.
tion, the entire data set is divided into V subsets of roughly equal size and the classification analysis iterates 
rediction rule is trained on (V-1) subsets together and then applied to the remaining subset as the test data 

 all V subsets (all samples are classified), the sensitivity, specificity and concordance rates of the prediction 
s all V subsets. The entire process may be repeated b times with different partitions of V subsets. The 
s are calculated. The simplest cross-validation is known as ‘leave-one-out’,’ where V is the total sample size.
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commonly known criteria to select differentially
expressed genes under two experimental condi-
tions. These two selection criteria often result in
incompatible selected gene sets. Also, consider a
mouse experiment to study differences in gene
expression among the three p53 genotypes:
wild-type (+/+), knock-out (-/-) and heterozygous
(+/-). In class comparison, a statistical analysis
typically consists of a comparison among the three
genotypes. An important follow-up analysis is the
comparisons between the knock-out and wild-
type mouse and between the heterozygous and
wild-type mouse. The Dunnett’s test is frequently
used to generate the differentially expressed gene
lists for the two comparisons. Often, it is also
interested in the genes that show differences in
both comparisons. Chen and colleagues recently
proposed layer ranking algorithms to provide a
single preference gene list from multiple gene lists
generated by different ranking criteria [51]. 

Development of prediction models
The US FDA envisions clinical pharmaco-
genomic profiling to identify patients most likely
to benefit from particular drugs and patients most
likely to experience adverse reactions. The goal is
to change medical practice from a population-
based approach to an individualized approach.
Personalized medicine uses the available data on
each individual patient for assignment of more
effective therapies, as well as better diagnosis and
earlier interventions that might prevent or delay
disease. A main objective of pharmacogenomic
profiling is to identify a subset of genes to develop
a genomic composite biomarker (GCB). A GCB
may help in determining how the benefits and
adverse effects of a drug vary among a target pop-
ulation of patients based on the genomic features
of patients’ germline and diseased tissue. By iden-
tifying groups of patients with a high probability
of benefiting from therapeutics and avoiding seri-
ous adverse events, the therapeutic index of a drug
can be substantially increased.

A GCB-based predictive model requires high
accuracy, since the consequence of misclassifica-
tion may result in suboptimal treatment or an
incorrect risk profile. In class prediction, much
research has focused on improving the predictive
accuracy; less work has been done on exploring
individual variables in respect to disease character-
istics and treatment response. An analysis by
Michiels and colleagues [52] showed that the list of
genes identified as predictors of cancer prognosis

was highly unstable. The selected gene set strongly
depended on the selected patients in the training
set. Class prediction will be more focused on the
selection of the relevant genomic variables and
clinical variables that can improve predictability. A
GCB is a classifier that consists of a set of genes
described by a prediction model with a specified
threshold cutoff. Different prediction models or
different threshold cutoffs will result in different
sensitivity and specificity. A predictive model built
from the GCB based on the disease phenotype
and patient genotype should have better predic-
tive accuracy and provide better guidance on
treatment assessment. As a result of pre-condi-
tions of each individual and population variabil-
ity, the response to treatment may vary among
different patients. In addition, there may be a
probability for nonresponses and different costs
associated with different outcomes. A decision
analysis is needed to account for the probabilities
of efficacy of treatment assignments. 

Development of a prediction model involves
quality assessment, missing data treatment,
background subtraction, normalization, gene
selection, incorporation with clinical variables,
data partitions for performance assessment and
so on. The integration of these steps for predic-
tion of future samples is challenging. Currently,
a community-wide MAQC-II project has been
working to characterize approaches and standard
operating procedure for the development and
validation of prediction models [102]. 

Finally, there are two aspects in the develop-
ment of pharmacogenomic classifiers: optimiz-
ing treatment selection for individual patients
and using predictive classifiers in conjunction
with the development of new drugs in clinical
design. For treatment selection, the clinical util-
ity is whether the classifier predicts more
accurately than the standard classification sys-
tem. For experimental therapy in drug develop-
ment, the clinical utility is to demonstrate
effectiveness of the drug in a population identi-
fied by the classifier as being more likely to ben-
efit [53–55]. The genomic technologies available
today are sufficient to develop pharmaco-
genomic biomarker classifiers to more effectively
assign patients to the proper treatment. 

Disclaimer
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