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Among the four cytochrome P450 (CYP)3A genes, CYP3A4 and CYP3A5 are the most 
abundantly expressed in the human liver. Eighty single nucleotide polymorphisms (SNPs) of 
CYP3A4/5 have been reported to the Human P450 Allele Nomenclature Committee. CYP3A4 
alleles with minimal function compared with wild type include the CYP3A4*6 and 
CYP3A4*17. Alleles with moderately decreased or altered activity include: CYP3A4*2, *8, 
*11, *12, *13, *16, and *18. CYP3A5 alleles with minimal function include the splice variants 
CYP3A5*3, *5, *6 and CYP3A5* 10, as well as the null allele CYP3A5*7. Alleles with 
moderately decreased catalytic activity include CYP3A5*8 and CYP3A5*9. This report reviews 
the current progress in the functional characterization of CYP3A4 and CYP3A5 SNPs and 
provides genotyping tests for possible defective variants. A combination of genotyping tests 
for defective CYP3A4/CYP3A5 haplotypes will be necessary to understand the variations in 
the metabolism and clinical toxicity of a wide variety of clinical drugs, since these two CYP 
proteins have overlapping substrate specificities.
Cytochrome P450 (CYP)3A is the most abun-
dantly expressed P450 protein in the human
liver and intestine and is the predominant sub-
family involved in the metabolism of clinically-
used drugs, as well as many environmental com-
pounds [1–5]. Although the literature reports var-
ious estimates of the liver expression of CYP3As,
CYP3A4 and CYP3A5 are believed to be the two
major CYP3As expressed in the human liver [6–

10]. Although CYP3A7 is considered primarily a
fetal form, expression of its mRNA has been
reported in approximately 11% of adult livers
[11]. However, due to the lack of commercially
available antibodies specific for CYP3A7, its
expression at the protein level is considered con-
troversial (as discussed in a review by Burk and
Wojnowski [12]). Similarly, the low number of
transcripts in the liver for CYP3A43 argues
against its presence in this organ. Thus, CYP3A4
and CYP3A5 are the important members of this
subfamily in the liver. CYP3A4 and CYP3A5
have similar structures and overlapping substrate
specificities [13–16]. The CYP3A5*1 genotype was
associated with high expression of the CYP3A5
protein in the liver and small intestine, but indi-
viduals who were homozygous for CYP3A5*3
expressed very low amounts of the CYP3A5 pro-
tein [10]. Hepatic expression levels of CYP3A4
protein vary by up to 90-fold [17,18], but in vivo
variability in clearance is much lower, less than
tenfold for several CYP3A substrates [19,20].
Although CYP3A4 has been suggested as a pre-
dominant CYP3A form in the liver and small

intestine [1,4,21], another report suggests that
CYP3A5 represents at least 50% of the total
CYP3A content in individuals expressing
CYP3A5*1 [10]. The overlapping substrate specif-
icities and the tissue expression of these two
CYP3As hamper the establishment of associa-
tions between gene variants and phenotypic
results. Individuals having defective alleles of
both CYP3A4 and CYP3A5 would be predicted
to have lower CYP3A activity than those carry-
ing mutations in a single CYP3A gene. There-
fore, the purpose of this paper is to review recent
progress in the functional characterization of
CYP3A4 and CYP3A5 single nucleotide poly-
morphisms (SNPs), and to provide a summary of
the available genotyping primers for the known
defective allelic variants.

CYP3A4
Molecular basis for expression
and metabolism
The CYP3A4 gene is encoded by a 27 kb
sequence on human chromosome 7q21.3-q22.1
and spans 13 exons [15,22,23]. CYP3A4 consists of
502 amino acids with a molecular weight of
57 kDa [24]. The major expression site of
CYP3A4 is the liver, accounting for approxi-
mately 30% of the total P450 content, but it is
also expressed in extra hepatic tissues, such as
the small intestine, prostate and colon [3,21,25–

27]. CYP3A4 is involved in the oxidative metab-
olism of a broad range of structurally diverse
foreign compounds and endogenous steroid
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hormones [2,3,5]. The representative therapeutic
drugs metabolized by CYP3A4 include the mac-
rolide antibiotic erythromycin, the anti-arrhyth-
mic quinidine, the sedative-hypnotics diazepam,
midazolam, and triazolam, the immune modu-
lators cyclosporin and tacrolimus, the HIV pro-
tease inhibitors indinavir and ritonavir, the
calcium channel blockers nifedipine and vera-
pamil, and the 3-hydroxy-3-methylglutaryl
coenzyme A (HMG CoA) reductase inhibitor
lovastatin [13,28]. Endogenous substrates include
testosterone, progesterone, androstendione, cor-
tisol, estradiol, and lithocholic acid [3,13,29,30].
Substrates bioactivated by CYP3A4 include
acetaminophen, aflatoxin B1, benzo[a]pyrene-
7,8-dihydrodiol, cyclophosphamide, and isofos-
famide [3,15,31,32]. Wild-type forms of the
CYP3A4 gene and CYP3A4 protein [24] are now
designated as CYP3A4*1 and CYP3A4.1,
respectively. The Genbank accession number for
the reference sequence of CYP3A4*1 is
AF280107. CYP3A4 SNP information is organ-
ized on the home page of the Human CYP
Allele Nomenclature Committee [201], and other
relevant sources include the SNP database
(dbSNP) home page [202] and the commercial
Perlegen site [203]. Genetic variants of CYP3A4
are assigned by the Human CYP Allele Nomen-
clature Committee.

CYP3A4 SNPs found in 3’- and 5’-UTR regions
CYP3A4 variants found in the 5′-untranslated
region (5′-UTR) include CYP3A4*1A-F and
*1K-M, and those in the 3′-UTR are designated
as CYP3A4*1G-J and *1N-T. Recently, Fuku-
shima-Uesaka and colleagues released ten more
new 5′ and 3′-UTR SNPs found in the Japanese
populations [33]. The most common variant in
the 5′-UTR is CYP3A4*1B (A-392G). Conflict-
ing data suggested this promoter exhibited
slightly higher luciferase activity (1.4–1.9-fold)
than that of the wild-type A-392 construct in
HepG2 and MCF7 cells [34,35], while other stud-
ies did not support this suggestion [36–38]. The
other SNPs in the 5′- and 3′-UTR were found
with low frequency and were not associated with
transcriptional elements [39,40]. The frequency of
CYP3A4*1B is highly variable in different racial
populations with an allele frequency of 0% (Chi-
nese, Taiwanese and Japanese) [35,41–43], 4–10%
(Caucasians) [38,44,45], 9–10% (Hispanics) [41,42],
and 48–80% (African–Americans) [41,42,45–47].
Studies using erythromycin [41], dextromethor-
phan [36] and midazolam [47] as in vivo probes for
activity have not linked CYP3A4*1B with

altered metabolism. There have been several
studies investigating possible associations with
various diseases, such as breast [37] and prostate
cancer [41,42,44,48,49], and treatment-related leuke-
mia [50]. These data suggest that the CYP3A4*1B
marker alone cannot explain the reported associ-
ation with steroid metabolism related to breast
and prostate cancer. Therefore, the relationship
between CYP3A4*1B and breast and prostate
cancer is controversial and appears to be incon-
clusive. Other factors linked to CYP3A4*1B
could be responsible for the possible cancer risk.
A recent study [51] strongly suggested that
CYP3A4*1B is associated with increased
CYP3A5 expression due to its linkage with
CYP3A5*1A [10]. In summary, in the current lit-
erature there appears to be insufficient evidence
of linkage between CYP3A4 SNPs in 5′- and 3′-
UTRs to phenotypic variations in steroid-related
diseases or drug metabolism.

CYP3A4 SNPs found in the coding region
A total of 18 CYP3A4 coding variants were
reported to the Human CYP Allele Nomencla-
ture Committee. Functionally altered or defective
CYP3A4 alleles are summarized in Figure 1.
CYP3A4*2, a S222P change, was found in a
Finnish white population with a frequency of
2.7% (3 heterozygous individuals out of 162) but
was absent in African–American and Chinese
subjects [43]. Metabolism studies using a baculovi-
rus expression system showed that the
CYP3A4*2 protein exhibited a decreased Vmax
and intrinsic clearance for nifedipine. However,
the metabolism of testosterone was not altered
[43]. Although it is not definitive whether this
amino acid substitution can alter the enzyme
activity in testosterone metabolism, the serine to
proline amino acid change could affect the three-
dimensional structure of the protein, because
proline is known as a helix-breaker. Therefore, it
could be of value to genotype CYP3A4*2 in clin-
ical studies, particularly in Finnish people. Geno-
typing primers for CYP3A4*2 are described in
Table 1. CYP3A4*3, a M445T change in the
heme-binding region, was found in one Chinese
subject from Shanghai (1/178 individuals) [43], as
well as in two Caucasian individuals (one from
Eastern European Adygei [an ancient Caucasian
group] and the other from Utah) [52]. A recom-
binant protein for the CYP3A4*3 allele obtained
from an Escherichia coli cDNA expression system
was used to assess the catalytic activity for testo-
sterone and the insecticide chlorpyrifos [52]. The
catalytic activities of the CYP3A4*3 protein
Pharmacogenomics (2005)  6(4)
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Figure 1. CYP3A4 al
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against these substrates were not significantly dif-
ferent from those of wild-type CYP3A4*1,
although this change is located in the conserved
heme-binding region. Eiselt and co-workers also
found this allele in Caucasian DNA samples with
a frequency of 0.47%, and discovered that
metabolism of testosterone, progesterone and 7-
benzyloxy-4-(trifluoromethyl) coumarin (7-
BFC) by CYP3A4*3 was comparable to that of
the wild-type protein [53]. In a recent study,
kinetic parameters for nifedipine metabolism by a
recombinant CYP3A4*3 protein obtained from
E. coli were comparable to those of wild-type
CYP3A4*1 [54]. All of these data suggest that the
CYP3A4*3 allele does not significantly differ
from the wild type in the metabolism of testoster-
one, progesterone, 7-BFC, nifedipine, and chlo-
rpyrifos, even though the amino acid change was
located in the heme-binding area. CYP3A4*4
(I118V), CYP3A4*5(P218R) and CYP3A4*6 (a
stop codon at amino acid 285) were found in a
Chinese population [55]. In a study of 102 sub-
jects, CYP3A4*4 was found in three heterozygous
individuals, CYP3A4*5 was found in two hetero-
zygotes, and the CYP3A4*6 allele was found in
one heterozygous individual [55]. CYP3A4*6 was
an A17776 insertion in exon 9, causing an early
TGA stop codon in exon 9. When the ratio of

urinary 6β-hydroxycortisol:free cortisol was com-
pared to healthy Chinese population data, the
authors suggested that all three alleles showed a
decreased ratio [55]. Although there was a lack of
data from wild-type subjects and drug usage
before the ratio measurement, an individual with
the CYP3A4*6 allele showed a much lower ratio
of the urinary 6ß-hydroxycortisol:free cortisol
(0.88) than those with CYP3A4*4 and
CYP3A4*5 (2.40 and 3.99, respectively). The sig-
nificance of these alleles on enzyme activity needs
to be further addressed. CYP3A4*7 (G56D),
CYP3A4*8 (R130Q), CYP3A4*9 (V170I),
CYP3A4*10 (D174H), CYP3A4*11 (T363M),
CYP3A4*12 (L373F), and CYP3A4*13 (P416L)
were identified in Caucasian DNA samples and
are functionally well-characterized in vitro [53].
Although most mutant and wild-type CYP3A4
proteins expressed well in a bacterial system,
CYP3A4*8 and CYP3A4*13 exhibited no detect-
able P450 holoprotein, suggesting that these two
protein products could be unstable [53].
CYP3A4*7, CYP3A4*9 and CYP3A4*10 did not
differ from wild type in their expression in E. coli
or their ability to metabolize testosterone, proges-
terone and 7-BFC [53]. In contrast, CYP3A4*11
was expressed more poorly in E. coli and had
lower activity toward testosterone, progesterone

leles that exhibited altered or decreased functions compared to wild type.

tated locations that result in amino acid changes or a premature stop codon. Light blue boxes are 5’- and 
 are exons in ORF.
ORF: Open reading frame; UTR: Untranslated region.
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and 7-BFC compared to wild-type CYP3A4*1
[53,56]. In a cell-line system which expressed
CYP3A4*11 and *16 proteins, similar levels of
mRNAs for CYP3A4*11 and CYP3A4*16 were
detected by northern blot analysis compared to
wild type. However, western blot analysis demon-
strated decreased levels of CYP3A4 protein, sug-
gesting that these amino acid changes may affect
protein stability. These results in a eukaryotic

cell-line system agree with results obtained with
the E. coli expression system [56]. CYP3A4*12
exhibited a significantly altered metabolic profile
in testosterone and a fourfold increase in the Km
value for 1′-hydroxymidazolam formation [53].
CYP3A4*14 (L15P) in exon 1, CYP3A4*15
(R162Q) in exon 6 and CYP3A4*16 (T185S) in
exon 7 were identified by Lamba and colleagues
[57]. This study was designed to determine the

Table 1. Genotyping primers to detect CYP3A4 alleles that exhibited altered or 
decreased functions compared to wild-type.

Alleles and their 
effects

Primers (5'-->3') PCR 
size  
(bp)

Detection,  
restriction 
enzyme

Ref.

CYP3A4*2

Exon 7 (S222P) FP:CCTGTTGCATGCATAGAGG   369 Sequencing [43]

Decreased activity RP:GATGATGGTCACACATATC

CYP3A4*6

FP:GAGCCATATTCTCAGAAGGGAGATCAAG
290 Hinf I [55]

An A insertion in exon 9 RP:GTTTGTACACAGCAAGACGATACACC

Frame shift early stop FP:GAGCCATATTCTCAGAAGGGAGATCAAG
290 SSCP [55]

RP:CAAACATGTGTCGTTCTGCTATGTGG

CYP3A4*8

Exon 5 (R130Q) FP:CACAACCATGGAGACCTCC
236 Sequencing [53]

Unstable RP:TACCTGTCCCCACCAGATTC

CYP3A4*11

Exon 7 (T363M) FP:GTCTGTCTTGACTGGACATGTGG
393 Sequencing [53]

Decreased activity RP:GATGATGGTCACACATATCTTC

CYP3A4*12

Exon 11 (L373F) FP:CAGTATGAGTTAGTCTCTGG
574 Sequencing [53]

Altered activity RP:CATAACTGATGACCTTCATCG

CYP3A4*13

Exon 11 (P416L) FP:CAGTATGAGTTAGTCTCTGG
574 Sequencing [53]

Unstable RP:CATAACTGATGACCTTCATCG

CYP3A4*16

Exon 7 (T185S) FP:CCTGTTGCATGCATAGAGG
369 Sequencing [57]

Decreased activity RP:GATGATGGTCACACATATC

CYP3A4*17

Exon 7 (F189S) FP:CTGGACATGTGGGTTTCCTGT
290 Bpm I [54]

Decreased activity RP:AGCAGTTATTTTTAAGAGAGAAAGATAAAT

CYP3A4*18

Exon 11 (L293P) FP:GCTTCGATCCTTTACCAGTATGA
416 Sequencing [52]

Altered activity RP:AGGCAGAATATGCTTGAACCAG

Genotyping tests are not available for several alleles, CYP3A4*2, *8, *11, *11, *12, *13, *16, and *18. The 
development of the PCR-RFLP tests or other high-throughput genetic methodologies would expedite genotyping in 
human samples. Sata and colleagues also provided specific amplification primers for all 13 exons of the CYP3A4 gene 
when CYP3A4*2 was discovered [43].
CYP: Cytochrome P450; PCR: Polymerase chain reaction; RFLP: Restriction fragment length polymorphism; 
SSCP: Single-strand conformational polymorphism.
Pharmacogenomics (2005)  6(4)
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genetic basis of CYP3A4 variation in hepatic
expression and catalytic activity using 265 indi-
viduals organized with respect to phenotype and
genotype. However, not all of the individual
SNPs were associated with low hepatic CYP3A4
protein expression or low CYP3A4 activity
in vivo. Murayama and co-workers showed that
CYP3A4*16 exhibited an approximate 60%
decrease in testosterone 6ß-, 2ß- and
15ß-hydroxylation compared with wild-type
CYP3A4*1 [56]. The effects of these coding vari-
ants on the enzyme activity against other sub-
strates needs to be addressed. CYP3A4*17
(F189S), CYP3A4*18 (L293P) and CYP3A4*19
(P467S) were found in a study of DNA from 72
different human lymphoblastoid cell lines from
the Human Cell Repository, sponsored by the
National Institutes of Health (Coriell Institute,
NJ, USA) [52]. CYP3A4*17 was identified in one
Adygei individual from an Eastern European
group as a heterozygote. CYP3A4*18 and
CYP3A4*19 were found in one Chinese and one
Indo–Pakistani, respectively, as heterozygous
forms. CYP3A4*17 displayed  decreased catalytic
activity compared with the wild type for both tes-
tosterone and the insecticide chlorpyrifos [52].
Kinetic analysis indicated that CYP3A4*17
exhibited a greater than 99% decrease in both
Vmax and CLmax for nifedipine metabolism com-
pared to wild-type CYP3A4*1 [54]. Since
CYP3A4*17 is the first defective allelic protein
exhibiting a greater than 99% decrease in activity
for a CYP3A substrate, 276 DNA samples from
Caucasian individuals were analyzed for the
CYP3A4*17 allele, but no positives were identi-
fied. CYP3A4*17 was originally identified in two
out of nine Adygei individuals. This finding sug-
gests that the frequency of the CYP3A4*17 allele
may be higher in certain Caucasian ethnic groups
than others. Since many CYP3A4 alleles are rare,
they could be missed in a random sampling of
large population studies with limited ethnic vari-
ability. Instead of limiting population studies to
broad racial groups such as Asians, Caucasians
and African–Americans, specific ethnic groups
with ancestor information, such as Adygei, Chi-
nese (Hong Kong), Japanese, and Indo–Paki-
stani, would be helpful for the estimation of
genetic and phenotypic studies. CYP3A4*18 dis-
played a higher turnover number for testosterone
and chlorpyrifos metabolism compared with wild
type [52]. A second study reported that
CYP3A4*18 exhibited lower Km and higher
Vmax in the metabolism of testosterone, com-
pared with wild type [56]. However, a third study

reported that this variant exhibited normal
metabolism of nifedipine [54]. These differing
results could reflect assay variability or multiple
substrate binding sites for CYP3A4 [3,13,29]. Cata-
lytic activity of CYP3A4*19 for testosterone,
chlorpyrifos, and nifedipine was not significantly
different from that of wild type [52,54].

CYP3A5
Molecular basis for expression and 
metabolism of CYP3A5
The four CYP3A genes in a 231 kb length are
localized in tandem on chromosome 7q21-q22.1
[15,22,23,58,59]. The CYP3A5 gene has 13 exons
encoding 502 amino acids [8,58]. The CYP3A5*1
reference sequence is not reported, but the refer-
ence sequence of CYP3A5*3 has been used from
the accession number NG_000004.1, with the
substitution of an A for base 6986 and a C for
base 31611, to provide the sequence for the
wild-type allele as recommended by the Human
CYP Allele Nomenclature Committee [204].
CYP3A5 has been reported to be expressed at
higher levels than CYP3A4 in extra hepatic tis-
sues, such as in the lung [60], kidney [61,62], breast
[63], prostate [64], and polymorphonuclear leuko-
cytes [65]. It has been suggested that CYP3A4 and
CYP3A5 share common regulatory pathways for
constitutive expression [66]. Although CYP3A4
and CYP3A5 are inducible by constitutive
androstane receptor (CAR) and pregnane X
receptor (PXR) agonists [67], CYP3A4 is more
inducible than CYP3A5 [68]. CYP3A4 contains
both proximal and distal PXR elements, while
CYP3A5 contains only the proximal PXR
response element [66,69]. However, a recent study
demonstrated a substantial induction of
CYP3A5 due to this element, which may con-
tribute to its importance in CYP3A drug metab-
olism [67]. Since CYP3A5 is a predominant form
in the kidney, genetic polymorphisms in
CYP3A5 have been suggested to effect endog-
enous cortisol metabolism in the kidney, which
may affect blood pressure through sodium and
water retention [70,71].
There are limited catalytic studies of CYP3A5,
and different laboratory conditions have been
used in the catalytic characterization of CYP3A4
enzymes, such as varying amounts of nicotina-
mide adenine dinucleotide phosphate (NADPH)-
CYP reductase, cytochrome b5, lipid composi-
tions, and divalent cations [72–77]. CYP3A5 is less
susceptible (5–19-fold) to inhibition by ketocona-
zole than CYP3A4 in the metabolism of mida-
zolam, triazolam, nifedipine, and testosterone [78].
361
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Figure 2. CYP3A5 al
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Exons 1
Although the effects of cytochrome b5 on kinetic
parameters of CYP3A4 and CYP3A5 are similar
[79], it is difficult to generalize which CYP3A form
has stronger activity toward a particular substrate,
because of the possibility of differential effects of
assay conditions. However, CYP3A4 is generally
believed to be more active than CYP3A5 [14],
although CYP3A5 has been reported to have
greater activity toward some substrates [4,14,80].
The associations between CYP3A5 expression and
certain drugs may result from higher substrate
specificity, rather than from its level of expression.

CYP3A5 SNPs found in the 3’-and 5’-UTR
CYP3A5 variants in the 5′- and 3′-UTR are
CYP3A5*1B-E [17,81,201]. None of the 5′-UTR
SNPs have been shown to be located in any
known transcription factor elements [10,82]. Most
of the SNPs found in 5′-UTR occur with a fre-
quency of less than 5% [10,82]. In the 3′-UTR,
however, CYP3A5*1D (31611C > T) is the most
common variant, with a frequency of 83% in
Caucasians, 60% in Asians and 40% in African–
Americans [82]. This allele is highly linked to the
CYP3A5*3 allele and correlates with the racially
different expression of the CYP3A5 protein.
This could be another potential reason for the
relatively low expression of CYP3A5*3 if this
change affects mRNA stability [82].

CYP3A5 SNPs found in exons and introns
A number of SNPs occur in the coding region of
CY3A5 (Figure 2). For the functionally altered

CYP3A5 alleles, genotyping primers for restric-
tion fragment length polymorphism (RFLP)
assays, direct sequencing of SNPs, and some
high-throughput assays, such as TaqMan™, that
have been described in the literature for these
alleles are summarized in Table 2. CYP3A5*2
(T398N) was found in two out of five Caucasian
individuals who did not express CYP3A5 [83].
Since CYP3A5 mRNA was detected in these two
individuals, CYP3A5*2 could be an unstable
protein. The main reason for the variable expres-
sion of CYP3A5 in the human liver has been
attributed to the CYP3A5*3 allele [10,17,66]. The
CYP3A5*3 allele carries a mutation in intron 3
that creates a cryptic splice site and causes a pre-
mature stop codon, resulting in almost null
expression of the CYP3A5 protein [10]. There are
10 haplotypes in the home page of the Human
CYP Allele Nomenclature Committee
(CYP3A5*3A-J) which are variants of the
CYP3A5*3 allele, and all of them are assumed to
be associated with low expression of the CYP3A5
protein. This is the most common allele in Cau-
casians, and it is found in all ethnic population
studies, suggesting that it is of ancient origin.
CYP3A5 has been found in appreciable amounts
in only 10–30% of liver samples of Caucasians
and Asians [9,10]. In African–Americans,
CYP3A5*1 is the predominant allele, and the
CYP3A5 protein represents at least 50% of the
total CYP3A content [10], presumably exceeding
the level of CYP3A4. Moreover, the presence of
the CYP3A5*3 allele probably has the most

leles that exhibited altered or decreased functions compared with wild type.

tated locations that result in amino acid changes, premature stop codon, and alternative splicing. Light blue 
. Dark blue boxes are exons in ORF.
INS: Insertion; ORF: Open reading frame; SV: Splicing variant; UTR: Untranslated regions.

CYP3A5*3 
(SV)

2 3 4 5 6 7 8 9 10 11 12 13

CYP3A5*8 
(R28C)

CYP3A5*5 
(SV)

CYP3A5*6 
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CYP3A5*7 
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CYP3A5*9 
(A337T)

CYP3A5*10 
(F446S)
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Primers (5'-->3') PCR 
size
(bp) 

Detection Ref.

3A5*3: Intron 3, splicing defect 

FP:CTTTAAAGAGCTCTTTTGTCTcTCA 
197  BseM II [54]

RP:GAAGCCAGACTTTGATCATTATG 

FP:CATGACTTAGTAGACAGATGAC
293 Ssp I [99,104]

RP:GGTCCAAACAGGGAAGAaATA

FP:ATGGAGAGTGGCATAGGAGATACC
244 Sequencing [17]

RP:CCATACCCCTAGTTGTACGACACA

FP:CTTTAAAGAGCTCTTTTGTCTcTCA 
200 Dde I [97,105]

RP:CCAGGAAGCCAGACTTTGAT

FP:CTCTTTAAAGAGCTCTTTTGTCTcTCA
155 Dde I [106]

RP:GTTGTACGACACACAGCAACC

FP:CTTTAAAGAGCTCTTTTGTCcTgCA
166 Pst I [107]

RP:CACAGCATGTTGATCCCCATACCTA

FP:CCTGCCTTCAATTTTTCACT
196 Rsa I [108,109]

RP:GGTCCAAACAGGGAAGAGgT

FP:CACGTATGTACCACCCAGCTT
250 Sequencing [82]

RP:GGAAGCCAGAACTTTGATCATT

FP:ACTGCCCTTGCAGCATTTAG Real-time
PCR for A

[110,111]
RP:TCCAAACAGGGAAGAGAaAT

FP:ACTGCCCTTGCAGCATTTAG Real-time
PCR for G

[110,111]
RP:TCCAAACAGGGAAGAGAaAC

TCTCTTTAAAGAGCTCTTTTGTCTTTCGA

TaqMan™ [96]
TCTCTTTAAAGAGCTCTTTTGTCTTTCGG

CAACCTTAGGTTCTAGTTCATTAGGGTG

FAM-ATCTCTTCCCTGTTTGGACCACATTACCCTT-TAMRA

FP:GAGAGTGGCATAGGAGATACCCACGTATG ASA for 
allele G

[48]
RP:GGTAATGTGGTCCAAACAGGGAAGAGATTC

FP:CATGACTTAGTAGACAGATGAC ASA for 
allele G

[112]
RP:CAGGGAAGAGATAC

3A5*5: Intron 5, splicing defect 

FP:CCATGAAGATCACCACAACT
240 NIa III [99]

RP:CCTGTCCCCAGATTCATgC

FP:CATGAAGATCACCACAACTAATGTG
252

Hsp2 II, 
SSCP

[90,107]
RP:CTTGGAAACGGACTGTGATCTTAC

atched nucleotides with the CYP3A5 sequence are in bold and in lower case. PCR-RFLP detection for CYP3A5*3 by Dde I 
stion [97,105] was questioned in a recent report [54], because a unique sequence area was not used for primer design 
ared to other human CYP3As.

 Allele-specific amplification; CYP: Cytochrome P450;  FAM: 6-carboxy-fluorescein; FP: Forward primer; 
RFLP: Polymerase chain reaction-restriction fragment length polymorphism; R: Reverse primer;  SSCP: Single-stranded 
ormation polymorphism; TAMRA: 6-carboxy-tetramethylrhodamine.
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3A5*6: Exon 7, splicing defect

FP:AGGTGAGTCTAACTCAGCTTG
578 Sequencing [17]

RP:GACAGCTAAAGTGTGTGAGGG

FP:GGTCATTGCTGTCTCCAACC
Sequencing [10]

RP:TCAAAAACTGGGGTAAGGAATG

FP:GCTGCATGTATAGTGGAAGGAC
317 SSCP [90]

RP:GGAATTGTACCTTTTAAGTGGATG

FP:GTGGGGTGTTGACAGCTAAAG
495 Dde I [99]

RP:TGGAAGATGATTCAGCAGATAGT

FP:GATAGTTCTGAAAGTCTGTGGC
268 Dde I [106]

RP:GAGAGAAATAATGGATCTAAGAAACC

FP:GTGGGTTTCTTGCTGCATGT
237 Dde I [97,105]

RP:GCCCACATACTTATTGAGAG

FP:ACAAGACCCCTTTGTGGAGAGCttTAA
141 Dra I [107]

RP:GACGAAAGAACTGTATATTAAGTGTAT

FP:TACAGCATGGATGTGATTACTG
Sequencing [98]

RP:AAAGAGAGAAAGAAATAATAGCC

FP:TATTGGATGCTTAGGGCAGTG
Sequencing [82]

RP:GATATGTGGGTTTCTTGCTGC

FP:CCTTTGTGGAGAGCACTgAG Real-time
PCR for G

[111]
RP:TGGTGGGGTGTTGACAGCTA

GGATCTAAGAAACCAAATTTTAGGAACTGC

TaqMan [96]
GGATCTAAGAAACCAAATTTTAGGAACTGT

GCCTACAGCATGGATGTGATTACTG

FAM-AGTGCTCTCCACAAAGGGGTCTTGTGGAT-TAMRA

3A5*7: Exon 11, splicing defect

FP:AAATACTTCACGAATACTATGATCA
Sequencing [98]

RP: CAGGGACATAATTGATTATCTTTG

3A5*8: Exon 2 (R28C), decreased activity

FP:CTACAGGCATGGGCTACCATA
Sequencing [82]

RP:CTTGACCATTCCAGTTCCTGA

3A5*9: Exon 10 (A337T), decreased activity

FP:CACCTTATTGGGCAAAACTG
Sequencing [82]

RP:AGGATCATTCAAGGCACACAC

3A5*10: Exon 12 (F446S), decreased activity

FP:CAAGTAGGTTCTTTGGCCCAT
Sequencing [82]

RP:TGACCAGCCCACAAAAGTATC

le 2. Genotyping primers to detect CYP3A5 alleles which exhibit altered functions 
pared to wild type.

atched nucleotides with the CYP3A5 sequence are in bold and in lower case. PCR-RFLP detection for CYP3A5*3 by Dde I 
stion [97,105] was questioned in a recent report [54], because a unique sequence area was not used for primer design 
ared to other human CYP3As.

 Allele-specific amplification; CYP: Cytochrome P450;  FAM: 6-carboxy-fluorescein; FP: Forward primer; 
RFLP: Polymerase chain reaction-restriction fragment length polymorphism; R: Reverse primer;  SSCP: Single-stranded 
ormation polymorphism; TAMRA: 6-carboxy-tetramethylrhodamine.
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significant contribution of all of the CYP3A alle-
les to the total variation in the clearance of
CYP3A substrates. Although the CYP3A5*3 var-
iant is not sufficient to explain variable expres-
sion of total CYP3A proteins, the presence of the
CYP3A5*3 allele has been associated with a
reduced clearance of CYP3A substrates, such as
the lipid-lowering drugs lovastatin, simvastatin
and atorvastatin [84], the immunosuppressant
tacrolimus [85], cyclosporin [86,87], and mida-
zolam [88]. Since CYP3A5*1 is the predominant
allele in African–Americans compared with
other racial groups, Wojnowski and colleagues
suggested there might be an increased risk to
mutagenic metabolites of aflatoxin B1 in a Gam-
bian population [89]. CYP3A5*4 (Q200R) in
exon 7 was found in 2 of 220 alleles in Chinese
subjects [90]. Functional consequences of
CYP3A5*4 have not been investigated.
CYP3A4*5 was found in two Chinese subjects as
a splicing variant mutated in the intron 5 splic-
ing donor site [90]. CYP3A5*6 is a splice variant
containing a change in exon 7, which can cause
deletion of this exon. This allele was found at a
frequency of 13 and 16% in African–Americans
[10,82]. The individuals with this allele had a
lower catalytic activity for midazolam hydroxyla-
tion [10]. CYP3A5*7, found in African–Ameri-
cans with a frequency of 10%, contains an
insertion mutation which causes a premature
stop codon at D348, resulting in the termination
of the open reading frame [17]. One individual
carrying the CYP3A5*3/*7 alleles showed an
extremely low level of CYP3A5 protein and
midazolam 1’-hydroxylation. Therefore, geno-
typing for CYP3A5*3 alone may not be suffi-
cient to correlate with CYP3A5 phenotype [91].
CYP3A5*8 (R28C) was identified in two Zaire
individuals out of 24 diverse African–Americans
with an allelic frequency of 4% [82]. CYP3A5*9
(A337T) was identified in one Beijing individual
out of 24 diverse Asians with an allelic frequency
of 2% [82]. CYP3A5*10 (F446S) was identified
in one individual from Utah (USA) out of 24
diverse Caucasians with an allelic frequency of
2% [82]. The three allelic proteins described
above were purified from a bacterial cDNA
expression system [82]. CYP3A5*1 exhibited the
highest maximal clearance for testosterone and
the highest Vmax for nifedipine oxidation, fol-
lowed by *9, *8, and *10. In particular,
CYP3A5*10 exhibited a greater than 95%
decrease in the intrinsic clearance for both nifed-
ipine and testosterone metabolism. A SNP
resulting in the amino acid variant CYP3A5*10

was found in one individual who was
homozygous for CYP3A5*3. Although this SNP
is on an allele containing the splice change, lim-
ited reverse transcription (RT)-PCR studies sug-
gested that the livers of people who are
homozygous for CYP3A5*3 contain almost
equal amounts of the wild-type and splice vari-
ant mRNA [10,66]. Therefore, although the incor-
rectly spliced mRNA is unstable [92,93],
CYP3A5*3 and CYP3A5*10 proteins are proba-
bly expressed, albeit at a low level in the human
liver. Actually, Hustert and colleagues showed
that all individuals homozygous for the
CYP3A5*3 allele did express low levels of the
CYP3A5 protein [17]. Thus, individuals carrying
the amino acid change and the splice change that
constitute the CYP3A5*10 allele would be pre-
dicted to have lower clearance of CYP3A5 sub-
strates than that observed in individuals carrying
the CYP3A5*3 allele.

Expert commentary
Interindividual variations in CYP3A activity are
greatly influenced by drug-mediated CYP3A
inhibition and induction in intestinal and
hepatic tissues [13]. However, a significant role of
genetic factors compared with environmental
factors in interindividual variability in CYP3A4
activity was reported by Ozdemir and co-work-
ers [94]. The accumulation of overall genetic pol-
ymorphisms with functional consequences
would contribute to the correct assessment of
CYP3A-mediated interindividual variations
in vivo. Most CYP3A4 and CYP3A5 defective
variants occur at low allelic frequencies, except
for CYP3A5*3, *6, and *7 [95]. In fact, many
deleterious mutations may be quite rare. A con-
founding factor in the low frequencies is that
genotyping studies are designed to represent all
diverse populations, in order to avoid missing
SNPs in the screening. Some CYP3A SNP fre-
quencies can be high in certain ethnic groups.
For example, CYP3A4*17 was not found in 276
diverse Caucasians, but was found in two out of
nine Adygei individuals [54]. Additional exam-
ples of a high incidence of SNPs in certain racial
groups or specific ethnic groups can be found
for CYP3A4*1B (no incidence in Asians, but up
to 45% in African–Americans) [35,41–43,45],
CYP3A5*6 (no incidence in Asians, but 13% in
African–Americans) [10,17,82,96,97], CYP3A5*7
(10% in African–American, but no incidence in
Caucasians) [17,82,98,99], and CYP3A5*8 (two
Zaire individuals in 24 diverse African–Ameri-
cans) [82]. Therefore, it could be useful to carry
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out genotyping/phenotyping studies in specific
racial, ethnic or ancestor groups. This would
give a better statistical power for the under-
standing of a specific SNP together with its
haplotype relationship with other genes.

According to a recent comprehensive analy-
sis, CYP3A4 expression in liver varies by up to
50- and 55-fold at the protein and mRNA
level, respectively [18], and clearance variations
observed in vivo include those seen in cortisol
[100], erythromycin [100], midazolam [20], and
nifedipine [101]. It is well known that preadmin-
istration of drugs can affect the expression of
CYP3A in liver, adding to variability. However,
the underlying genetic mutations affecting
expression and clearance variations are not fully
understood, indicating that further research
should be performed to identify additional
genetic variants of CYP3A4. Although screen-
ings for human PXR variants revealed 7 mis-
sense variants [102,103], all of these variants were
of too low frequency to support the high varia-
tion in CYP3A4 expression. Conceivably,
mutations in other nuclear regulators or regula-
tory regions of receptors such as PXR might
affect expression. A correlation between
CYP3A4 and PXR transcripts has been
reported, suggesting that expression levels of

transcriptional regulators of CYP3A4 are one of
the determining factors for variable CYP3A4
expression [18]. Additional sequencing of the
intron and regulatory areas of CYP3A4, using
phenotyped individuals who have also been
genotyped for CYP3A5 alleles, could reveal new
and  important CYP3A4 haplotypes. To under-
stand the contribution of low frequency CYP3A
SNPs to phenotype, combined haplotype anal-
ysis for the known defective CYP3A SNPs
could be more powerful than genotyping for a
few CYP3A SNPs (Figure 3).

Outlook
The CYP3A subfamily has been studied exten-
sively because of its considerable involvement in
drug metabolism. In addition to genetic factors,
interindividual variations in CYP3A activity can
be affected by multiple factors including drug
interactions, induction or inhibition by drugs and
environmental chemicals. In addition, age, race,
disease state, organ function, and dietary factors
undoubtedly contribute to variability. Among the
genetic factors, one of the CYP3A alleles,
CYP3A5*3, provides an important explanation for
low CYP3A5 expression in the liver and other tis-
sues, and partially explains reduced catalytic activ-
ity for CYP3A5 in vivo. However, CYP3A5*3

Figure 3. Important CYP3A4 and CYP3A5 alleles for the CYP3A genotyping in 
haplotype studies.

CYP3A4*2, *6, *8, *11, *12, *13, *16, *17 and *18 CYP3A5*3, *5, *6, *7, *8, *9, and *10

CYP3A43                    CYP3A4  

Combined genotype analysis for 
defective CYP3A4 and CYP3A5 SNPs  

Major drug-metabolizing CYP3As in the human liver

More significant contribution to CYP3A variations than single CYP3A SNP

CYP3A7 CYP3A5
Pharmacogenomics (2005)  6(4)



www.futuremedicine.com

Functionally defective or altered CYP3A4 and CYP3A5 SNPs and genotyping tests – REVIEW

Highlights

• Cytochrome P450 (CY
involved in drug meta
exhibit overlapping su
similar functions.

• Genotyping primers m
after DNA sequence a

• Polymerase chain reac
(PCR-RFLP) genotypin
available for several a
high-throughput met

• Although many CYP3
in vitro, a thorough a
humans, and their clin
genotype/phenotype 

• Most of the CYP3A d
frequencies. The use o
groups could provide 
nucleotide polymorph
clinical outcome.

• Obtaining complete h
alleles is vital in under
genes have on the eff
diverse classes of drug
alone cannot explain the total interindividual vari-
ations of CYP3A activity. To date, no single
genetic defect can determine the total metabolic
clearance of CYP3A substrates. Further searches
for genetic variants of the CYP3A4 gene may be
necessary in the intron area and the regulatory area
of CYP3A4. Such studies in clinically defined

patients who have been genotyped for important
CYP3A5 alleles may lead to the identification of
defective CYP3A haplotypes.

Many CYP3A variants have been reported in
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by prolonged exposure of the body to high lev-
els of testosterone, oestrogen or cortisol can be
implicated in several diseases, such as prostate
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olizes many pesticides [52]. Therefore, analysis
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research could be an important aspect in under-
standing the physiological roles of CYP3A in
the body, as well as in evaluating the hazards
caused by environmental chemicals.
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