Liquidus temperature measurements for modeling oxide glass systems relevant to nuclear waste vitrification

Jonathan B. Hanni, Eric Pressly, Jarrod V. Crum, Kevin B.C. Minister, Diana Tran, Pavel Hrma, and John D. Vienna^{a)} Environmental Technology Division, Pacific Northwest National Laboratory, Richland, Washington 99354

(Received 9 March 2005; accepted 30 August 2005)

Liquidus temperatures (T_L) were measured, and primary phases were determined for 50 (from an initial test matrix of 76) compositions within the Al₂O₃-B₂O₃-CaO-Na₂O-SiO₂ glass-forming system and its constituent ternary subsystems. Strong linear correlations have been found between composition and T_L for melts within the same primary phase fields. The T_L and primary phase data are being used to develop and refine a modified associate species model (ASM). The impacts of Fe₂O₃, Li₂O, NiO, ZrO₂, Cr₂O₃, ZnO, and MnO additions on the T_L of two baseline glass compositions are reported. These data are intended as benchmarks for further expansion of the ASM or other silicate melt solution models of nuclear waste glasses.

I. INTRODUCTION

The Department of Energy (DOE) is currently constructing the world's largest nuclear waste vitrification facility to treat and immobilize nuclear wastes from the Hanford Site in southeastern Washington State.¹ One of the primary concerns for operation on the electric melter in the vitrification plant is the deleterious effects of crystal accumulation in the melter. Crystals generally have higher density than the glass melt and tend to settle to the bottom of the melter where they can clog pouring spouts² or cause electrical short circuits.³

Many of the Hanford wastes contain high concentrations of soda and alumina, and nepheline (NaAlSiO₄) may precipitate from these glasses as the melt cools. Nepheline formation during cooling may significantly decrease the chemical durability of the glass since each mole of nepheline formed removes two moles of network-forming components (one mol each of Al and Si) for each mol of modifier (Na).² Constraints placed on glass composition to limit the formation of crystals in the melter or during cooling often reduce the amount of waste that can be tolerated in the glass.^{4,5}

To better formulate nuclear waste glasses, a model capable of predicting the thermodynamics of waste glass melts is needed. With this model, one should be able to calculate the temperature at which crystals can form in multicomponent waste glass melts (the

^{a)}Address all correspondence to this author.

DOI: 10.1557/JMR.2005.0424

liquidus temperature $T_{\rm L}$) as a function of composition. A partnership between Oak Ridge National Laboratory, Pennsylvania State University, and Pacific Northwest National Laboratory (PNNL) has been established to develop thermodynamic models for the waste glass melt solution. A modified associate species model (ASM) is being developed.^{6–9} To facilitate the development of the ASM $T_{\rm L}$ data sets from glass melt systems with progressively more components are being measured.

Waste glasses are primarily composed of Al₂O₃, B₂O₃, Na₂O, CaO, Li₂O, Fe₂O₃, ZrO₂, and SiO₂.⁴ Even relatively small concentrations of ZnO, Cr₂O₃, NiO, and MnO strongly impact the amount and composition of the crystalline phases that form in these melts as they cool.4,7,10-14 Table I summarizes the concentrations of oxides in typical Hanford waste glasses; also shown are the concentrations of oxides in typical wastes that are being vitrified at the Defense Waste Processing Facility (DWPF) at DOE's Savannah River site near Aiken, South Carolina.¹⁵ In this paper, we report the $T_{\rm L}$ and primary phases for melts made up of subsets of these 12 components. The initial testing focused on the five-component Al₂O₃, B₂O₃, Na₂O, CaO, and SiO₂ (ABCNS) system. Additional compositions were selected from the ternary systems CaO, Na₂O, and SiO₂ and CaO, Al₂O₃, and SiO₂. Two baseline glasses were selected from the ABCNS glasses in this study, and varying concentrations of Fe₂O₃, Li₂O, NiO, ZrO₂, Cr₂O₃, ZnO, and MnO were added individually to determine their effects on the $T_{\rm L}$ and primary phase formation for the baseline glass melts.

Downloaded: 28 Mar 2015

3346

e-mail: john.vienna@pnl.gov

TABLE I. Composition ranges for typical waste glass components $(mass\%).^{15}$

	Hanford	LAW	Hanford	HLW	DWPF	HLW
Al ₂ O ₃	2	12	3	18	2.4	5.5
B_2O_3	5	15	4	20	6.8	11.5 ^a
CaO	0	8	0	8	0.7	1.3
Cr_2O_3			0	1	0	0.2
Fe ₂ O ₃	0	8 ^a	1	18	8.5	12.4
K ₂ O	0	5 ^a	0.05	3	2.1	2.6
Li ₂ O	0	6	0.05	6	4.3	5
MgO	0	4.3	0.05	3	0^{a}	2.1
MnO			0.02	10	1.1	2.8
Na ₂ O	5	23	5	20	7.8	15 ^a
NiO			0.1	3	0.1	1.2
P_2O_5	0	3	0	3		
SO ₃	0	1.5	0	0.5		
SiO_2	36	60	33	60	49.1	55.1
SrO	•••		0	10		
ThO_2			0	4		
TiO ₂	0	5	0	2	0.2	0.4
U_3O_8	•••		0	12	0.8	5
ZnO	0	3	0	3		
ZrO ₂	0	6	0	10		

^aModified ranges.

II. DESCRIPTION OF MODIFIED ASSOCIATE SPECIES MODEL

The ASM, originally developed by Hastie and Bonnel^{16,17} and Shakhmatkin et al.^{18,19} has been used successfully to calculate the solution behavior of multicomponent oxide minerals and melts. In the model, the solution is represented as a mixture of associate species such as NaAlO₂, NaBO₂, and Si₂O₄. The associate species contain between one and three non-oxygen types of elements whose number must add up to 2 to provide a consistent basis for molecular size (e.g., NaAlSiO₄ stoichiometry is multiplied by $^{2\!/_{\!3}}$ or $Na_{0.67}Al_{0.67}Si_{0.67}O_{2.67}$ to maintain appropriate non-oxygen content). In the basic ASM, the species in the liquid are mixed ideally to generate a melt solution. However, in the modified ASM being developed, a limited number of regular solution terms are included to allow for immiscibility in the melt. The excess enthalpy of mixing is taken into account through the energy of formation for the liquid associate species. This model has enjoyed great success in complicated oxide minerals and melts because of its simple construction and implicit tie to the type of bonding that occurs. Various species seldom would have more than two types of elements as second nearest neighbors (second to oxygen) in silicate melts. The components with the strongest mixing interactions are likely to be within the associate species. Therefore, the ideal solution is a good first approximation for mixing energies. Besmann, Spear, and colleagues^{6–9} give detailed discussions of the advantages of this model for glass melts and discuss its preliminary development.

The ABCNS-3-XX glasses were added to measure the effects of B₂O₃ concentration near the boundaries of the

Downloaded: 28 Mar 2015

III. EXPERIMENTAL METHODS

Liquidus temperature has been measured for seven test matrices, three containing (mol%): Al₂O₃ (0.1-25), B₂O₃ (0–20), CaO (0–20), Na₂O (9.1–33.3), and SiO₂ (35.7-80); one comprised of (mol%): CaO (22-44), Na_2O (2.1–16), and SiO_2 (51–67); one containing (mol%) CaO (34–52), Al₂O₃ (1.7–11), and SiO₂ (43–57); and two others, each composed of a baseline glass chosen from the initial test matrix with individual additions of the following components (mol%): Fe_2O_3 (0–5), Li_2O_3 (0-13), NiO (0-2), ZrO₂ (0-3), Cr₂O₃ (0-0.25), ZnO (0-4.5), and MnO (0-5).

A. Al₂O₃-B₂O₃-CaO-Na₂O-SiO₂ glass network

The ABCNS test matrices are presented in Table II. These compositions are all based primarily on the Na₂O-Al₂O₃-SiO₂ ternary system (see Fig. 1).²⁰ Glasses ABCNS-01 through -04 were chosen because they are stoichiometrically equivalent to NaAlSiO₄ (nepheline), NaAlSi₂O₆, NaAlSi₃O₈ (albite), and NaAlSi₄O₁₀, respectively, although glass -04 lies within an immiscibility dome. These four compounds are well suited for comparison with both measured $T_{\rm L}$ data and ASM-predicted $T_{\rm L}$ because they are well documented in the literature.²⁰ Glasses ABCNS-05 through -08 are based upon the first four with the addition of B_2O_3 in a 1:1:1 ratio to Na_2O_3 and Al₂O₃; likewise, glasses ABCNS-09 through -12 have CaO in a 1:1:1 ratio to Na₂O and Al₂O₃, and -13 through -16 contain B₂O₃ and CaO, both in 0.5:1:1 ratios to Na₂O and Al₂O₃. Glasses ABCNS-17 through -40 are statistically formulated to cover a broad range of compositions for all five components in a three compositional layer design (outer layer, inner layer, and centroid). Glass ABCNS-17 is the compositional centroid of these glass formulations, ABCNS-18 through -27 comprise an outer layer, and ABCNS-27 through -40 are the inner layer.

Liquidus temperatures could not be measured for many of the glasses within the initial test matrix because of liquid-liquid immiscibility, inability to fabricate glass melts at ≤ 1600 °C, or measurement difficulties; $T_{\rm L}$ was too high for the furnaces (maximum temperature ~1600 °C) or too low to be measured in laboratory time scales (e.g., equilibration time of months or years rather than days). Glasses ABCNS-41 through -48 were added to the matrix to provide additional data points. The ABCNS-2-XX glasses were also added to the matrix to generate additional Al₂O₃–B₂O₃–Na₂O–SiO₂ $T_{\rm L}$ data. Glass ABCNS-05 was re-measured with an alternate technique (melt-back, see Sec. III. E) and labeled ABCNS-05B. Melt-back was used to measure $T_{\rm L}$ for the ABCNS-2-XX glasses as well.

3347

TABLE II. Al₂O₃-B₂O₃-CaO-Na₂O-SiO₂ (ABCNS) glass test matrix. Compositions are given in mol fraction. $T_{\rm L}$ values have a measurement uncertainty of ±5 °C.

Glass ID	Al_2O_3	B_2O_3	CaO	Na ₂ O	SiO_2	$T_{\rm L}(^{\circ}{\rm C})$	Primary phase
ABCNS-01	0.2500	0.0000	0.0000	0.2500	0.5000	1510	Carnegieite
ABCNS-02	0.1667	0.0000	0.0000	0.1667	0.6667	1124	Nepheline
ABCNS-03	0.1250	0.0000	0.0000	0.1250	0.7500	1085	Below XRD detection limit
ABCNS-04	0.1000	0.0000	0.0000	0.1000	0.8000		
ABCNS-05	0.2000	0.2000	0.0000	0.2000	0.4000	875	Nepheline
ABCNS-05B	0.2000	0.2000	0.0000	0.2000	0.4000	875	Nepheline
ABCNS-06	0.1429	0.1429	0.0000	0.1429	0.5714		
ABCNS-07	0.1111	0.1111	0.0000	0.1111	0.6667		
ABCNS-08	0.0909	0.0909	0.0000	0.0909	0.7273		
ABCNS-09	0.2000	0.0000	0.2000	0.2000	0.4000	1303	Na _{1.45} Al _{1.45} Si _{0.55} O ₄ , gehlenite
ABCNS-10	0.1429	0.0000	0.1429	0.1429	0.5714	1133	Nepheline
ABCNS-11	0.1111	0.0000	0.1111	0.1111	0.6667	1190	Pseudowollastonite
ABCNS-12	0.0909	0.0000	0.0909	0.0909	0.7273		
ABCNS-13	0.2000	0.1000	0.1000	0.2000	0.4000	1147	Nepheline
ABCNS-14	0.1429	0.0714	0.0714	0.1429	0.5714	955	Andesine
ABCNS-15	0.1111	0.0556	0.0556	0.1111	0.6667	1100	Andesine
ABCNS-16	0.0909	0.0455	0.0455	0.0909	0.7273		
ABCNS-17	0.1196	0.0718	0.0771	0.1506	0.5809	1001	Wollastonite
ABCNS-18	0.0909	0.1176	0.1240	0.1068	0.5607	1001	Wollastonite
ABCNS-19	0.1712	0.0200	0.1516	0.2225	0.4347	1198	Carnegieite
ABCNS-20	0.1901	0.0000	0.0534	0.1753	0.5812		
ABCNS-21	0.0909	0.0914	0.0271	0.0909	0.6996		
ABCNS-22	0.1166	0.1166	0.1308	0.1946	0.4414	935	Nepheline
ABCNS-23	0.0909	0.0000	0.0171	0.1878	0.7042		
ABCNS-24	0.2044	0.0047	0.0713	0.0987	0.6209		
ABCNS-25	0.0909	0.1070	0.0219	0.0909	0.6893		
ABCNS-26	0.1867	0.0000	0.0285	0.1350	0.6498		
ABCNS-27	0.0909	0.1030	0.1086	0.1663	0.5311	984	Wollastonite
ABCNS-28	0.1274	0.0622	0.0500	0.1375	0.6229		
ABCNS-29	0.0764	0.1156	0.0915	0.1375	0.5790		
ABCNS-30	0.1014	0.1005	0.0912	0.1375	0.5694	984	Wollastonite
ABCNS-31	0.0953	0.0782	0.1045	0.2105	0.5115	935	Wollastonite
ABCNS-32	0.1037	0.0542	0.0921	0.1394	0.6105	1061	Wollastonite
ABCNS-33	0.1442	0.0500	0.0740	0.1727	0.5591	1001	Nepheline/wollastonite
ABCNS-34	0.1594	0.0830	0.0661	0.1435	0.5480	1052	Anorthite/albite
ABCNS-35	0.0883	0.0819	0.0792	0.1927	0.5578	915	Wollastonite
ABCNS-36	0.1126	0.0987	0.0982	0.1563	0.5342	984	Nepheline
ABCNS-37	0.1431	0.1021	0.0746	0.1491	0.5312	905	Anorthite/albite
ABCNS-38	0.0639	0.1275	0.1035	0.1892	0.5158	886	Wollastonite
ABCNS-39	0.1367	0.0644	0.0753	0.1804	0.5432	974	Nepheline
ABCNS-40	0.1125	0.1156	0.0911	0.1484	0.5324	956	Wollastonite
ABCNS-41	0.1429	0.0807	0.0889	0.2119	0.4757	1044	Nepheline
ABCNS-42	0.2418	0.2000	0.0000	0.1582	0.4000		Corundum
ABCNS-43	0.0142	0.0383	0.0830	0.2054	0.6591	841	$Na_2Ca_3Si_6O_{16}$
ABCNS-44	0.1653	0.0895	0.0953	0.1005	0.5494	1198	Anorthite/albite
ABCNS-45	0.0455	0.0460	0.0587	0.2315	0.6183	814	Combeite
ABCNS-46	0.2331	0.1424	0.0000	0.1999	0.4246		Corundum
ABCNS-47	0.0006	0.1272	0.0067	0.1312	0.7343	1080	Cristobalite/tridymite
ABCNS-48	0.1486	0.0735	0.0988	0.1000	0.5792	1167	Anorthite/albite
ABCNS-2-01	0.2222	0.1111	0.0000	0.2222	0.4444	1178	Nepheline
ABCNS-2-02	0.1538	0.0769	0.0000	0.1538	0.6154		
ABCNS-2-03	0.1176	0.0588	0.0000	0.1176	0.7059		
ABCNS-2-04	0.0952	0.0476	0.0000	0.0952	0.7619		
ABCNS-3-01	0.1234	0.0502	0.0000	0.3498	0.4766	990	Nepheline
ABCNS-3-01b	0.1234	0.0502	0.0000	0.3498	0.4766	990	Nepheline
ABCNS-3-02	0.1740	0.0515	0.0000	0.1275	0.6470	1409	Mullite/corundum
ABCNS-3-03	0.0842	0.0489	0.0000	0.3485	0.5184	830	Nepheline
ABCNS-3-04	0.1920	0.0521	0.0000	0.1375	0.6184	1347	Mullite/corundum
ABCNS-3-05	0.1079	0.1693	0.0000	0.3059	0.4169	830	Nepheline
ABCNS-3-06	0.0739	0 1656	0.0000	0.3057	0 4548	718	Nepheline
	0.0107	0.1000	0.0000	(continued)	0.1540	, 10	repienie
				(comment)			

http://journals.cambridge.org

TABLE II.	$Al_2O_3-B_2O_3$	O ₃ –CaO–Na	a_2O-SiO_2	(ABCNS)	glass test matrix.	. Compositions are	given	in mole	fraction.	$T_{\rm L}$	values have	a measur	rement
uncertainty	of ± 5 °C. ((continued)											

Glass ID	Al_2O_3	B_2O_3	CaO	Na ₂ O	SiO_2	$T_{\rm L}$ (°C)	Primary phase
ABCNS-3-07	0.1517	0.1731	0.0000	0.1111	0.5641	1290	Mullite/aluminum borate
ABCNS-3-08	0.1671	0.1748	0.0000	0.1197	0.5383	1315	Mullite/aluminum borate
ABCNS-4-01	0.0000	0.0000	0.4442	0.0413	0.5145		
ABCNS-4-02	0.0000	0.0000	0.4072	0.0207	0.5721		
ABCNS-4-03	0.0000	0.0000	0.4055	0.0684	0.526		
ABCNS-4-04	0.0000	0.0000	0.3441	0.0456	0.6103		
ABCNS-4-05	0.0000	0.0000	0.3344	0.1147	0.5509		
ABCNS-4-06	0.0000	0.0000	0.2553	0.0777	0.6671	1298	Pseudowollastonite
ABCNS-4-07	0.0000	0.0000	0.2417	0.1617	0.5966	1193	Pseudowollastonite
ABCNS-4-08	0.0000	0.0000	0.2185	0.122	0.6596	1208	Pseudowollastonite
ABCNS-5-01	0.0413	0.0000	0.4442	0.0000	0.5145		
ABCNS-5-02	0.0207	0.0000	0.4072	0.0000	0.5721		
ABCNS-5-03	0.0684	0.0000	0.4055	0.0000	0.526		
ABCNS-5-04	0.0456	0.0000	0.3441	0.0000	0.6103	1393	Pseudowollastonite
ABCNS-5-05	0.1147	0.0000	0.3344	0.0000	0.5509	1378	Pseudowollastonite
ABCNS-5-06	0.0777	0.0000	0.2553	0.0000	0.6671	1378	Pseudowollastonite
ABCNS-5-07	0.1617	0.0000	0.2417	0.0000	0.5966	1278	Pseudowollastonite
ABCNS-5-08	0.122	0.0000	0.2185	0.0000	0.6596	1288	Pseudowollastonite

nepheline phase field of the Na₂O–Al₂O₃–SiO₂ ternary group. Four base compositions of Na₂O, Al₂O₃, and SiO₂ were measured containing 5 and 15 wt% B₂O₃ (roughly 5 and 15 mol%). Glasses ABCNS-01/-05 and -03/-06 are both on the high sodium end of the nepheline phase field; ABCNS-02/-07 and -04/-08 are in the corundum field on the high alumina side of nepheline. Glass ABCNS-3-01 showed excessive volatility during melting, so a second batch was prepared and melted at a lower temperature (labeled ABCNS-3-01b) to determine whether the volatilization had impacted the composition enough to affect $T_{\rm L}$.

FIG. 1. Phase diagram for the Na₂O–Al₂O₃–SiO₂ ternary oxide system. Reprinted with permission of the American Ceramic Society, www.ceramics.org. Copyright 1964. All rights reserved.²⁰

B. CaO–Na₂O–SiO₂ and CaO–Al₂O₃–SiO₂ ternary systems

In addition to the ABCNS matrix, which is based primarily on the Na₂O–Al₂O₃–SiO₂ system, two test matrices were developed for measuring $T_{\rm L}$ for glass compositions within the CaO–Na₂O–SiO₂ and CaO–Al₂O₃– SiO₂ ternary groups.^{21,22} The CaO–Na₂O–SiO₂ glasses have been designated ABCNS-4-01 through ABCNS-4-08 and are marked on the ternary phase diagram given in Fig. 2. The CaO–Al₂O₃–SiO₂ glasses are listed as

FIG. 2. Phase diagram for the CaO–Na₂O–SiO₂ ternary oxide system. Black circles indicate the compositions of the ABCNS-4-XX glasses. Reprinted with permission of the American Ceramic Society, www. ceramics.org. Copyright 1964. All rights reserved.²⁰

ABCNS-5-01 through ABCNS-5-08 and marked on the diagram presented in Fig. 3. Compositions for both of these test matrices are also found in Table II.

C. Expanded oxide matrices

Two of the ABCNS glasses were selected as baseline glasses for the expanded oxide matrix. Glass ABCNS-13 was selected because it is stoichiometrically equivalent to nepheline, the most common primary phase in the ABCNS matrix; it is designated ABCNS-6-00 in the new matrix. Glass ABCNS-27, now designated ABCNS-7-00, was chosen because it represents the melts well in the wollastonite (CaSiO₃) primary phase field, the second most common phase field in the ABCNS study. The oxides Fe₂O₃, Li₂O, NiO, ZrO₂, Cr₂O₃, NiO, and MnO were added individually to each baseline glass at two or more concentrations by diluting the baseline components in equal relative proportion. Table III presents the ABCNS-6-XX and ABCNS-7-XX test matrices, respectively.

D. Sample fabrication

Glasses were batched at the target compositions listed in Tables II and III with reagent grade chemicals (brand, minimum purity, and particle size information are listed in Table IV); component concentrations were estimated to have <0.05% relative uncertainty (except for Cr_2O_3 , which was present in such small quantities that relative uncertainty is estimated to be <0.16%). Each batch was

FIG. 3. Phase diagram for the CaO–Al₂O₃–SiO₂ ternary oxide system. Black circles indicate the compositions of the ABCNS-5-XX glasses. Reprinted with permission of the American Ceramic Society, www. ceramics.org. Copyright 1964. All rights reserved.²²

mixed for 5 min in an agate mill and melted for 1 h in Pt/(10%-Rh) crucibles with lids (some with high melting temperatures, such as ABCNS-3-02, were melted for 2 h). A tungsten-carbide mill was used to grind the glasses for 5 min before melting for a second time to ensure homogeneity. Melts were quenched on a stainless steel plate. The quenched glasses were crushed and sieved between #5 and #40 mesh screens to obtain particle sizes between 4 mm and 425 μ m. The crushed glass was soaked in ethanol, ultrasonically cleaned for 2 min, and dried overnight at 100 °C to evaporate the ethanol.

E. $T_{\rm L}$ measurement

Three measurement techniques were used to determine $T_{\rm L}$ in this study. For the ABCNS glasses, crushed glasses were placed in Pt/(10%Rh) boats 30 cm long by 0.7 cm wide and 1.4 cm deep. These were placed inside a linear gradient temperature furnace (1 °C/mm) for 24 h, and $T_{\rm L}$ was determined by locating the point along the long axis of the boat where crystals were undetectable with transmitted light optical microscopy at magnifications of up to $500 \times .^{23}$ This method worked well to narrow down $T_{\rm L}$ to an approximate temperature, but isothermal heat treatments were used to bound $T_{\rm L}$ with much greater precision. Crushed samples were placed in 1 cm³ Pt/(10%-Rh) crucibles with tight-fitting lids and heat treated at specific temperatures for sufficient time to reach equilibrium (24-96 h). Melt samples were rapidly quenched in air after heat treatment. Optical microscopy was used to determine the presence of crystals in the quenched samples. Measurements continued at different temperatures until $T_{\rm L}$ was bounded within a 10 °C interval; crystals were present at one temperature and not present at 10 °C higher.

A technique known as melt-back was used to measure $T_{\rm L}$ for ABCNS-05B and the ABCNS-2-XX glasses. Crushed glass samples were heat treated at temperatures below $T_{\rm L}$ in 1 cm³ Pt/Rh crucibles to promote crystallization. The samples were then heat treated at successively higher temperatures until all crystals had dissolved in the melt.

Scanning-electron microscopy with energy dispersive spectroscopy (SEM-EDS) and x-ray diffraction (XRD) were used to identify primary crystalline phases for the glasses. Generally, samples that had been heat treated within 50 °C of T_L were ground into fine powder for XRD analysis; samples that had been heat treated at lower temperatures were used if the higher temperature samples contained insufficient crystalline phase to give a good XRD pattern. SEM was used to determine the presence of crystals that were difficult to see with optical microscopy, to determine the composition of crystals formed, and to confirm the compositions of selected glasses.

3350

http://journals.cambridge.

JOURNALS

ABCNS-	Fe ₂ O ₃	Li ₂ O	NiO	ZrO_2	Cr_2O_3	ZnO	MnO	$T_{\rm L}(^{\circ}{\rm C})$	Primary phase
6-00								1158	Nepheline
6-01	4.61			•••				1155	Nepheline/hematite
6-02	2.24			•••				1145	Nepheline
6-03		12.91						996	Nepheline
6-04		6.70		•••				1075	Nepheline
6-05			1.86					1155	NiO/nepheline
6-06			0.93					1145	Nepheline
6-07				2.88				1585	Baddeleyite
6-08				1.42				1235	Baddeleyite
6-09					0.23			1245	Nepheline
6-10					0.11			1215	Nepheline
6-11						4.29		1205	Nepheline
6-12						2.14		1155	Nepheline
6-13							4.90	1135	Nepheline
6-14							2.45	1155	Nepheline
6-15				2.15				1485	Baddeleyite
7-00								967	Wollastonite
7-01	4.31							940	Wollastonite
7-02	2.09							960	Parawollastonite
7-03		12.15						940	Wollastonite
7-04		6.28						875	Wollastonite
7-05			1.74					960	Parawollastonite
7-06			0.87					1015	Wollastonite
7-07				2.69				995	Parawollastonite
7-08				1.33				985	Wollastonite
7-09					0.21			1125	Nepheline
7-10					0.11			995	Wollastonite
7-11						4.02		1015	Wollastonite
7-12						2.00		1015	Wollastonite
7-13							4.58	995	Wollastonite
7-14							2.29	1025	Wollastonite
7-15		9.27						885	Wollastonite
7-16		3.19						925	Wollastonite
7-17			1.30					965	Wollastonite
7-18			0.43					1005	Wollastonite

TABLE III. ABCNS-6-XX and ABCNS-7-XX glass matrices (compositions given in mol percent). Oxide concentrations were added to the ABCNS-6-00 (same composition as ABCNS-13 in Table II) and ABCNS-7-00 (same composition as ABCNS-27 in Table II) baseline glasses.

TABLE IV. Desired oxides, chemicals used for batching, chemical brand, minimum chemical purity mass%, and particle size.

Oxide	Chemical	Brand	Purity (%)	Particle size ^a
Al ₂ O ₃	Al ₂ O ₃	Fisher	99	
B_2O_3	H ₃ BO ₃	Noah	99.8	Granular
CaO	CaCO ₃	Fisher	99	
Na ₂ O	Na ₂ CO ₃	Fisher	99.5	
SiO ₂	SiO ₂	Fisher	99	-240 mesh
Fe ₂ O ₃	Fe ₂ O ₃	Fisher	99.999	-199 mesh
Li ₂ O	Li ₂ CO ₃	Alfa Aesar	99	
NiŌ	NiO	GFS	99	
ZrO_2	ZrO_2	Noah	99	-325 mesh
Cr_2O_3	Cr_2O_3	Alfa Aesar	98	-325 mesh
ZnO	ZnO	Noah	99.9	-200 mesh
MnO	MnO	Alfa Aesar	99.99	+200 mesh

^aSome of the chemical manufacturers do not provide specific particle size data. All chemicals used are powders.

IV. *T*_L AND PRIMARY PHASE MEASUREMENT RESULTS

A. $AI_2O_3-B_2O_3-CaO-Na_2O-SiO_2$ system

Table II displays $T_{\rm L}$ and primary phase results for the ABCNS-XX, ABCNS-2-XX, and ABCNS-3-XX glasses. The $T_{\rm L}$ for glasses ABCNS-04, -08, -12, -16, and -29 were all unable to be measured because of multiple immiscible phases upon fabrication. Liquidus temperature could not be measured for glasses ABCNS-06, -07, ABCNS-2-02, -03, and -04 as the crystallization kinetics were too slow for the techniques used. Glasses ABCNS-20, -21, -23 through -26, and -28 did not completely melt at the highest operating temperature of the furnaces used (~1600 °C). When glasses ABCNS-42 and -46 were melted at 1550 °C and poured, no crystals were present; after a 24-h heat treatment at 1550 °C, both were highly

crystalline (crystal fraction greater than 50%). From the XRD patterns, both glasses contained corundum (Al₂O₃), but $T_{\rm L}$ was higher than the operating temperature of the furnaces. Diffraction peaks consistent with aluminum borate were also found in the XRD pattern from glass ABCNS-42, and shorter heat treatments of 1, 2, and 4 h were performed to determine whether volatilization of sodium borate at 1550 °C could have caused $T_{\rm L}$ to increase. Loss of Na₂O from glass increases the $T_{\rm L}$ of melts in most primary phase fields, including corundum. Crystals were found on bubbles and on the surface of the samples from shorter heat treatments, so $T_{\rm L}$ could not be determined.

B. CaO–Na₂O–SiO₂ and CaO–Al₂O₃–SiO₂ ternary systems

Table II also contains $T_{\rm L}$ and primary phase information for the ABCNS-4-XX and ABCNS-5-XX glasses. Glasses ABCNS-4-01 through -05 and ACBNS-5-01 through -03 all crystallized rapidly during quenching from 1500 and 1600 °C; attempts to rapidly quench the melt by placing the crucible in a water bath instead of pouring the melt onto a stainless steel plate were unsuccessful in preventing crystallization. Hence, $T_{\rm L}$ was not measured for these compositions.

C. Cr_2O_3 -Fe₂O₃-Li₂O-NiO-MnO-ZnO-ZrO₂ additions

Primary phase and $T_{\rm L}$ results for the ABCNS-6-XX and ABCNS-7-XX glass matrices are presented in Table III. Figure 4 shows $T_{\rm L}$ as a function of oxide concentration for each component added to the ABCNS-6-00 and ABCNS-7-00 baseline glasses. Each oxide was added to the baseline glasses at evenly spaced concentrations. The addition of ZrO₂ to the ABCNS-6-00 baseline glass had a profound impact on T_L ; it increased by an average of 140 °C per mol% ZrO2. An additional glass (ABCNS-7-15) was fabricated with 2.15 mol% ZrO_2 to better determine the shape of the increasing $T_{\rm L}$ curve. Additions of Li₂O and NiO to the ABCNS-7-00 glass yielded both increasing and decreasing $T_{\rm L}$ values. Two additional glasses with intermediate concentrations of these oxides were fabricated to determine the shape and rate of change of $T_{\rm L}$ with increasing oxide concentration.

V. DISCUSSION

A. Comparison with literature values

Well-known literature values are available for direct comparison with ABCNS-01 through -04, ABCNS-4-XX, and ABCNS-5-XX glasses (see Figs. 1–3 and Table V). For ABCNS-01 through -03, the T_L data match the literature values reasonably well with a maximum

3352

CAMBRIDGE JOURNALS

Downloaded: 28 Mar 2015

divergence of 33 °C; $T_{\rm L}$ for ABCNS-04 was indeterminate because of liquid–liquid immiscibility. The observed primary phases for glasses ABCNS-01 and -02 were in agreement with carnegieite and nepheline, as shown in the phase diagram (Fig. 1). The primary phase for ABCNS-03 was undetectable in the XRD patterns after heat treatments 50 °C below $T_{\rm L}$.

The ABCNS-4-XX and ABCNS-5-XX glasses were selected such that their compositions all corresponded to $T_{\rm L}$ isotherms within the pseudowollastonite phase fields of their respective ternary groups. The glasses for which $T_{\rm L}$ and primary phase could be determined show very strong agreement with the literature values (all of these glasses contain pseudowollastonite, and the largest deviation between $T_{\rm L}$ values is ~25 °C).

B. Component concentration effects

Empirical modeling of complex oxide melts often requires nonlinear terms. Backman et al.²⁴ have successfully used polynomial regressive fits; Dreyfus and Dreyfus²⁵ have used neural networks to model $T_{\rm L}$. Empirical models are not the primary goal of this work, but a firstorder fit has been used to demonstrate that, when glasses are grouped into their specific primary phase fields, composition effects can be adequately described; these component effects can then be compared to those estimated with the ASM. Regression fits to the nepheline/ carnegiete- and wollastonite/pseudowollastonite-phase field glasses include enough data to be statistically significant. An unweighted multiple linear regression of the following form was used

$$T_{\rm L} = \sum_{i=1}^{N} a_i x_i \quad , \tag{1}$$

where *N* is the total number of components, and a_i and x_i are the first-order coefficient and mole fraction of the *i*th component, respectively. This form of first-order model has been used successfully to model T_L for many-component simulated waste glasses within the nepheline phase field.²⁶

For the nepheline-phase field glasses, including the 2 from which carnegieite precipitated, a_i values were calculated for all 17 glasses. Glasses ABCNS-3-01 and ABCNS-3-01b were both included in this fit, since both glasses were fabricated and T_L was measured separately. The T_L for ABCNS-05 was measured multiple times with both isothermal and meltback techniques, with both techniques yielding the same value of T_L . Since the same batch was used for all of these measurements, this composition was included only once in the fit. The original ABCNS-XX matrix contained 11 wollastonite-forming (CaSiO₃) glasses, including the one pseudowollastonite-phase field glass and the one glass that precipitated both

FIG. 4. $T_{\rm L}$ as a function of mol% of oxide for ABCNS-6-XX (connected with dashed lines) and ABCNS-7-XX glasses (connected with dotted lines). Oxide additions are shown as follows: (a) Fe₂O₃, (b) Li₂O, (c) NiO, (d) ZrO₂, (e) Cr₂O₃, (f) ZnO, and (g) MnO. Phases are given as N = nepheline (NaAlSiO₄), W = wollastonite (CaSiO₃), B = baddeleyite (ZrO₂), H = hematite (Fe₂O₃), and NiO = nickel oxide (NiO).

nepheline and wollastonite. Equation (1) was used to fit these 11 glasses combined with the eight pseudowollastonite-forming glasses from the ABCNS-4-XX and ABCNS-5-XX matrices. Table VI contains $T_{\rm L}$ coefficients ($a_{\rm i}$ values) from both regression calculations.

The linear fits to the data sets from the nepheline- and wollastonite-phase field glasses have large R^2 values; the 17-point linear fit to the nepheline-phase field glasses has an R^2 of 0.924, and R^2 for 19-point wollastonite/pseudowollastonite-phase field glasses is 0.981. These regression results suggest that a very strong first-order

correlation exists between $T_{\rm L}$ and glass composition when compositions are within the same phase field. Furthermore, the phase transition between wollastonite and pseudowollastonite is linear with respect to $T_{\rm L}$.

Plots of calculated $T_{\rm L}$ versus measured $T_{\rm L}$ are shown in Fig. 5 for the 17-point nepheline model; the 19-point wollastonite model is displayed in Fig. 6. Error bars indicate 95% confidence intervals (U) and have been calculated as follows

$$\mathbf{U} = t_{(1-\alpha),n-p} s \sqrt{\mathbf{x}(\mathbf{x}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{x}^{\mathrm{T}}} \quad , \tag{2}$$

CAMBRIDGE JOURNALS

J. Mater. Res., Vol. 20, No. 12, Dec 2005

]	Experiment	Literature		
Glass ID	$T_{\rm L}$ (°C)	Primary phase	$T_{\rm L}$ (°C)	Primary phase	
ABCNS-01	1510 ± 5	Carnegieite	152519	Carnegieite	
ABCNS-02	1124 ± 5	Nepheline	1150 ¹⁹	Nepheline	
ABCNS-03	1085 ± 5	••••	1118 ¹⁹	Albite	
ABCNS-4-06	1298 ± 5	Pseudowollastonite	~1300 ²⁰	Pseudowollastonite	
ABCNS-4-07	1193 ± 5	Pseudowollastonite	~1200 ²⁰	Pseudowollastonite	
ABCNS-4-08	1208 ± 5	Pseudowollastonite	~1200 ²⁰	Pseudowollastonite	
ABCNS-5-04	1393 ± 5	Pseudowollastonite	~1400 ²¹	Pseudowollastonite	
ABCNS-5-05	1378 ± 5	Pseudowollastonite	~1400 ²¹	Pseudowollastonite	
ABCNS-5-06	1378 ± 5	Pseudowollastonite	~1400 ²¹	Pseudowollastonite	
ABCNS-5-07	1278 ± 5	Pseudowollastonite	~1300 ²¹	Pseudowollastonite	
ABCNS-5-08	1288 ± 5	Pseudowollastonite	~1300 ²¹	Pseudowollastonite	

TABLE V. Comparison of ABCNS glasses to literature data (see Figs. 1-3 and associated references).

TABLE VI. $T_{\rm L}$ coefficients $a_{\rm i}$ [Eq. (1)] for the nepheline and wollastonite linear fits.

Oxide	Nepheline (17 points)	Wollastonite (19 points)
Al ₂ O ₃	3542	723
B_2O_3	-814	-189
CaO	1158	1429
Na ₂ O	934	147
SiO ₂	589	1369

FIG. 5. Comparison of calculated $T_{\rm L}$ versus measured $T_{\rm L}$ corresponding to a 17-point fit for glasses that precipitate nepheline (15 glasses) and carnegieite (2 glasses).

where *t* is the student's *t*-score corresponding to $1 - \alpha =$ confidence limit, *n* is the total number of samples, *p* is the number of predictors (components), *s* is the standard error, **x** is the composition vector for an individual glass, and **X** is the composition matrix for all glasses in the model.

C. Expanded oxide matrix data

JOURNALS

//journals.cambridge

Overall, the T_L for the ABCNS-7-XX glasses (wollastonite primary phase) changes less after adding the seven

FIG. 6. Comparison of calculated $T_{\rm L}$ versus measured $T_{\rm L}$ corresponding to a 19-point fit for glasses that precipitate wollastonite (down-triangles) and pseudowollastonite (up-triangles).

oxides than did the $T_{\rm L}$ for the ABCNS-6-XX series of glasses (nepheline primary phase). In this baseline glass (ABCNS-7-00), XRD analysis indicated that only the 0.21 mol% Cr₂O₃ addition changed the primary phase from wollastonite to nepheline. The primary phase in the ABCNS-6-00 baseline glass was changed with the addition of the following: ZrO₂, precipitating baddeleyite (ZrO₂) at three ZrO₂ concentrations; Fe₂O₃, precipitating nepheline at all concentrations of Fe₂O₃; and hematite (Fe₂O₃) plus nepheline at 4.61 mol% Fe₂O₃; and NiO, precipitating nepheline at all concentrations and nickel oxide (NiO) plus nepheline at 1.86 mol% NiO.

With the exceptions of Li₂O and ZrO₂, the $T_{\rm L}$ for the ABCNS-6-XX (nepheline-precipitating) glasses was affected by the additional oxides less than the ABCNS-7-XX glasses. The phase change from nepheline to baddeleyite accounts for the sharp increase in $T_{\rm L}$ for the ABCNS-6-XX glasses containing ZrO₂. A similar $T_{\rm L}$ trend is caused by the phase change from wollastonite to nepheline in the ABCNS-7-XX glasses that contain Cr₂O₃. It is not yet clear why such a small concentration

of Cr_2O_3 should change the phase field of ABCNS-7-XX from wollastonite to nepheline.

The data ABCNS-7-XX glasses show some intriguing effects of Li₂O or NiO additions on $T_{\rm L}$. For NiO, $T_{\rm L}$ increases sharply with up to 0.43 mol%, levels off until 0.87 mol%, and then decreases sharply to the same value as the baseline glass at 1.3 mol% NiO, followed by a slight decrease when NiO reaches 1.74 mol%. From the XRD patterns, the NiO-bearing ABCNS-7-XX glasses precipitate wollastonite as the primary phase. However, it is possible that an additional phase is present in the sample but was not detected with the XRD technique used.

Crystals in a sample of ABCNS-7-05 that had been heat-treated at 900 °C were analyzed with SEM/EDS to

FIG. 7. SEM micrograph of ABCNS-6-05 after heat treatment at 900 °C. Crosshairs indicate locations of EDS spot-scans; these data are given in Table VII.

TABLE VII. EDS results for composition (mol%) and calculated stoichiometries for the crystals found in ABCNS-7-05 (Fig. 7).

Crystal	Ca	Ni	Al	Si	0	Stoichiometry
А	26.03		0.73	25.41	47.83	Ca _{1.30} Al _{0.04} Si _{1.27} O _{2.39}
С	12.32	11.53	1.43	24.2	50.52	Ca _{1,23} Ni _{1,15} Al _{0,14} Si _{2,42} O _{5,05}
D	20.01	1.24	2.56	25.32	50.87	Ca1.00Ni0.06Al0.13Si1.27O2.54
Е	26.5			24.51	48.99	Ca _{1.33} Si _{1.23} O _{2.45}

determine if a second phase was present with wollastonite. A SEM micrograph is presented in Fig. 7; the crosshairs in the photo indicate the locations of each EDS spot scan. The mol% of each element and the calculated crystal stoichiometry for crystals A, C, D, and E (see Fig. 7) are given in Table VII. It should be noted that the EDS procedure used is qualitative rather than quantitative.²⁷ By comparing the ratios of Ca, Ni, and Si, crystals A, D, and E are consistent with CaSiO₃ (wollastonite), and crystal C is consistent with CaNiSi₂O₆ (niopside²⁸).

Location B in Fig. 7 is the bulk glass, and its composition was analyzed to compare with the target composition of ABCNS-7-05 listed in Table III. To compare the EDS determined and target glass compositions, the EDS results have been renormalized by assuming the glass contains exactly the target concentration of B_2O_3 since boron cannot be measured using the EDS technique used. Table VIII contains the actual and target compositions of ABCNS-7-05.

The ABCNS-7-XX $T_{\rm L}$ curve for Li₂O appears to have a smoother response than that for NiO. A local minimum occurs at approximately 6.28 mol%, corresponding to a $T_{\rm L}$ decrease of 90 °C from the $T_{\rm L}$ of the baseline glass. The ABCNS-6-XX Li₂O curve has a nearly identical 90 °C drop in $T_{\rm L}$ up to this concentration. The ABCNS-6-XX curve continues to decrease in a nearly linear curve between 6.7 mol% and 12.91 mol%, ending approximately 160 °C lower than the baseline, but the ABCNS-7-XX curve slowly increases 10 °C between 6.28 mol% and 9.27 mol% before sharply climbing 55 °C by 12.15 mol%.

VI. CONCLUSIONS

The primary goal of this work is to provide $T_{\rm L}$ and primary phase data for a broad range of glass melt compositions to develop and refine the ASM and/or other thermodynamic models for the prediction of waste glass melt phase behavior. To that end, this paper reports the $T_{\rm L}$'s and primary phases of 51 glass melts in the Al₂O₃– B₂O₃–CaO–Na₂O–SiO₂ system and 35 glass melts each containing one of the following additional components: Cr₂O₃, Fe₂O₃, Li₂O, MnO, NiO, ZnO, and ZrO₂.

The data presented in this paper indicate a close agreement with literature values, where literature values are

TABLE VIII. Target and mean measured (EDS) bulk glass composition of ABCNS-7-05. Ten independent measurements were averaged together to obtain the EDS composition results; uncertainties represent two standard deviations. For the EDS-measured composition, it was assumed that B_2O_3 content in the glass matched that of the target composition.

	B ₂ O ₃	Al ₂ O ₃	CaO	Na ₂ O	SiO ₂	NiO
	(mol%)	(mol%)	(mol%)	(mol%)	(mol%)	(mol%)
EDS		9.13 ± 0.50	11.34 ± 0.92	11.25 ± 2.7	55.89 ± 2.1	2.27 ± 0.30
Target	10.12	8.93	10.68	16.34	52.19	1.74

available. This agreement is important as a means of measurement validation. Most of the compositions presented here contain more than three components, so they provide a means of examining how each subsystem of ternary inputs to the ASM or other melt thermodynamic models interact as more components are added; with these data, fit parameters can be adjusted.

Strong linear trends between component concentrations, and $T_{\rm L}$ values within the nepheline/carnegieite and wollastonite/pseudowollastonite phase fields were found. Similar (linear) trends were found previously in more complex (e.g., 20+ component) waste glass melts from which spinel, nepheline, and zirconia containing phases precipitated.^{2,5,10–14}

ACKNOWLEDGMENTS

We would like to thank Dean Moore of PNNL for his help in performing XRD analyses. Mike Schweiger of PNNL contributed his extensive experience with laboratory procedures and measurement techniques to discussions regarding this project. Ted Besmann, Karl Spear, and Nagraj Kulkarni worked diligently to develop and refine the ASM, and they suggested many of the glass compositions studied in this work. Jonathan Hanni, Eric Pressly, and Kevin Minister would like to thank the Office of Fellowship Programs at PNNL for the opportunity to conduct this research project while holding undergraduate and graduate student fellowships at the laboratory. Denis Strachan and Wayne Cosby performed thorough reviews of this document. This work was supported by the U.S. Department of Energy Office of Science through the Environmental Management Science Program grant. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract No. DE-AC05-76RL01830.

REFERENCES

- Design Construction, and Commissioning of the Hanford Tank Waste Treatment and Immobilization Plant. U.S. Department of Energy Contract No. DE-AC27-01RV14136, (2000, as amended).
- D-S. Kim and P. Hrma: Models for liquidus temperature of nuclear waste glasses. *Ceram. Trans.* 45, 327 (1994).
- I.G. Choi, D.F. Bickford, and J.T. Carter: Thermal effects of electrically conductive deposits in a joule-heated melter. *Ceram. Trans.* 29, 645 (1993).
- D-S. Kim and J.D. Vienna: Influence of glass property restrictions on Hanford HLW glass volume. *Ceram. Trans.* 132, 105 (2002).
- P. Hrma, J.D. Vienna, and M.J. Schweiger: Liquidus temperature limited waste loading maximization for vitrified HLW. *Ceram. Trans.* 72, 449 (1996).
- T.M. Besmann and K.E. Spear: Thermochemical modeling of oxide glasses. J. Am. Ceram. Soc. 85, 2887 (2002).
- T.M. Besmann, K.E. Spear, and J.D. Vienna: Extension of the modified associate species thermochemical model for high-level nuclear waste: Inclusion of chromia, in *Scientific Basis for*

Nuclear Waste Management XXVI, edited by R.J. Finch and D.B. Bullen (Mater. Res. Soc. Symp. Proc. **757**, Warrendale, PA, 2003), p. 195.

- T.M. Besmann, N.S. Kulkarni, and K.E. Spear: Thermochemical and phase equilibria property prediction for oxide glass systems based on the modified associate species approach, in *High Temperature Corrosion and Materials Technology IV*, edited by E. Opila, P. Hou, T. Maruyama, B. Pieraggi, M. McNallan, D. Shifler, and E. Wuchina. (The Electrochemical Society, Pennington, NJ, 2004), p. 557.
- K.E. Spear, T.M. Besmann, and E.E. Beahm: Thermochemical modeling of glass: Application to high-level nuclear waste glass. *MRS Bull.* 24(4), 37 (1999).
- J.V. Crum, P. Hrma, M.J. Schweiger, and G.F. Piepel: Liquidus temperature models for high-level waste glasses that precipitate zirconium-containing crystalline phases. *Ceram. Trans.* 87, 271 (1998).
- T. Plaisted, P. Hrma, J. Vienna, and A. Jiricka: Liquidus temperature and primary phase in high-zirconia high-level waste borosilicate glasses, in *Scientific Basis for Nucelar Waste Management XXIII*, edited by R.W. Smith and D.W. Shoesmith (Mater. Res. Soc. Symp. Proc. **608**, Warrendale, PA, 2000), p. 709.
- J.D. Vienna, P. Hrma, J.V. Crum, and M. Mika: Liquidus temperature-composition model for multi-component glasses in the Fe, Cr, Ni, and Mn spinel primary phase field. *J. Non-Cryst. Solids* 292, 1 (2001).
- P. Hrma, J. Vienna, J. Crum, and G. Piepel: Liquidus temperature of high-level waste borosilicate glasses with spinel primary phase, in *Scientific Basis for Nucelar Waste Management XXIII*, edited by R.W. Smith and D.W. Shoesmith (Mater. Res. Soc. Symp. Proc. 608, Warrendale, PA, 2000), p. 671.
- 14. M. Mika, M.J. Schweiger, J.D. Vienna, and P. Hrma: Liquidus temperature of spinel precipitating high-level waste glasses, in *Scientific Basis for Nucelar Waste Management XX*, edited by W.J. Gray and I.R. Tridy (Mater. Res. Soc. Symp. Proc., 465, Pittsburgh, PA, 1997), p. 71.
- J.D. Vienna: Nuclear waste glasses, in *Properties of Glass-Forming Melts*, edited by L.D. Pye, I. Joseph, and A. Montenero (CRC Press, Boca Raton, FL, 2005). pp. 391–403.
- J.W. Hastie and D.W. Bonnell: A predictive phase-equilibrium model for multicomponent oxide mixtures. 2. Oxides of Na–K– Ca–Mg–Al–Si. *High Temp. Sci.* 19, 275 (1985).
- D.W. Bonnell and J.W. Hastie: A predictive thermodynamic model for complex high-temperature solution phases 11. *High Temp. Sci.* 26, 313 (1989).
- B.A. Shakhmatkin, N.M. Vedishcheva, and A.C. Wright: Can thermodynamics relate the properties of melts and glasses to their structure? J. Non-Cryst. Solids 293, 220 (2001).
- B.A. Shakhmatkin, N.M. Vedishcheva, M.M. Shultz, and A.C. Wright: The thermodynamic properties of oxide glasses and glass-forming liquids and their chemical-structure. *J. Non-Cryst. Solids* 177, 249 (1994).
- E.F. Osborn and A. Muan: Fig. 501, in *Phase Diagrams for Ceramists*, Vol. 1, edited by E.M. Levin, C.R. Robbins, and H.F. McMurdie, (The American Ceramic Society, Columbus, OH, 1964), p. 181.
- G.W. Morey and N.L. Bowen: J. Soc. Glass Technol., 9, p. 232 (1925), reprinted as Fig. 482 in Phase Diagrams for Ceramists, Vol. 1, edited by E.M. Levin, C.R. Robbins, and H.F. McMurdie (The American Ceramic Society, Columbus, OH, 1964), p. 175.
- E.F. Osborn and A. Muan: Fig. 630, in *Phase Diagrams for Ceramists*, Vol. 1, edited by E.M. Levin, C.R. Robbins, and H.F. McMurdie (The American Ceramic Society, Columbus, OH, 1964), p. 219.
- 23. ASTM C829-81: Standard practices for measurement of liquidus temperature of glass by the gradient furnace method. (re-approved

J. Mater. Res., Vol. 20, No. 12, Dec 2005

CAMBRIDGE JOURNALS

1995), in *1999 Annual Book of ASTM Standards*, Vol. 15.02 (American Society for Testing and Materials, West Conshohocken, PA, 1999).

- R. Backman, K.H. Karlsson, M. Cable, and N.P. Pennington: Model for liquidus temperature of multi-component silicate glasses. *Phys. Chem. Glasses* 38, 103 (1997).
- 25. C. Dreyfus and G. Dreyfus: A machine learning approach to the estimation of the liquidus temperature of glass-forming oxide blends. *J. Non-Cryst. Solids* **318**, 63 (2003).
- 26. H. Li, B. Jones, P. Hrma, and J.D. Vienna: Compositional effects

on liquidus temperature of Hanford simulated high-level waste glasses precipitating nepheline (NaAlSiO₄). *Ceram. Trans.* **87**, 279 (1998).

- ASTM E1508-98: Standard guide for quantitative analysis by energy-dispersive spectroscopy, in 2003 Annual Book of ASTM Standards, Vol. 03.01 (American Society for Testing and Materials, West Conshohocken, PA, 2003).
- E.B. Pretorius and A. Muan: Stability of CaNiSi₂O₆ ("niopside") and activity-composition relations of CaMgSi₂O₆ solid solutions at 1350°C. J. Am. Ceram. Soc. **75**, 1458 (1992).