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Approximate computing trades off computation quality with effort expended, and as rising performance
demands confront plateauing resource budgets, approximate computing has become not merely attractive,
but even imperative. In this article, we present a survey of techniques for approximate computing (AC).
We discuss strategies for finding approximable program portions and monitoring output quality, techniques
for using AC in different processing units (e.g., CPU, GPU, and FPGA), processor components, memory
technologies, and so forth, as well as programming frameworks for AC. We classify these techniques based
on several key characteristics to emphasize their similarities and differences. The aim of this article is to
provide insights to researchers into working of AC techniques and inspire more efforts in this area to make
AC the mainstream computing approach in future systems.
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1. INTRODUCTION

As large-scale applications such as scientific computing, social media, and financial
analysis gain prominence, the computational and storage demands of modern systems
have far exceeded the available resources. It is expected that, in the coming decade, the
amount of information managed by worldwide data centers will grow 50-fold, while
the number of processors will increase only tenfold [Gantz and Reinsel 2011]. In fact,
the electricity consumption of just the US data centers is expected to increase from 61
billion kWh (kilowatt hour) in 2006 [Mittal 2014a] and 91 billion kWh in 2013 to 140
billion kWh in 2020 [NRDC 2013]. It is clear that rising performance demands will soon
outpace the growth in resource budgets; hence, overprovisioning of resources alone
will not solve the conundrum that awaits the computing industry in the near future.

A promising solution for this dilemma is approximate computing (AC), which is based
on the intuitive observation that, while performing exact computation or maintaining
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peak-level service demand require a high amount of resources, allowing selective ap-
proximation or occasional violation of the specification can provide disproportionate
gains in efficiency. For example, for a k-means clustering algorithm, up to 50× energy
saving can be achieved by allowing a classification accuracy loss of 5 percent [Chippa
et al. 2014]. Similarly, a neural approximation approach can accelerate an inverse
kinematics application by up to 26× compared to the GPU execution, while incurring
an error of less than 5 percent [Grigorian and Reinman 2015].

Approximate computing and storage approach leverages the presence of error-
tolerant code regions in applications and perceptual limitations of users to intelli-
gently trade off implementation, storage, and/or result accuracy for performance or
energy gains. In brief, AC exploits the gap between the level of accuracy required by
the applications/users and that provided by the computing system, for achieving di-
verse optimizations. Thus, AC has the potential to benefit a wide range of applications/
frameworks, for example, data analytics, scientific computing, multimedia and signal
processing, machine learning and MapReduce, and so forth.

However, although promising, AC is not a panacea. Effective use of AC requires
judicious selection of approximable code/data portions and approximation strategy,
since uniform approximation can produce unacceptable quality loss [Ranjan et al. 2015;
Venkataramani et al. 2014; Tian et al. 2015; Sartori and Kumar 2013]. Even worse,
approximation in control flow or memory access operations can lead to catastrophic
results such as segmentation fault [Yetim et al. 2013]. Further, careful monitoring of
output is required to ensure that quality specifications are met, since large loss makes
the output unacceptable or necessitates repeated execution with precise parameters.
Clearly, leveraging the full potential of AC requires addressing several issues. Recently,
several techniques have been proposed to fulfill this need.

Contribution and article organization: In this article, we present a survey of
techniques for approximate computing. Figure 1 shows the organization of this paper.

We first discuss the opportunities and obstacles in the use of AC in Section 2. We then
present in Section 3 techniques for finding approximable program portions and mon-
itoring output quality, along with the language support for expressing approximable
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Table I. Terminology Used in Approximate Computing Research

(a) AC is synonymous with or has significant overlap with the ideas of :
Dynamic effort-scaling [Chippa et al. 2014], quality programmability/configurability [Venkataramani
et al. 2013, 2014] and variable accuracy [Ansel et al. 2011]

(b) Applications or their code portions that are amenable to AC are called:
Approximable [Esmaeilzadeh et al. 2012b], relaxable [Yazdanbakhsh et al. 2015a], soft slices/
computations [Esmaeilzadeh et al. 2012a], best-effort computations [Chakradhar and Raghunathan
2010], noncritical/crucial [Shi et al. 2015], error-resilient/tolerant [Esmaeilzadeh et al. 2012b],
error-acceptable [Kahng and Kang 2012], tunable [Sidiroglou et al. 2011], having ‘forgiving nature’
[Venkataramani et al. 2015] and being ‘optional’ (vs. guaranteed/mandatory) [Chakradhar and
Raghunathan 2010]

variables/operations. We review the strategies for actually approximating these data
in Section 4. In Section 5, we discuss research works to show how these strategies are
used in many ACTs employed for different memory technologies, system components,
and processing units.

In these sections, we organize the works in different categories to underscore their
similarities and dissimilarities. Note that the works presented in these sections are
deeply intertwined; while we study a work under a single group, several of these works
belong to multiple groups. To show the spectrum of application of AC, we organize the
works based on their workload or application domain in Section 6. Finally, Section 7
concludes this article with a discussion on future challenges.

Scope of the article: The scope of AC encompasses a broad range of approaches.
For a concise presentation, we limit the scope of this article in the following manner. We
focus on works that use an approximation strategy to trade off result quality/accuracy
and not those that mainly focus on mitigation of hard/soft errors or other faults. We
mainly focus on ACTs at architecture, programming, and system level, and briefly
include design of inexact circuits. We do not typically include works on theoretical
studies on AC. We believe that this article will be useful for computer architects,
application developers, system designers, and other researchers1.

2. PROMISES AND CHALLENGES OF APPROXIMATE COMPUTING

2.1. A Note on Terminology and Quality Metrics

Table I summarizes the terminology used for referring to AC and the code regions
amenable to AC.

As we show in Sections 2.2 and 2.3, use of a suitable quality metric is extremely
important to ensure correctness and balance quality loss with efficiency gain. For
this reason, Table II shows the commonly used metrics for evaluating QoR of various
applications/kernels (note that some of these applications may be internally composed
of these kernels. Also, these metrics are not mutually exclusive). For several appli-
cations, multiple metrics can be used for evaluating quality loss, for example, both
clustering accuracy and mean centroid distance can be used as metrics for k-means
clustering [Chippa et al. 2013]. In essence, all of these metrics seek to compare
some form of output (depending on the application, e.g., pixel values, body position,
classification decision, execution time) in the approximate computation with that in

1We use the following acronyms throughout the article: bandwidth (BW), dynamic binary instrumentation
(DBI), embedded DRAM (eDRAM), error-correcting code (ECC), finite impulse response (FIR), floating point
(FP) unit (FPU), hardware (HW), instruction set architecture (ISA), multilayer perceptron (MLP), multilevel
cell (MLC), neural network (NN), neural processing unit (NPU), nonvolatile memory (NVM), peak signal-to-
noise ratio (PSNR), phase change memory (PCM), quality of result (QoR), resistive RAM (ReRAM), single
instruction multiple data (SIMD), software (SW), solid state drive (SSD), spin transfer torque RAM (STT-
RAM), structural similarity (SSIM).
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Table II. Some Quality Metrics Used for Different Approximable Applications/Kernels

Quality metric(s) Corresponding applications/kernels

Relative difference/
error from standard
output

Fluidanimate, blackscholes, swaptions (PARSEC), Barnes, water,
Cholesky, LU (Splash2), vpr, parser (SPEC2000), Monte Carlo, sparse
matrix multiplication, Jacobi, discrete Fourier transform, MapReduce
programs (e.g., page rank, page length, project popularity, and so forth),
forward/inverse kinematics for 2-joint arm, Newton-Raphson method for
finding roots of a cubic polynomial, n-body simulation, adder, FIR filter,
conjugate gradient

PSNR and SSIM H.264 (SPEC2006), x264 (PARSEC), MPEG, JPEG, rayshade, image
resizer, image smoothing, OpenGL games (e.g., Doom 3)

Pixel difference Bodytrack (PARSEC), eon (SPEC2000), raytracer (Splash2), particle filter
(Rodinia), volume rendering, Gaussian smoothing, mean filter, dynamic
range compression, edge detection, raster image manipulation

Energy conservation
across scenes

Physics-based simulation (e.g., collision detection, constraint solving)

Classification/clustering
accuracy

Ferret, streamcluster (PARSEC), k-nearest neighbor, k-means clustering,
generalized learning vector quantization (GLVQ), MLP, convolutional
neural networks, support vector machines, digit classification

Correct/incorrect
decisions

Image binarization, jmeint (triangle intersection detection), ZXing (visual
bar code recognizer), finding Julia set fractals, jMonkeyEngine (game
engine)

Ratio of error of initial
and final guess

3D variable coefficient Helmholtz equation, image compression, 2D
Poisson’s equation, preconditioned iterative solver

Ranking accuracy Bing search, supervised semantic indexing (SSI) document search

exact computation. Some other quality metrics include universal image quality index
(UIQI) for image processing, satisfiability check for SAT (Boolean satisfiability) solver,
difference in file size for dedup (PARSEC), and so forth.

2.2. Motivation Behind and Scope For Approximate Computing

In many scenarios, use of AC is unavoidable, or the opportunity for AC arises inherently,
while in other scenarios, AC can be proactively used for efficiency optimization. We now
discuss the motivations behind, and opportunity for, AC.

2.2.1. Inherent Scope or Need For Approximation. In the case of inherently noisy input
[Bornholt et al. 2014], limited data precision, a defect in HW, sudden additional load,
or hard real-time constraints, use of AC becomes unavoidable. For example, AC is
natural for FP computations in which rounding off happens frequently. For many
complex problems, an exact solution may not be known, while an inexact solution may
be efficient and sufficient.

2.2.2. Error-Resilience of Programs and Users. The perceptual limitations of humans pro-
vide scope for AC in visual and other computing applications. Similarly, many programs
have noncritical portions, and small errors in these do not affect QoR significantly. For
example, Esmaeilzadeh et al. [2012a] note that in a 3D raytracer application, 98% of
FP operations and 91% of data accesses are approximable. Similarly, since the lower-
order bits have smaller significance than the higher-order bits, approximating them
may have only a minor impact on QoR [Cho et al. 2014; Ganapathy et al. 2015; Ranjan
et al. 2015; Sampson et al. 2013; Tian et al. 2015; Rahimi et al. 2015; Gupta et al.
2011].

In several iterative refinement algorithms, running extra iterations with reduced
precision of intermediate computations can still provide the same QoR [Khudia et al.
2015; Lopes et al. 2009; Tian et al. 2015; Raha et al. 2015; Chippa et al. 2014]. In some
scenarios, for example, search engines, no unique answer exists, but multiple answers
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are admissible. Similarly, redundancy due to spatial/temporal correlation provides a
scope for AC [Raha et al. 2015; Sartori and Kumar 2013; Sutherland et al. 2015;
Yazdanbakhsh et al. 2015b; Samadi et al. 2013].

2.2.3. Efficiency Optimization. In the image processing domain, a PSNR value greater
than 30dB, and in typical error-resilient applications, errors less than 10%, are gen-
erally considered acceptable [Rahimi et al. 2015]. By exploiting this margin, AC can
aggressively improve performance and energy efficiency. For example, by intelligently
reducing the eDRAM/DRAM refresh rate or SRAM supply voltage, the energy con-
sumed in storage and memory access can be reduced with minor loss in precision [Mittal
2012, 2014b]. Similarly, the AC approach can alleviate the scalability bottleneck [Yeh
et al. 2007], improving performance by early loop termination [Sidiroglou et al. 2011;
Chippa et al. 2014], skipping memory accesses [Yazdanbakhsh et al. 2015b], offloading
computations to an accelerator [Moreau et al. 2015], improving yield [Ganapathy et al.
2015], and much more.

2.2.4. Quality Configurability. AC can provide knobs to trade off quality with efficiency;
thus, instead of executing every computation to full fidelity, the user needs to expend
only as much effort (e.g., area, energy) as dictated by the QoR requirement [Chakradhar
and Raghunathan 2010]. For example, an ACT can use different precisions for data stor-
age/processing, program versions of different quality (see Table IV), different refresh
rates in eDRAM/DRAM (see Table V), and so on, to just fulfill the QoR requirement.

2.3. Challenges in Approximate Computing

As we show here, AC also presents several challenges, which need to be addressed to
fully realize its potential.

2.3.1. Limited Application Domain and Gains of AC. Due to their nature, some applications
are not amenable to approximation, for example, cryptography and hard real-time
applications. Some approximation strategies are valid only in a certain range, for ex-
ample, Zhang et al. [2014] approximate inverse operation (y = 1/x) using the function
y = 2.823−1.882x, which produces low errors only when x ∈ [0.5, 1]. Similarly, approx-
imating sin function using an NN on an unbounded range is intractably hard [Eldridge
et al. 2014]. Further, the gains of AC are bounded, for example, inexact storage does
not reduce the number of operations on the data, and vice versa.

2.3.2. Correctness Issues. Aggressive ACTs may prevent program termination (e.g., a
matrix computation kernel in which AC can lead to an unsolvable problem), or lead
to corrupt output that may not even be detected by the quality metric used [Akturk
et al. 2015]. For example, approximating a compression program may lead to corrupt
output, which may go undetected on using output file size as the quality metric. This
necessitates choosing an accurate, yet lightweight, quality metric.

Further, AC may interfere with synchronization and memory ordering, and may
lead to nondeterministic output, which makes debugging difficult [Khudia et al. 2015].
Avoiding this may require executing a higher number of iterations or tightening conver-
gence criteria in iterative methods or comparing with single-threaded exact execution.

2.3.3. Finding Application-Specific Strategies. A naı̈ve approximation approach such as
uniform approximation is unlikely to be efficient, and while some strategies for approx-
imation such as precision scaling, memoization, and the like, are known, no strategy
can be universally applied to all approximable applications. Hence, the approximation
strategies need to be determined on a per-application basis by the user or a sophisti-
cated program module [Ansel et al. 2011].
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2.3.4. Overhead and Scalability. Several ACTs may have large implementation overhead;
for example, voltage scaling may require voltage shifters for moving data between
different voltage domains [Esmaeilzadeh et al. 2012a]. Similarly, analog NN imple-
mentations [Li et al. 2015; Amant et al. 2014] require conversion of signals between
digital and analog domains. Other techniques may require the programmer to write
multiple approximate versions of a program or annotate the source code, which do
not scale to complex programs and legacy software. Similarly, some ACTs require ISA
extension [Esmaeilzadeh et al. 2012a; Ranjan et al. 2015; Venkataramani et al. 2013;
Esmaeilzadeh et al. 2012b; Sampson et al. 2011; Keramidas et al. 2015; Yazdanbakhsh
et al. 2015b]; hence, implementing them on existing platforms may be challenging.

2.3.5. Providing High Quality and Configurability. ACTs must maintain the QoR to a
desired level and also provide tunable knob(s) to trade off quality with efficiency
[Venkataramani et al. 2014]. If QoR falls below a threshold, the application may
have to be executed precisely, which increases design and verification cost and may
even nullify the gains from approximation. Also, apart from average error, worst-case
error needs to be bounded to maintain high QoR [Khudia et al. 2015; Grigorian and
Reinman 2014]. These facts necessitate monitoring the QoR and adaptively changing
the knobs to reach a desired QoR. However, this may be infeasible or prohibitively
expensive in several ACTs.

The techniques proposed in the next several sections aim to address these challenges.

3. IDENTIFYING APPROXIMABLE PORTIONS AND EXPRESSING THIS AT LANGUAGE LEVEL

Finding approximable variables and operations is the crucial initial step in every ACT.
While this is straightforward in several cases (e.g., approximating lower-order bits of
graphics data), in other cases, it may require insights into program characteristics
or error-injection to find the portions that can be approximated with little impact on
QoR (Section 3.1). Closely related to it is the output-monitoring step, which verifies
adherence to the quality constraint and triggers parameter adjustment or precise
execution in the case of unacceptable quality loss (Section 3.2).

Further, once relaxable portions are identified, conveying this to the software or com-
piler requires source-code annotations; several programming frameworks provide sup-
port for this (Section 3.3). This source-code annotation can be in the form of OpenMP-
style pragma directives (Section 3.4), which provides several benefits, for example, non-
intrusive and incremental program transformation, and easy debugging or comparison
with exact code by disabling the approximation directives with a single compiler flag.
Table III classifies the techniques based on these factors. We now discuss several of
these techniques.

3.1. Automatically Finding Approximable Code/Data

Roy et al. [2014] present a SW framework for automatically discovering approximable
data in a program by using statistical methods. Their technique first collects the vari-
ables of the program and the range of values that they can take. Then, using binary
instrumentation, the values of the variables are perturbed and the new output is
measured. By comparing this against the correct output, which fulfills the acceptable
QoS threshold, the contribution of each variable in the program output is measured.
Based on this, the variables are marked as approximable or nonapproximable. Thus,
their framework obviates the need of a programmer’s involvement or source-code an-
notations for AC. They show that, compared to a baseline with type-qualifier anno-
tations by the programmer [Sampson et al. 2011] (see Section 3.3), their approach
achieves nearly 85% accuracy in determining the approximable data. The limitation
of their technique is that some variables that are marked as nonapproximable in the
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Table III. A Classification Based on Implementation Approach and Other Features

Classification References

Error-injection [Chippa et al. 2013, 2014; Cho et al. 2014; Esmaeilzadeh et al. 2012a;
Ganapathy et al. 2015; Liu et al. 2012; Misailovic et al. 2014; Roy et al.
2014; Venkataramani et al. 2013; Xu and Huang 2015; Yetim et al. 2013]

Use of DBI [Chippa et al. 2013; Düben et al. 2015; Liu et al. 2012; Miguel et al. 2014;
Roy et al. 2014; Venkataramani et al. 2013]

Output quality
monitoring

[Grigorian et al. 2015; Grigorian and Reinman 2014; Hegde and Shanbhag
1999; Khudia et al. 2015; Mahajan et al. 2015; Ringenburg et al. 2014,
2015; Roy et al. 2014; Samadi and Mahlke 2014; Yeh et al. 2007; Zhang
et al. 2014]

Annotating
approximable
program portions

[Amant et al. 2014; Ansel et al. 2011; Carbin et al. 2013; Esmaeilzadeh
et al. 2012a, 2012b; Liu et al. 2012; McAfee and Olukotun 2015; Misailovic
et al. 2014; Moreau et al. 2015; Ringenburg et al. 2014; Sampson et al.
2011, 2015; Shi et al. 2015; Shoushtari et al. 2015; Vassiliadis et al. 2015;
Yazdanbakhsh et al. 2015a, 2015b]

Use of OpenMP-style
pragma

[Rahimi et al. 2013; Vassiliadis et al. 2015]

Use of compiler [Amant et al. 2014; Ansel et al. 2011; Baek and Chilimbi 2010;
Esmaeilzadeh et al. 2012a, 2012b; Mahajan et al. 2015; McAfee and
Olukotun 2015; Mishra et al. 2014; Moreau et al. 2015; Rahimi et al. 2013;
Ringenburg et al. 2015; Samadi et al. 2013; Sampson et al. 2015; Sartori
and Kumar 2013; Sidiroglou et al. 2011; Vassiliadis et al. 2015; Yetim et al.
2013]

programmer-annotated version may be marked as approximable by their technique,
which can lead to errors.

Chippa et al. [2013] present a technique for automatic resilience characterization of
applications. Their technique works in two steps. In the resilience identification step,
their technique considers innermost loops that occupy more than 1% of application
execution time as atomic kernels. As the application runs with the input dataset pro-
vided, random errors are introduced into the output variables of a kernel using the
Valgrind DBI tool. If the output does not meet the quality criterion or if the applica-
tion crashes, the kernel is marked as sensitive; otherwise, it is potentially resilient. In
the resilience characterization step, potentially resilient kernels are further explored
to see the applicability of various approximation strategies. In this step, errors are
introduced in the kernels using Valgrind based on the approximation models (and
not randomly). To quantify resilience, they propose an ACT-independent model and
an ACT-specific model for approximation. The ACT-independent approximation model
studies the errors introduced due to ACT using a statistical distribution that shows the
probability, magnitude, and predictability of errors. From this model, the application
quality profile is generated as a function of these three parameters. The ACT-specific
model may use different ACTs, such as precision scaling, inexact arithmetic circuits,
and loop perforation (see Section 4). Their experiments show that several applications
show high resilience to errors, and many parameters—such as the scale of input data,
choice of output quality metric, and granularity of approximation—have a significant
impact on application resilience.

Raha et al. [2015] present two techniques for selecting approximable computations
for a reduce-and-rank kernel. A reduce-and-rank kernel (e.g., k-nearest neighbor) per-
forms reduction between an input vector and each reference vector, then ranks the
outputs to find the subset of top reference vectors for that input. Their first technique
decomposes vector reductions into multiple partial reductions and interleaves them
with the rank computation. Then, based on intermediate reduction results and ranks,
this technique identifies whether a particular reference vector is expected to appear
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in the final subset. Based on this, future computations that can be relaxed with little
impact on the output are selected. The second technique leverages the temporal or spa-
tial correlation of inputs. Depending on the similarity between current and previous
input, this technique approximates or entirely skips processing parts of the current
inputs. Approximation is achieved using precision scaling and loop perforation strate-
gies. They also design a runtime framework for dynamically adapting the parameters
of their two techniques for minimizing energy consumption while meeting the QoR
target.

Ansel et al. [2011] present language extensions and an accuracy-aware compiler for
facilitating writing of configurable-accuracy programs. The compiler performs autotun-
ing using a genetic algorithm to explore the search-space of possible algorithms and
accuracy levels for dealing with recursion and subcalls to other configurable-accuracy
code. Initially, the population of candidate algorithms is maintained, which is expanded
using mutators and later pruned to allow more optimal algorithms (i.e., fastest K al-
gorithms for a given accuracy level) to evolve. Thus, the user needs to specify only
accuracy requirements and does not need to understand algorithm-specific parame-
ters, while the library writer can write a portable code by simply specifying ways to
search the space of parameter and algorithmic choices. To limit computation time, the
number of tests performed for evaluating possible algorithms needs to be restricted.
This, however, can lead to the choice of suboptimal algorithms and errors; hence, the
number of tests performed needs to be carefully chosen. Their experiments show that
exposing algorithmic and accuracy choices to the compiler for autotuning programs is
effective and provides large speedups with bounded loss of accuracy.

3.2. Ensuring Quality of Approximate Computations Through Output Monitoring

We here discuss ACTs that especially focus on ensuring quality by efficiently monitoring
application output.

Grigorian and Reinman [2014] note that, for several computation-intensive appli-
cations, although finding a solution may incur high overheads, checking the solution
quality may be easy. Based on this, they propose decoupling error analysis of approxi-
mate accelerators from application quality analysis by using application-specific met-
rics called light weight checks (LWCs). For example, the Boolean satisfiability problem,
which determines whether a set of variable assignments satisfies a Boolean formula,
is NP-complete. However, checking whether a given solution satisfies the formula is
easy; hence, this forms an example of LWC for the satisfiability problem. LWCs are
directly integrated into the application, which enables compatibility with any ACT. By
virtue of being lightweight, LWCs can be used dynamically for analyzing and adapting
application-level errors. Only when testing with LWCs indicates unacceptable quality
loss, exact computation needs to be performed for recovery. Otherwise, the approxi-
mation is considered acceptable. This saves energy without compromising reliability.
Their approach guarantees bounding worst-case error and obviates the need of stati-
cally designed error models.

Khudia et al. [2015] note that, even when the average value of errors due to AC
may be small, the worst-case value of errors may be high, which may affect the whole
user experience. To address this, they present an output-quality monitoring and man-
agement technique that can ensure meeting a given output quality. Based on the
observation that simple prediction approaches, for example, linear estimation, moving
average and decision tree, can accurately predict approximation errors, they use a low-
overhead error-detection module that tracks predicted errors to find the elements that
need correction. Using this information, the recovery module, which runs in parallel to
the detection module, re-executes the iterations that lead to high errors. This becomes
possible since the approximable functions or codes are generally those that simply read
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inputs and produce outputs without modifying any other state, such as map and stencil
patterns. Hence, these code sections can be safely re-executed without incurring high
overhead or side effects. The recovery module trades off performance/energy improve-
ments with output quality and ascertains how many iterations need to be re-executed.
They show that, compared to an unchecked approximator, their technique reduces out-
put error significantly with only a small reduction in energy saving and no reduction
in performance improvement achieved from AC.

Ringenburg et al. [2015] present two offline debugging mechanisms and three online
monitoring mechanisms for approximate programs. Among the offline mechanisms,
the first one identifies the correlation between QoR and each approximate operation
by tracking the execution and error frequencies of different code regions over multiple
program executions with varying QoR values. The second mechanism tracks which
approximate operations affect any approximate variable and memory location. This
mechanism is helpful for deciding whether the energy saving from approximation is
large enough to justify the accompanying loss in QoR. The online mechanisms com-
plement the offline ones, and they detect and compensate QoR loss while maintaining
the energy gains of approximation. The first mechanism compares the QoR for pre-
cise and approximate variants of the program for a random subset of executions. This
mechanism is useful for programs for which QoR can be assessed by sampling a few
outputs, but not for those that require bounding the worst-case errors. The second
mechanism uses programmer-supplied verification functions that can check a result
with much lower overhead than computing the result. For example, in video decoding,
the similarity between current and past frames can be used as a check for QoR. The
third mechanism stores past inputs and outputs of the checked code and estimates the
output for the current execution based on interpolation of the previous executions with
similar inputs. They show that their offline mechanisms help in effectively identifying
the root of a quality issue instead of merely confirming the existence of an issue, and
the online mechanisms help in controlling QoR while maintaining high energy gains.

Mahajan et al. [2015] present a quality-control technique for inexact accelerator-
based platforms. They note that an accelerator may not always provide acceptable
results; hence, blindly invoking the accelerator in all cases leads to quality loss and
waste of energy and execution time. They propose a predictor that guesses whether
that invocation of accelerator will lead to unacceptable quality degradation. If yes,
their technique instead invokes the precise code. The predictor uses only the informa-
tion local to a specific accelerator-invocation, hence, it does not require maintaining
history information. They study a table-based and an NN-based design for the predic-
tor. Both these designs have a training phase and a runtime phase. For the table-based
design, in the training phase, the index for the table is generated by hashing the accel-
erator inputs, which is used for filling the predictor contents. At runtime, the prediction
table is accessed for a decision and is indexed by hashing the accelerator inputs. Hash
collisions are avoided by using a carefully designed hash function and employing mul-
tiple prediction tables. The neural predictor uses an MLP that is trained at compile
time using a set of representative training input datasets. Using this, prediction is
made at runtime. They show that the neural predictor yields higher accuracy than the
table-based predictor, although both provide similar speedup and energy saving due to
the higher overhead of neural predictor.

3.3. Programming Language Support for Approximate Computing

Sampson et al. [2011] propose using type qualifiers for specifying approximate data and
separating precise and approximate portions in the program. For the variables marked
with approximate qualifier, the storage, computing, and algorithm constructs used can
all be approximate. Correctness is guaranteed for precise data, while only “best effort” is
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promised for the approximate data. Any flow of information from approximate to precise
data needs to be explicitly specified by the programmer. This ensures careful handling of
approximate data and makes the programming model safe. It also obviates the need of
dynamic checking, which reduces the runtime overhead. For experiments, they assume
that the programs run on a processor with inexact storage and inexact operations, using
refresh rate reduction for DRAM main memory, precision scaling for FP operations, and
voltage scaling for SRAM data cache, SRAM registers, and functional units. Inexact
data are stored in inexact portions of main memory and cache, and in inexact registers;
the opposite is true for precise data. Also, inexact functional units perform operations
on inexact data. They demonstrate their approach using an extension to Java, and
show that it saves a large amount of energy with small accuracy loss.

Yazdanbakhsh et al. [2015a] present annotations for providing suitable syntax and
semantics for approximate HW design and reuse in Verilog. They allow the designer to
specify both critical (precise) and approximable portions of the design. For example, re-
lax(arg) can be used to implicitly approximate arg while restrict(arg) specifies that
any design element affecting arg must be precise, unless specifically declared relaxable
by relax annotation. Their approach allows reuse of approximate modules in different
designs having different accuracy requirements without requiring reimplementation.
For this, they provide annotations that delineate which outputs have approximate se-
mantics and which inputs cannot be driven by approximate wires unless annotated
explicitly. They also use relaxability inference analysis (RIA), which provides a for-
mal safety guarantee of accurately identifying approximable circuit elements based on
the designer’s annotations. RIA begins with annotated wires and iteratively traverses
the circuit for identifying the wires that must have precise semantics. All remaining
wires can be approximated and the gates that immediately drive these wires can be
approximated in the synthesis. Their approach allows applying approximation in the
synthesis process while abstracting away these details from the designer. Their ex-
periments show that the concise nature of language annotations and automated RIA
enable their approach to safely approximate even large-scale designs.

Carbin et al. [2013] present a programming language, named Rely, that allows pro-
grammers to determine the quantitative reliability of a program, in contrast with other
approaches (e.g., Sampson et al. [2011]) that allow only a binary accurate/approximate
distinction for program variables. In the Rely language, quantitative reliability can be
specified for function results; for example, in int<0.99*R(arg)> FUNC(int arg, int
x) code, 0.99*R(arg) specifies that the reliability of return value of FUNC must be at
least 99% of reliability of arg when the function was invoked. Rely programs can run
on a processor with potentially unreliable memory and unreliable logical/arithmetic
operations. The programmer can specify that a variable can be stored in unreliable
memory and/or an unreliable operation (e.g., add) can be performed on the variables.
Integrity of memory access and control flow are maintained by ensuring reliable com-
putations for the corresponding data. By running both error-tolerant programs and
checkable programs (those for which an efficient checker can be used for dynamically
verifying result correctness), they show that Rely allows determination of integrity
(i.e., correctness of execution and validity of results) and QoR of the programs.

Misailovic et al. [2014] present a framework for accuracy (defined as the difference
between accurate and inexact result) and reliability (defined as the probability of ob-
taining an acceptably accurate result) aware optimization of inexact kernels running
on inexact HW. The user provides accuracy and reliability specifications for the inexact
kernels along with these specifications for individual instructions and memory of the
inexact HW platform. Their technique models the problem of selecting inexact instruc-
tions and variables allocated in inexact memories using an integer linear program that
minimizes the energy consumption of the kernel while satisfying reliability/accuracy

ACM Computing Surveys, Vol. 48, No. 4, Article 62, Publication date: March 2016.



A Survey of Techniques for Approximate Computing 62:11

constraints. Their technique finds whether a given instruction can be inexact and
whether a variable can be stored in inexact memory. They also provide a sensitivity
profiler that uses the error-injection approach to estimate the contribution of a kernel
in final output. They show that, by selecting inexact kernel operations for synthesizing
inexact computations in an effective manner, their technique saves significant energy
while also maintaining reliability guarantees.

Ringenburg et al. [2014] present a SW tool for prototyping, profiling, and autotuning
the quality of programs designed to run on approximate HW. Their tool has three
layers. The approximation layer simulates an approximate HW with customizable
energy cost and approximation model. The user can annotate precise and approximate
code regions. Approximation is allowed only in arithmetic operations, comparisons, and
loads from data arrays and not in control flow and memory allocation operations. The
profiling layer monitors both efficiency gain from approximation and quality loss, based
on an application-specific QoR-measurement function. The autotuning layer explores
the search space of possible approximate/precise decompositions of user code blocks
by using strategies such as selectively marking an approximate code region in original
code as precise (but never making precise code into approximate code). By profiling al-
ternative configurations, it finds Pareto-optimal frontier of efficiency-quality trade-offs.
They demonstrate their approach by building a prototype tool in OCaml language.

3.4. Using OpenMP-Style Directives For Marking Approximable Portions

Rahimi et al. [2013] note that timing errors due to static and dynamic variations (e.g.,
process variation and voltage variation) necessitate recovery that incurs a large over-
head in FP pipelines. They design accuracy-configurable and variation-resilient FPUs
for detecting and correcting online timing errors. They quantify variability of the FP
pipeline in terms of the fraction of cycles in which the pipeline sees a timing error. An
SW scheduler ranks the FPUs based on their variability to find the most suitable FPUs
for the target accuracy. Using OpenMP #pragma directives, approximable program re-
gions are annotated. At design time, acceptable error significance and error rate are
identified by profiling program regions. At runtime, based on accurate or approximate
directives, the FPUs are promoted/demoted to accurate/approximate mode to match
program region requirements. In approximate mode, timing errors on least significant
K bits of the fraction are ignored, while in accurate mode, all timing errors are detected
and corrected. This approach avoids the cost of timing error correction for inexact pro-
gram regions if the error rate is below an application-specific threshold. They show that
their technique maintains acceptable quality loss in error-tolerant applications and re-
duces recovery overhead in error-intolerant applications, while providing significant
energy savings in both types of applications.

Vassiliadis et al. [2015] present a programming model and runtime system for AC.
In their technique, depending on the impact of a task on the final output quality, a
programmer can express its significance using #pragma compiler directives. The pro-
grammer can also optionally provide a low-overhead inexact version of a task. Further,
the acceptable quality loss is specified in terms of fraction of tasks to be executed pre-
cisely. Based on this, the runtime system employs inexact versions of less-important
tasks or drops them completely. They show that their technique provides significant
energy and performance gains compared to both fully accurate execution and loop
perforation techniques.

4. STRATEGIES FOR APPROXIMATION

Once approximable variables and operations have been identified, they can be approx-
imated using a variety of strategies, such as reducing their precision; skipping tasks,
memory accesses, or some iterations of a loop; performing an operation on inexact
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Table IV. Some Approximation Strategies Used in Different Works

Classification References

Precision scaling [Anam et al. 2013; Chippa et al. 2014, 2013; Düben et al. 2015; Hsiao et al.
2013; Keramidas et al. 2015; Lopes et al. 2009; Raha et al. 2015; Rahimi
et al. 2013; Sampson et al. 2011; Shim et al. 2004; Tian et al. 2015;
Venkataramani et al. 2013; Yeh et al. 2007; Zhang et al. 2015]

Loop perforation [Baek and Chilimbi 2010; Chippa et al. 2013, 2014; Samadi and Mahlke
2014; Shi et al. 2015; Sidiroglou et al. 2011]

Load value
approximation

[Miguel et al. 2014; Sutherland et al. 2015; Yazdanbakhsh et al. 2015b]

Memoization [Alvarez et al. 2005; Keramidas et al. 2015; Rahimi et al. 2013, 2015;
Ringenburg et al. 2015; Samadi et al. 2014; Yeh et al. 2007]

Task dropping/skipping [Byna et al. 2010; Chakradhar and Raghunathan 2010; Goiri et al. 2015;
Raha et al. 2015; Samadi et al. 2013; Sidiroglou et al. 2011; Vassiliadis
et al. 2015]

Memory access skipping [Samadi et al. 2013;Yazdanbakhsh et al. 2015b; Zhang et al. 2015]
Data sampling [Ansel et al. 2011; Goiri et al. 2015; Samadi et al. 2014]
Using program versions
of different accuracy

[Ansel et al. 2011; Baek and Chilimbi 2010; Goiri et al. 2015; Vassiliadis
et al. 2015]

Using inexact or faulty
HW

[Carbin et al. 2013; Chakradhar and Raghunathan 2010; Chippa et al.
2013; Du et al. 2014; Ganapathy et al. 2015; Gupta et al. 2011; Hegde and
Shanbhag 1999; Kahng and Kang 2012; Kulkarni et al. 2011; Misailovic
et al. 2014; Rahimi et al. 2013; Sampson et al. 2011; Shoushtari et al.
2015; Varatkar and Shanbhag 2008; Xu and Huang 2015; Yeh et al. 2007;
Yetim et al. 2013; Zhang et al. 2014, 2015]

Voltage scaling [Chippa et al. 2014; Esmaeilzadeh et al. 2012a; Gupta et al. 2011; Hegde
and Shanbhag 1999; Rahimi et al. 2015; Sampson et al. 2011; Shim et al.
2004; Shoushtari et al. 2015; Varatkar and Shanbhag 2008;
Venkataramani et al. 2013]

Refresh rate reduction [Cho et al. 2014; Liu et al. 2012]
Inexact reads/writes [Fang et al. 2012; Ranjan et al. 2015]
Reducing divergence in
GPU

[Grigorian and Reinman 2015; Sartori and Kumar 2013]

Lossy compression [Samadi et al. 2013; Yetim et al. 2013]
Use of neural network [Amant et al. 2014; Du et al. 2014; Eldridge et al. 2014; Esmaeilzadeh

et al. 2012b; Grigorian et al. 2015; Grigorian and Reinman 2014, 2015;
Khudia et al. 2015; Li et al. 2015; Mahajan et al. 2015; McAfee and
Olukotun 2015; Moreau et al. 2015; Sampson et al. 2015; Venkataramani
et al. 2014, 2015; Zhang et al. 2015]

hardware; and so forth. Table IV summarizes the strategies used for approximation.
Note that the ideas used in these strategies are not mutually exclusive. We now discuss
these strategies, in context of the ACTs in which they are used.

4.1. Using Precision Scaling

Several ACTs work by changing the precision (bit-width) of input or intermediate
operands to reduce storage/computing requirements.

Yeh et al. [2007] propose dynamic precision scaling for improving efficiency of physics-
based animation. Their technique finds the minimum precision required by performing
profiling at design time. At runtime, the energy difference between consecutive simula-
tion steps is measured and compared with a threshold to detect whether the simulation
is becoming unstable. In the case of instability, the precision is restored to the maxi-
mum; as simulation stabilizes, the precision is progressively reduced until it reaches
the minimum value. They show that precision reduction provides three optimization
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opportunities. First, it can turn an FP operation into a trivial operation (e.g., mul-
tiplication by one), which would not require use of an FPU. Second, it increases the
locality between similar items in similar scenes and between iterations during con-
straint relaxation. Thus, precision reduction combines close values to a single value,
which increases the coverage of memoization technique and even allows using a lookup
table for performing FP multiply and add operations. Third, precision scaling allows
use of smaller and faster FPUs for several computations. Based on this, they propose a
hierarchical FPU architecture in which a simple core-local FPU is used at the L1 level
and full precision FPUs are shared at the L2 level to save area for allowing more cores
to be added. An operation that requires higher precision than that provided by L1 FPU
is executed in the L2 FPU. They show that their technique improves performance and
energy efficiency compared to a baseline without FPU sharing.

Tian et al. [2015] present a technique for scaling precision of off-chip data accesses for
saving energy. They apply their technique to a mixed-model-based clustering problem,
which requires accessing a large amount of off-chip data. They note that, in a clustering
algorithm, a functional error happens only when a sample is assigned to a wrong cluster.
Based on this, the precision can be lowered as long as the relative distances between
clusters and samples are still in correct order, so that no functional error happens.
Further, since the clustering algorithm works in an iterative manner, samples can
be relabeled in later iterations; thus, by using higher precision in those iterations,
correctness can be ensured. Based on this, their technique selects the precision in
each iteration depending on when a functional error will begin manifesting and how
many functional errors can be tolerated by the application. Based on the precision, the
memory controller decides the bit-width of data to be fetched from off-chip memory.
Since use of approximation can lead to fluctuation in membership, on detecting such
a situation, their technique increases the precision of data. To facilitate fetching the
most significant bits, the data in off-chip memory is organized in a manner such that
the bits of same significance in different words are placed together. They show that,
compared to fully precise off-chip access, their technique saves significant energy with
a negligible loss in accuracy.

4.2. Using Loop Perforation

Some techniques use a loop perforation approach, which works by skipping some iter-
ations of a loop to reduce computational overhead.

Sidiroglou et al. [2011] identify several global computational patterns that work well
with loop perforation, such as the Monte Carlo simulation, iterative refinement, and
search space enumeration. For example, in search space enumeration, perforated com-
putation skips some items and returns one of the remaining items from the search
space. For exploring performance versus accuracy trade-off, they study two algorithms.
The first algorithm exhaustively explores all combinations of tunable loops (those loops
whose perforation produces efficient and still acceptable computations) at given perfo-
ration rates (i.e., fraction of iterations to skip) on all training inputs. The combinations
producing error are discarded and those that are Pareto-optimal in performance and ac-
curacy are selected. The second algorithm works on a greedy strategy. It uses a heuristic
metric for prioritizing loop/perforation rate pairs and seeks to maximize performance
within an accuracy loss bound. They show the performance advantage of their tech-
nique, along with its capability to allow performance–accuracy trade-off exploration.

4.3. Using Load Value Approximation

On a load miss in a cache, the data must be fetched from the next-level cache or main
memory, which incurs large latency. Load value approximation (LVA) leverages the
approximable nature of applications to estimate load values, thus allows a processor
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to progress without stalling for a response. This hides the cache miss latency. We now
discuss some LVA-based techniques.

Miguel et al. [2014] present an LVA technique for graphics applications. Compared to
the traditional load-value predictors, in which a block needs to be fetched on every cache
miss to confirm correctness of prediction, their technique fetches the blocks occasionally
just to train the approximator. Thus, fetching a cache block on each cache miss is not
required, which reduces the memory accesses significantly. Further, since graphics
applications can tolerate errors, if the values estimated by LVA do not match the exact
value, rollbacks are not required. Their technique uses confidence estimation to make
approximations only when the accuracy of the approximator is reasonably high. Also,
the error-tolerance property allows approximating for a higher number of loads than
that in traditional predictors. They show that, with negligible degradation in output
quality, their technique provides significant speedup and energy saving.

Yazdanbakhsh et al. [2015b] present an ACT for offsetting both latency and BW con-
straints in GPUs and CPUs. Based on the programmer’s code annotations, loads that do
not deal with memory accesses and control flow are identified. Of these, the loads that
cause the largest fraction of misses are selected. By individually approximating each
of these loads, their impact on quality is measured and the loads leading to smaller
degradation than a threshold are selected for approximation. When these loads miss in
the cache, the requested values are predicted. However, no check for misprediction or
recovery is performed, which avoids pipeline flush overheads. Also, a fraction of cache
misses are dropped for mitigating BW bottleneck, which is especially helpful in GPUs.
Removal of the cache-missing loads from the critical program path avoids long memory
stalls and, by controlling the drop rate, a balance between quality and efficiency is
obtained. Every data request in a GPU is a SIMD load, which produces values for
multiple concurrent threads. Since predicting value for each thread separately incurs
large overhead, they leverage the value similarity across accesses in adjacent threads
to design a multivalue predictor that has only two parallel specialized predictors,
one for threads 0 to 15 and another for threads 16 to 31. Use of special strategies
for the GPU environment, such as use of a multivalue predictor, distinguishes their
technique from that of Miguel et al. [2014]. They show that their technique improves
performance and energy efficiency with bounded QoR loss in both the GPU and CPU.

Sutherland et al. [2015] use LVA strategy to reduce the memory stalls in GPUs.
Their ACT uses the texture HW to generate inexact values, which obviates the need
of fetching exact values from global memory. The texture fetch units lying between
threads and texture cache (TC) are capable of interpolating between multiple neigh-
boring cache entries. Using this interpolation feature, their technique uses FP data as
indices for TC. Based on the observation that spatially or temporally correlated data
also shows strong value locality, they use the difference (delta) between two succes-
sively read global memory values for making approximation. Thus, the approximate
value is obtained as the sum of last exact value and delta approximation retrieved from
TC. The delta approximations are preloaded in the TC based on analysis of data access
patterns of every thread in the training dataset. For generating these delta values with
the training set, they store last K values read from global memory in a buffer. On a
memory access, they record the delta between two most recent elements in the buffer,
along with the delta between the most recent buffer entry and the value returned
from the memory access. They show that their technique improves performance with
negligible quality loss and is suited for a wide range of data-intensive applications.

4.4. Using Memoization

The memoization approach works by storing the results of functions for later reuse with
identical function/input. By reusing the results for similar functions/inputs, the scope
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of memoization can be enhanced at the cost of possible approximation. This approach
is used by several ACTs.

Rahimi et al. [2013] note that SIMD architecture exposes the value locality of a
parallel program to all its lanes. Based on this, they propose a technique that reuses
the result of an instruction across different parallel lanes of the SIMD architecture to
reduce their high timing error recovery overhead. Thus, their technique uses spatial
memoization, as opposed to temporal memoization exploited by other techniques. Their
technique memoizes the result of an error-free execution on a data item and reuses
the memoized result to correct, either precisely or approximately, an errant execution
on same or adjacent data items. Precise correction happens when the inputs of the
instructions being compared match bit-by-bit, while approximate correction happens
when inputs match only after masking a certain number of least significant fraction
bits. Their SIMD architecture consists of a single strong lane and multiple weak lanes.
The result of an exact FP instruction on a strong lane is memoized and is reused in case
any weak lane sees an error. Thus, by leveraging instruction reuse, their technique
avoids timing recovery for a large fraction of errant instructions, while keeping the
quality loss due to approximation within bounds.

Keramidas et al. [2015] note that modern graphics applications perform high-
precision computations; hence, memoizing the outcomes of a few instructions does
not provide sufficient opportunities for value reuse. They propose using “approximate”
value reuse for increasing the amount of successful value reuses. For this, a value cache
is used that performs partial matches by reducing the accuracy of input parameters.
They use approximation in fragment shaders, which compute the final color value of
the pixel using arithmetic operations and texture fetches. They note that relaxing the
precision of arithmetic operations leads to a negligible effect on perceptual quality,
while doing this in texture fetches leads to a significance impact on output since texture
coordinates are indices into an array. For this reason, the precision of arithmetic op-
erations can be reduced more aggressively than that of texture fetches (e.g., dropping
12b vs. 4b). To maximize value reuse at runtime, they propose policies that reduce the
precision of value cache progressively and monitor the resulting error. If a predefined
number of errors have been detected, the precision of the value cache is increased
again. They show that their technique reduces the operations executed with negligible
perceptual quality loss.

4.5. Skipping Tasks and Memory Accesses

Several ACTs selectively skip memory references, tasks, or input portions to achieve
efficiency with bounded QoR loss.

Samadi et al. [2014] present a SW-based ACT that works by identifying common pat-
terns in data-parallel programs and using a specific approximation strategy for each
pattern. They study approximation in six patterns, which are suitable for execution on
multi/manycore architectures, (e.g., CPU and GPU) and are found in a wide range of
applications. For scatter/gather and map patterns, they use memoization, whereby com-
putations are substituted by memory accesses. For reduction patterns, sampling is used
whereby output is computed by applying reduction on a subset of data. For scan pat-
terns, the actual scan is performed on only a subset of input array, based on which the re-
sult is predicted for the remaining array. For stencil and partition patterns, neighboring
locations in input array generally have similar values; based on this, an approximate
version of the array is constructed by replicating a subset of values in the array. Based
on a data-parallel kernel implemented in CUDA or OpenCL, their technique creates
an approximate kernel version that is tuned at runtime to exercise a trade-off between
performance and quality based on the user’s QoR specification. Thus, their technique
enables the user to write programs once and run them on multiple hardware platforms
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without manual code optimization. They show that, compared to precise execution,
their technique achieves significant performance gains with acceptable quality loss.

Goiri et al. [2015] present general mechanisms for approximating the Map-
Reduce framework. They use approximation strategies that are applicable for several
MapReduce applications, that is, input data sampling (i.e., processing only a subset
of data), task dropping (i.e., executing a fraction of tasks) and utilizing user-supplied
approximate task code. They also use statistical theories to bound errors when ap-
proximating applications that employ aggregation reduce and extreme value reduce
operations. They show the implementation of their technique in the Hadoop frame-
work. They provide approximate classes that can be used by the programmer in place
of regular Hadoop classes. These classes perform approximation, collect information for
error estimation, perform reduce operations, predict final values and their confidence
intervals, and output the results. As the job runs, their technique decides task drop-
ping and/or data sampling ratios to meet user-specified error bounds at a particular
confidence level. Alternatively, users can specify these ratios themselves; then, their
technique computes the error bounds. They show that their technique allows trading
accuracy for improving performance and energy saving.

4.6. Using Multiple Inexact Program Versions

We now discuss some ACTs that utilize multiple versions of application code with
different trade-offs between accuracy and overhead.

Samadi et al. [2013] present an ACT for GPUs that allows trading off performance
with accuracy based on the user-specified metric. Their technique works in two phases.
In the offline compilation phase, a static compiler is used to create multiple versions
of CUDA kernels with varying accuracy levels. In the runtime kernel management
phase, a greedy algorithm is used to adjust parameters of approximate kernels for
finding configurations that provide high performance and quality to meet the desired
quality target. Use of a greedy algorithm avoids evaluation of all kernels, thus reducing
the cost. To create approximate kernels, their technique uses three GPU-hardware-
specific optimization approaches. In the first optimization, those atomic operations
(used in kernels that write to a shared variable) are selectively skipped, which cause
frequent conflicts and lead to poor performance on thread serialization. Thus, atomic
operations that lead to mostly serial execution are eliminated, and those with little
or no conflicts are left untouched. In the second optimization, the number of bits
used to store input arrays is decreased to reduce the number of high-latency memory
operations. In the third optimization, thread computations are selectively avoided by
fusing adjacent threads into one and replicating one thread’s output. Only threads
that do not share data are candidates for fusion. To account for the runtime change in
behavior of approximate kernels, periodic calibration is performed by running both the
exact and approximate kernels on the GPU. Based on output quality and performance,
the kernel configuration is updated to maintain a desired level of quality.

Baek and Chilimbi [2010] present a programming model framework that approxi-
mates functions and loops in a program and provides statistical guarantees of meeting
the user-specified QoS target. The user provides one or more approximate versions of
the function and the loops are approximated using loop perforation. Loss in QoS is mea-
sured by either a user-provided function or measuring difference in return value of the
precise and approximate function versions. In the training phase, their technique uses
the training input dataset to build a model for correlating performance and energy ef-
ficiency improvement from approximation to the resultant QoS loss. In the operational
phase, approximation decisions are made based on this model and the user-specified
QoS target. Since the difference in training inputs and actual inputs affects the accu-
racy of the model, their technique periodically measures the QoS loss seen at runtime
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and updates the approximation decision logic in order to provide statistical guarantees
for meeting the QoS target. They show that their technique provides performance and
energy gains with small and bounded QoS loss.

4.7. Using Inexact or Faulty Hardware

In this section, we first discuss design of a few inexact circuits, then discuss some ACTs
that allow use of inexact/faulty circuits at the architecture level.

Kahng and Kang [2012] present the design of an inexact adder. For an N-bit inexact
adder, (N/k - 1) subadders (each of which is a 2k-bit adder) are used to perform partial
summations. The inexact adder avoids the carry chain to reduce critical-path delay,
which can be used to improve performance and/or energy efficiency. When a carry
input needs to be propagated to the result, the output of all (except the last) subadders
becomes incorrect. With increasing k value, the probability of correct result increases
but the dynamic power consumption and minimum clock period of the inexact adder
also increase. Thus, by changing the value of k, the accuracy of the inexact adder can
be controlled.

Kulkarni et al. [2011] present the design of an inexact 2x2 multiplier that represents
the multiplication of 310 ∗ 310 with 710, instead of 910. In other words, 112 ∗ 112 is
represented with 1112 instead of 10012, which uses three bits instead of four. For
the remaining 15 input combinations, the multiplier provides correct output. Thus,
while still providing a correct output for 15 out of 16 input combinations, their inexact
multiplier reduces the area by half compared to the exact multiplier, leading to a shorter
and faster critical path. By adding the shifted partial products from the 2x2 block,
arbitrarily large multipliers can be built. By choosing between accurate and inexact
versions of the 2x2 block in a large multiplier, a trade-off between error rate and power
saving can be achieved. Further, for error-intolerant applications, they enhance their
multiplier to detect the error magnitude and add it to the inexact output to produce
the correct output.

Venkataramani et al. [2012] present an approach for designing general inexact cir-
cuits based on register transfer level (RTL) specification of the circuit and QoR met-
ric (such as relative error). Their technique uses a quality function that determines
whether a circuit meets the QoR requirement. Based on this, the input values can be
found for which the quality function is insensitive to an output of inexact circuit. By
leveraging these approximation don’t cares, logic that generates that output can be
simplified using conventional don’t care-based synthesis approaches. Their technique
iteratively performs this analysis for each output bit of inexact circuit; after each it-
eration, the inexact circuit setup is updated to account for the latest changes. They
also discuss strategies for speeding up their technique, which allows its use for large
circuits. They show that their technique can approximate both simple (e.g., adders,
multipliers) and complex (e.g., discrete cosine transform, butterfly structure, FIR fil-
ter) circuits while providing area and energy advantages.

Ganapathy et al. [2015] present a technique for minimizing the magnitude of errors
when using unreliable memories, which is in contrast to the ECC technique that actu-
ally corrects the errors. On each write, the data-word is circularly shifted for storing
the least significant bits in the faulty cells of the memory. This skews the errors to-
ward low-order bits, which reduces the magnitude of output error. To strike a balance
between quality and performance/energy/area, their technique allows adaptation of the
granularity of bit-shuffling. They show that, compared to using ECC, their technique
achieves significant improvement in latency, power, and area. Also, use of their tech-
nique allows tolerating a limited number of faults, which reduces the manufacturing
cost compared to the conventional zero-failure yield constraint.
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Yetim et al. [2013] study the minimum error protection required from microarchi-
tecture for mitigating control, memory addressing and I/O access faults for enabling
approximate execution on a faulty processor. They use a macro instruction sequencer
(MIS), a memory fence unit (MFU) and a streamed I/O approach, all of which seek
to constrain execution depending on profiling information from the application. Based
on the observation that a single-threaded streaming application can be logically di-
vided into coarse-grained chunks of computations, the MIS constrains the control flow
by limiting the allowed number of operations per chunk and by storing information
about possible or legal series of chunks. The MFU checks whether accesses lie within
the legal address range prescribed for a given chunk or instruction. For an out-of-
range read/write access, the MFU either skips the memory instruction or references a
dummy location to silence the fault. For an out-of-range fetch from instruction memory,
silencing the instruction does not work since it can advance the program counter to
yet another illegal instruction. Instead, for such faults, the MFU indicates the MIS
to end the current chunk and start recovery from a known point. The streamed I/O
approach allows only fixed-size streamed read/write operations and also limits the I/O
operation count allowed per chunk or file. Bounding I/O to sequential access in this
manner restricts the error-prone processor from accessing arbitrary addresses or data
structures in the file system. They show that, even with reasonably frequent errors
in video and audio applications, their technique still provides good output quality and
avoids crashes and hangs.

4.8. Using Voltage Scaling

Voltage scaling reduces energy consumption of circuits at the cost of possible errors
[Mittal 2015; Mittal and Vetter 2015]. For example, reducing SRAM supply voltage
saves leakage energy but also increases probability of read upset (flipping of a bit
during read operation) and write failure (writing a wrong bit) [Sampson et al. 2011].
Several ACTs use voltage scaling while accounting for these trade-offs.

Chippa et al. [2014] present an ACT that uses approximation at multiple levels of
abstraction. For example, for k-means clustering, at algorithm level, early termination
and convergence-based pruning are used. The former strategy, instead of terminating
on full convergence, stops when the number of points changing clusters in succes-
sive iterations falls below a threshold. The latter strategy considers the points that
have not changed their clusters for a predefined number of iterations as converged,
and eliminates them from further computations. At architecture level, both input and
intermediate variables are represented and operated on with scaled precision. This
leaves some bit slices in the data path unutilized that are power-gated for saving en-
ergy. Alternatively, multiple data can be packed in the same word, and a single HW
can process them simultaneously. At circuit level, voltage overscaling is used, with-
out scaling the clock frequency. The adder circuit is segmented into adders of smaller
bit-width. Based on voltage scaling, carry propagation across segmentation points is
adaptively controlled and errors due to ignored carry values are reduced by using a
low-cost correction circuit. They show that their approach provides significant energy
saving with minor QoR loss and using approximation across the levels provides much
larger improvement than using approximation only at a single level.

Rahimi et al. [2015] present an ACT for saving energy in GPUs. With each FPU in the
GPU, they use a storage module composed of a ternary content addressable memory
(TCAM) and a ReRAM block. Based on profiling, frequent redundant computations
are identified in the GPU kernels, which are stored in the module. Reusing these
values avoids later re-execution by the FPU; thus, this module performs a part of the
functionality of the FPU. Further, under voltage overscaling, the error pattern of the
module remains controllable; for instance, on reducing the voltage from 1V to 0.725V,
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the Hamming distance between an input (query) item and a computation stored in
the module still remains 0, 1, or 2. For error-resilient GPU applications, this approach
saves energy while still providing acceptable quality. Further, error-free storage of sign
and exponent bits can be ensured by always using high voltage for them.

4.9. Reducing Branch Divergence in SIMD Architectures

On SIMD architectures, multiple threads executing the same set of instructions can di-
verge on a branch instruction (e.g., if-else and for/while loops). Some works seek to limit
or avoid such divergence, which improves performance but introduces approximation.

Grigorian and Reinman [2015] present a technique for addressing the branch di-
vergence issue on SIMD architectures. By characterizing the data-dependent control
flow present in application, they identify the kernels responsible for highest perfor-
mance loss due to branch divergence. Then, NNs are trained in an offline manner to
approximate these kernels. Afterwards, the NNs are injected into the code itself by
substituting the kernels. This entirely avoids the divergence problem by removing the
control-flow-based code, at the cost of quality loss. Direct code modification obviates the
need of costly HW modifications. They also provide a software framework for automat-
ing the entire technique and optimizations specific to different divergence patterns.
Their experiments with GPUs using several divergent applications show that their
technique provides energy and performance gains with minor quality loss.

Sartori and Kumar [2013] present two techniques: data herding and branch herding
for reducing memory and control divergence in error-resilient GPU applications. In
GPUs, a load instruction for a warp that creates requests for multiple memory regions
leads to memory divergence. Memory coalescing finds the unique memory requests for
satisfying individual scalar loads of a vector load instruction and multiple scalar loads
in a warp are coalesced into one request only if they access consecutive addresses.
Uncoalesced loads lead to divergence and BW wastage. To address this, their data-
herding technique finds the most popular memory block to which the majority of loads
are mapped, then maps all loads to that block. For implementing this, the number of
loads coalescing into every potential memory request are compared; then, except for
the most popular block, requests for all other blocks are discarded. Control divergence
happens when different threads of a warp have different outcomes while evaluating the
Boolean condition for a branch. Branch herding addresses this by finding the outcome of
the majority of threads and then forcing all the threads to follow this outcome. They also
propose a compiler framework and static analysis for avoiding data and control errors.
They show that their techniques improve performance significantly with acceptable
and controlled quality loss.

4.10. Use of Neural Network-Based Accelerators

Neural networks (NNs) expose significant parallelism and can be efficiently accelerated
by dedicated hardware (NPU) to gain performance/energy benefits. We now discuss
ACTs that work by mapping approximable code regions to NNs.

Esmaeilzadeh et al. [2012b] present an ACT that works by learning how an approx-
imable code region works. In their programming model, programmers identify approx-
imable imperative code regions. Then, an algorithmic program transformation is used
that selects and trains an NN to mimic such code regions. Based on this learned model,
the compiler replaces the original code with an invocation of low-power NPU. Their
technique adds ISA extensions to configure and invoke the NPU. By virtue of auto-
matically discovering and training NNs that are effective in approximating imperative
codes, their technique extends applicability of NNs to a broad range of applications.
Their experimental results confirm the performance and energy advantage of their
technique.
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McAfee and Olukotun [2015] present a SW-only approach for emulating and accel-
erating applications using NNs. Based on the programming language of Ansel et al.
[2011], their technique generates a hierarchical application structure, for example, an
8 × 8 matrix can be decomposed into multiple 4 × 4 or 2 × 2 matrices. During compi-
lation, their technique searches the subtask space of the application and generates a
set of hierarchical task graphs that represent the application’s functionality at varying
resolution levels. Then, using a greedy approach, their technique chooses the subtasks
to approximate along with the granularity of approximation, such that performance
is maximized with minimal error. The emulation model is constantly updated using
denoising autoencoders, so that the model may suit the current input well. Instead of
modeling the entire application with a single complex NN, their technique emulates
the application using multiple 2-layer linear NNs. NNs benefit greatly from highly op-
timized vector libraries and facilitate learning the model instead of requiring explicit
programming by the user, which reduces the design cost. They show that, with bounded
error, their technique achieves large speedup over precise computation.

Eldridge et al. [2014] propose MLP NN-based accelerators for approximating FP
transcendental functions, that is, cos, sin, exp, log, and pow. They use a 3-stage inter-
nal neuron pipeline for multiplication of weight inputs and accumulation. They train
the NN-based accelerator on limited input range (e.g., [0, π/4] for sin function), then
use mathematical identities to compute function value for any input value. They show
that, compared to the conventional glibc (GNU C library) implementation, their im-
plementation provides two orders of magnitude improvement in energy-delay-product
with negligible loss in accuracy. They also build a SW library for invoking these accel-
erators from any application and show its use for the PARSEC benchmark suite.

Amant et al. [2014] present a technique for accelerating approximable code regions
using limited-precision analog hardware through the NN approach. Using an algorith-
mic transformation, their technique automatically converts approximable code regions
from a von Neumann representation to an analog neural representation. Use of the
analog approach requires addressing challenges related to noise, circuit imprecision,
limited accuracy of computation, limited range of encoded values, limitations on fea-
sible NN topologies, and so on. To address these, they propose solutions at different
layers of computing stacks. At the circuit level, a mixed-signal neural HW is used for
multilayer perceptrons. The programmer marks approximable code regions using code
annotations. The compiler mimics approximable code regions with an NN that can
be executed on the mixed-signal neural HW. The error due to limited analog range is
reduced by using a continuous-discrete learning method. Also, analog execution is kept
limited to a single neuron, and communication between neurons happens in the digital
domain. Limited analog range also restricts the bit weights used by neurons and the
number of inputs to them. To reduce errors due to topology restrictions, a resilient
backpropagation training algorithm is used instead of a conventional backpropagation
algorithm. They show that their technique leads to improved performance and energy
efficiency.

Li et al. [2015] propose a framework that uses a ReRAM-based AC unit (ACU) to
accelerate approximate computations. The ACU is based on HW implementation of a
3-layer NN. Conceptually, the NN approximator performs matrix-vector multiplication
of network weights and input variations and sigmoid activation function. Of these, they
map matrix-vector multiplication to a ReRAM crossbar array and realize the sigmoid
function using an NMOS/PMOS circuit [Li et al. 2015]. Several such ACUs are used
together to perform algebraic calculus and achieve high performance. Digital signals
are converted into analog signals for processing by ACUs and their outputs are again
converted into digital format for further processing. For each task, these ACUs need to
be trained; this is achieved by adjusting the network weights. Then, these weights are
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mapped to suitable conductance states of ReRAM devices in the crossbar arrays; the
ReRAM devices are programmed to these states. They note that several complex tasks
that require thousands of cycles in x86-64 architecture can be performed in a few cycles
using the ACU. Their experiments show that their framework improves performance
and power efficiency with acceptable quality loss.

4.11. Approximating Neural Networks

Based on the observation that NNs are typically used in error-tolerant applications
and are resilient to many of their constituent computations, some researchers propose
techniques to approximate them.

Venkataramani et al. [2014] present a technique for transforming a given NN into
an approximate NN (AxNN) for allowing energy-efficient implementation. They use a
backpropagation technique, which is used for training NNs, to quantify the impact of
approximating any neuron to the overall quality. Afterwards, the neurons that have the
least impact on network quality are replaced by their approximate versions to create
an AxNN. By modulating the input precision and neuron weights, different approxi-
mate versions are created that allow trading off energy for accuracy. Since training is
by itself an error-healing process, after creating the AxNN, they progressively retrain
the network while using approximations to recover the quality loss due to AC. Thus,
retraining allows further approximation for the same output quality. They also propose
a neuromorphic processing engine for executing AxNNs with any weights, topologies,
and degrees of approximation. This programmable HW platform uses neural compu-
tation units and activation function units together to execute AxNNs and exercise
precision-energy trade-off at runtime.

Zhang et al. [2015] present a technique for approximating NNs. They define a neuron
as critical (or resilient, respectively) if a small perturbation on its computation leads to
large (or small) degradation in final output quality. They present a theoretical approach
for finding the criticality factor of neurons in each output and hidden layer after the
weights have been found in the training phase. The least critical neurons are candidates
for approximation. However, due to the tight interconnection between neurons, the
criticality ranking changes after approximation of each neuron. Hence, they use an
iterative procedure, whereby the neurons for approximation are selected based on the
quality budget. With successive iterations (i.e., moving toward convergence), the quality
budget reduces; hence, the number of neurons selected in each iteration also reduces.
In addition to finding the number of neurons, their technique also finds the amount
of approximation performed (using three strategies, i.e., precision scaling, memory
access skipping, and approximate multiplier circuits), by selecting a configuration that
provides the largest energy saving for a given quality loss.

Du et al. [2014] propose the design of an inexact HW NN accelerator based on
the observation that NNs allow retraining which allows suppressing the impact of
neurons producing the largest amount of error. They assume a 2-layer feed-forward NN
composed primarily of circuits for multiplying synaptic weight and neuron output and
for adding the neuron inputs. Given the large number of possible ways of approximating
NNs, they consider strategies for finding fruitful inexact configurations. Given the
small HW cost of adders, approximating them yields only marginal returns; hence,
they introduce approximation in synaptic weight multipliers only. Further, the output
layer of an NN generally has a small number of neurons and since there is no synaptic
weight after these neurons, lowering the errors in these neurons through retraining
is difficult. Hence, they introduce approximation in synaptic weight multipliers of the
hidden layers only. They show that, for applications that use HW NN accelerators,
using their inexact NN accelerator provides significant savings in area, delay, and
energy.
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5. APPROXIMATE COMPUTING IN VARIOUS DEVICES AND COMPONENTS

Different memory technologies, processor components,and processing units offer dif-
ferent trade-offs, and design of effective ACTs requires accounting for their properties
and trade-offs. Table V classifies different ACTs based on these factors. This table also
organizes the ACTs based on their optimization target, which highlights that AC allows
a designer to optimize multiple metrics of interest at the cost of a small loss in QoR.
A few techniques perform power-gating of noncritical or faulty HW for saving energy,
which has also been highlighted in Table V.

It is also noteworthy that different research works have used different evaluation
platforms/approaches, such as simulators (e.g., Sampson et al. [2013], Miguel et al.
[2014]), analytical models [Düben et al. 2015], actual CPU [Sampson et al. 2015], GPU
[Samadi et al. 2013] and FPGA [Moreau et al. 2015; Sampson et al. 2015]. Further, as
for search/optimization heuristics, researchers have used greedy algorithms [Samadi
et al. 2013; Zhang et al. 2015; Sidiroglou et al. 2011; McAfee and Olukotun 2015; Rin-
genburg et al. 2014], divide and conquer [Venkataramani et al. 2012], gradient descent
search [Ranjan et al. 2015], genetic algorithms [Ansel et al. 2011] and integer linear
programming [Misailovic et al. 2014]. In what follows, we briefly discuss several ACTs.

Different memory technologies have different limitations, for example, SRAM and
(e)DRAM consume high leakage and refresh power, respectively, and NVMs have high
write energy/latency and low write endurance [Vetter and Mittal 2015; Mittal et al.
2015]. To reduce energy consumption of these memories and improve the lifetime
of NVMs, approximate storage techniques sacrifice data integrity by reducing supply
voltage in SRAM (Section 5.1) and refresh rate in (e)DRAM (Section 5.2) and by relaxing
read/write operation in NVMs (Section 5.3).

5.1. Approximating SRAM Memory

Shoushtari et al. [2015] present an ACT for saving cache energy in error-tolerant
applications. They assume that, in a cache, some ways are fault-free (due to use of
suitable voltage and ECC), while other ways (called relaxed ways) may have faults due
to use of lower supply voltage (Vdd). A cache block with more than a threshold (say
K) number of faulty bits is disabled and power-gated. Thus, the values of Vdd and K
together decide the active portion of the cache, and by selecting their values, a designer
can relax guard bands for most of the cache ways while bounding the overall application
error. They assume that the software programmer identifies noncritical data structures
using suitable annotations, and the virtual addresses for them are kept in a table. On
a cache miss, if the missed data block is noncritical, a victim block is selected from
the relaxed ways. A critical data item is always stored in a fault-free block. Thus,
voltage scaling and power-gating lead to leakage energy saving, and quality loss is
kept minimal by approximating only the noncritical data.

5.2. Approximating eDRAM and DRAM Memories

Cho et al. [2014] present a technique for saving refresh energy in eDRAM-based frame
buffers in video applications. They note that a change in higher-order bits of video
data is more easily detected by the human eye than the change in lower-order bits,
although completely discarding the lower-order bits makes the video lossy. Based on
this, their technique trades off pixel data accuracy for saving energy in frame buffers.
The memory array is divided into different segments, each of which can be refreshed at
different periods. The pixel bits are arranged at a subpixel granularity and the highest-
order bits of a pixel are allocated to the most reliable memory segment. Further, based
on application characteristics and user preference, the number of segments and their
refresh rates can be changed. They show that their technique saves significant refresh
power without incurring loss in visual perception quality of the video.
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Table V. A Classification Based on Processing Unit, Processor Component, Memory Technology
and Optimization Objective

Classification References

Memory technology
NVM Flash [Xu and Huang 2015], PCM [Fang et al. 2012; Sampson et al. 2013],

STT-RAM [Ranjan et al. 2015], ReRAM [Li et al. 2015; Rahimi et al. 2015]
DRAM/eDRAM [Cho et al. 2014; Liu et al. 2012; Sampson et al. 2011]
SRAM [Esmaeilzadeh et al. 2012a; Ganapathy et al. 2015; Sampson et al. 2011;

Shoushtari et al. 2015]
Processor Component

Cache [Düben et al. 2015; Esmaeilzadeh et al. 2012a; Keramidas et al. 2015;
Misailovic et al. 2014; Sampson et al. 2011; Shoushtari et al. 2015;
Sutherland et al. 2015]

Main memory [Carbin et al. 2013; Düben et al. 2015; Liu et al. 2012; Misailovic et al.
2014; Sampson et al. 2011, 2013]

Secondary storage [Sampson et al. 2013; Xu and Huang 2015]
Functional unit [Carbin et al. 2013; Esmaeilzadeh et al. 2012a; Misailovic et al. 2014;

Ringenburg et al. 2014; Sampson et al. 2011]
Floating-point unit [Rahimi et al. 2013; Yeh et al. 2007]
Scratchpad [Ranjan et al. 2015]

Processing unit or accelerator
GPU [Byna et al. 2010; Grigorian and Reinman 2015; Hsiao et al. 2013;

Keramidas et al. 2015; Rahimi et al. 2013, 2015; Samadi et al. 2013, 2014;
Samadi and Mahlke 2014; Sartori and Kumar 2013; Sutherland et al.
2015; Yazdanbakhsh et al. 2015b; Zhang et al. 2014]

FPGA [Lopes et al. 2009; Moreau et al. 2015; Sampson et al. 2015]
ASIC [Grigorian et al. 2015]
CPU Nearly all others

Study/optimization objective and approach
Energy saving [Amant et al. 2014; Anam et al. 2013; Baek and Chilimbi 2010;

Chakradhar and Raghunathan 2010; Chippa et al. 2014; Du et al. 2014;
Düben et al. 2015; Eldridge et al. 2014; Esmaeilzadeh et al. 2012a, 2012b;
Fang et al. 2012; Ganapathy et al. 2015; Goiri et al. 2015; Grigorian and
Reinman 2015; Gupta et al. 2011; Hegde and Shanbhag 1999; Hsiao et al.
2013; Kahng and Kang 2012; Khudia et al. 2015; Kulkarni et al. 2011; Li
et al. 2015; Liu et al. 2012; Mahajan et al. 2015; Miguel et al. 2014;
Moreau et al. 2015; Raha et al. 2015; Rahimi et al. 2013; Rahimi et al.
2015; Ranjan et al. 2015; Ringenburg et al. 2015; Sampson et al. 2011,
2013, 2015; Shim et al. 2004; Shoushtari et al. 2015; Tian et al. 2015;
Varatkar and Shanbhag 2008; Vassiliadis et al. 2015; Venkataramani et al.
2012, 2013, 2014, 2015; Xu and Huang 2015; Yazdanbakhsh et al. 2015a,
2015b; Yeh et al. 2007; Zhang et al. 2014, 2015]

Performance [Amant et al. 2014; Anam et al. 2013; Ansel et al. 2011; Baek and Chilimbi
2010; Byna et al. 2010; Chakradhar and Raghunathan 2010; Du et al.
2014; Eldridge et al. 2014; Esmaeilzadeh et al. 2012b; Ganapathy et al.
2015; Goiri et al. 2015; Grigorian and Reinman 2015; Kahng and Kang
2012; Li et al. 2015; Mahajan et al. 2015; McAfee and Olukotun 2015;
Miguel et al. 2014; Moreau et al. 2015; Rahimi et al. 2013; Samadi et al.
2013, 2014; Sampson et al. 2013, 2015; Sartori and Kumar 2013; Shi et al.
2015; Sidiroglou et al. 2011; Sutherland et al. 2015; Vassiliadis et al. 2015;
Xu and Huang 2015; Yazdanbakhsh et al. 2015b; Yeh et al. 2007]

NVM lifetime [Fang et al. 2012; Sampson et al. 2013]
Lowering error
correction overhead

[Ganapathy et al. 2015; Rahimi et al. 2013; Shi et al. 2015; Xu and Huang
2015]

Power/clock-gating [Chippa et al. 2014; Esmaeilzadeh et al. 2012a; Shoushtari et al. 2015;
Venkataramani et al. 2013]
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Liu et al. [2012] use a SW-based ACT for saving refresh power in DRAM memories.
In their technique, the programmer identifies critical and noncritical data. At runtime,
these data are allocated in different memory modules. The critical data are refreshed at
regular rates, while the noncritical data are refreshed at much lower rate. Their results
show that their technique saves significant refresh energy and, by virtue of introducing
errors in only noncritical data, the degradation in application quality is kept minimal.

5.3. Approximating Nonvolatile Memories

Ranjan et al. [2015] present a technique for exploring quality–energy trade-off in STT-
RAM, which introduces a small probability of errors in read/write operations for gaining
large improvements in energy efficiency. They use three mechanisms for approxima-
tion: (1) lowering the current used to sense (read) the bit cells, which increases the
probability of erroneous reads; (2) lowering the sensing duration and simultaneously
increasing the read current, which increases the odds of flipping the bit cells on a read;
and (3) lowering either write duration or write current or both, which may lead to occa-
sional unsuccessful writes. Using these mechanisms, they design an adaptive-quality
memory array in which reads/writes can be performed at different quality levels us-
ing additional peripheral circuits that can adjust the read/write duration and current
magnitude. To control the numerical significance of errors, along with error probability,
their technique allows specifying error-probability for different groups of bits. Using
a device-level simulator, they study the trade-off between quality and bit-cell-level
energy consumption. Further, they evaluate this memory array as a scratchpad for
a vector processor [Venkataramani et al. 2013] (see Section 5.4) and utilize gradient
descent search for determining minimum quality for each load/store instruction such
that overall energy is minimized for a given output quality.

Sampson et al. [2013] present two ACTs for improving lifetime, density, and perfor-
mance of NVMs in error-tolerant applications. The density of MLC NVM increases with
the rising number of levels, although this also reduces the access speed of the memory
due to the need of iterative programming. Their first technique reduces the number of
programming pulses used to write the MLC memory. This can improve performance
and energy efficiency for a given MLC memory at the cost of approximate writes. Alter-
natively, this can be used to improve density for a fixed power budget or performance
target. Their second technique improves memory lifetime by storing approximate data
in those blocks that have exhausted their HW error correction resources. Also, for re-
ducing the effect of failed bits on the final result, higher priority is given to correction
of higher-order bits compared to lower-order bits. They show that approximate writes
in MLC PCM are much faster than precise writes, and using faulty blocks improves
the lifetime with bounded quality loss.

Fang et al. [2012] propose a technique for reducing the number of writes to PCM
by utilizing the error-tolerance property of video applications. When the new data to
be written are same as the existing stored data, their technique cancels the write
operation and takes the existing data themselves as the new data. While incurring
only negligible reduction in video quality, their technique provides significant energy
saving and lifetime improvement of the PCM-based memory.

We now discuss ACTs designed for different processor components (Section 5.4) and
processing units, such as GPU (Section 5.5) and FPGA (Section 5.6), which take into
account their architecture, operation characteristics, and criticality.

5.4. Using Approximation in Various Processor Components

In general-purpose cores, control units such as instruction fetch, decode, and retire con-
sume a large fraction of energy. Since control operations are not easily approximable,
general-purpose cores present limited opportunity for approximation. To address this,
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Venkataramani et al. [2013] present a quality-programmable processor (QPP), which
allows specification of the desired quality (or accuracy) in the ISA itself, and thus al-
lows AC to be applied to larger portions of the application. The microarchitecture of
QPP leverages instruction-level quality specification for saving energy. Further, the
actual error incurred in every instruction execution is exposed to the software, based
on which quality specification for upcoming instructions is modulated. Their QPP fea-
tures three different types of processing elements—APE, MAPE, and CAPE, which
refer to approximate-, mixed accuracy- and completely accurate processing elements,
respectively. APEs perform vector–vector reduction operations, which are commonly
found in error-tolerant applications. MAPEs perform both control and arithmetic oper-
ations, and CAPEs perform operations related to control flow. These 3 elements provide
different levels of quality versus energy trade-offs by using precision scaling with er-
ror monitoring and compensation. They show that QPP saves a significant amount of
energy while incurring little loss in accuracy.

Esmaeilzadeh et al. [2012a] present extensions to ISA and corresponding microar-
chitecture for mapping AC to HW. Their ISA provides approximate versions of all FP
and integer arithmetic and bitwise operation instructions provided by the original ISA.
These instructions do not provide formal guarantee of accuracy, but only carry informal
expectation of inexact adherence to the behavior of original instruction. They also de-
fine approximation granularity for setting the precision of cache memory. They logically
divide the microarchitectural components into two groups: data movement/processing
components (e.g., cache, register file, functional unit, load-store queue) and instruction
control components (those dealing with fetching and decoding of instructions, among
other things). The data-movement components are approximated only for approximate
instructions, using lower supply voltage for such memory structures (e.g., cache) and
logic, which saves energy at the cost of timing errors. By comparison, instruction con-
trol components are supplied with normal supply voltage for precise operation, which
avoids catastrophic events (e.g., crashes) due to control flow violation. Their experi-
ments show that their approach provides larger energy savings in in-order cores than
in out-of-order cores, which is due to the fact that instruction control components con-
tribute a much larger fraction of total energy in out-of-order cores than in in-order
cores and their approach saves energy in only data-movement components.

5.5. Approximate Computing Techniques For GPUs

Hsiao et al. [2013] note that reducing the precision of FP representation and using
the fixed-point representation are two commonly used strategies for reducing energy
consumption of a GPU shader. Of these, reduced-precision FP provides wider nu-
merical range but also consumes higher latency and energy; the opposite is true for
fixed-point representation. They propose an automatic technique that intelligently
chooses between these two strategies. Their technique performs runtime profiling
to record precision information and determine feasible precisions for both fragment
and vertex shading. Then both these rendering strategies are evaluated with selected
precisions to find the more energy-efficient strategy for the current application. Finally,
the winning strategy with its precision is used for the successive frames, except that
memory access-related and other critical operations are executed in full-precision FP.
They show that their technique provides higher energy saving and quality than using
either strategy alone.

Zhang et al. [2014] note that the FPU and special function units are used only in arith-
metic operations (but not in control/memory operations) and they contribute a large
fraction of GPU power consumption. Thus, using inexact HW for them can provide large
energy savings at bounded quality loss without affecting correctness. Based on this,
their technique uses linear approximation within a reduced range for functions such
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as square root, reciprocal, log, FP multiplication and division, for example, y = 1/
√

x is
approximated as y = 2.08 − 1.1911x in the range x ∈ [0.5, 1]. They build the functional
models of inexact HW and import them in a GPU simulator that can also model GPU
power consumption. In the simulator, each inexact HW unit can be activated or deacti-
vated and their parameters can be tuned. They first obtain the reference (exact) output,
then run a functional simulation with inexact units to obtain the inexact output. By
comparing the reference and inexact output using an application-specific metric, the
quality loss is estimated. If the loss exceeds a threshold, then either an inexact unit is
disabled or its parameters are adjusted, depending on the program-specific error sensi-
tivity characterization. The simulation is performed again with an updated configura-
tion and this process is repeated until the quality loss becomes lower than the threshold.
They show that their technique allows exercising trade-off between quality and system
power and provides large power savings for several compute-intensive GPU programs.

Byna et al. [2010] present an ACT for accelerating a supervised semantic indexing
(SSI) algorithm, which is used for organizing unstructured text repositories. Due to
the data dependencies between the iterations of SSI, parallelism can only be exploited
within individual iterations. Hence, for small datasets, GPU implementation of SSI
does not fully utilize the GPU HW resources. They note that SSI is an error-tolerant
algorithm and the spatial locality of writes between different iterations of SSI is low,
(i.e., these iterations rarely update the same part of the model). Also, after some initial
iterations, only a few iterations perform any updates. Using these properties, depen-
dencies between iterations can be intelligently relaxed, then multiple iterations can
be run in parallel. Also, noncritical computation is avoided, for example, processing
of common words, such as “a,” “of,” and “the,” are avoided since it does not affect the
accuracy. They show that their technique improves performance compared to both a
baseline GPU implementation and a multicore CPU implementation.

5.6. Approximate Computing Techniques For FPGAs

Moreau et al. [2015] present a technique for neural acceleration of approximable codes
on a programmable system on chip (SoC), that is, an FPGA. Their technique can be
used as either a high-level mechanism in which approximable codes are offloaded to
FPGA using a compiler, or at low-level in which experienced programmers can exercise
fine-grained control using an instruction-level interface. Since use of programmable
logic such as an FPGA faces the challenges of large communication latency between
the CPU and FPGA and large differences in their speeds, they propose throughput-
oriented operation of an FPGA-based accelerator, such that invocations of NNs are
grouped and sent together to the FPGA-based accelerator. Thus, the accelerator does
not block program execution since numerous invocations keep the accelerator busy and
individual invocations need not complete immediately. While other works (e.g., Amant
et al. [2014] and Esmaeilzadeh et al. [2012b]) implement NPU in fully custom logic
and integrate it with the host CPU pipeline, their technique implements NPU in an
off-the-shelf FPGA, without closely integrating it with the CPU. This avoids changes to
ISA of the processor and enables using neural acceleration in devices that are already
available commercially. Instead of configuring the programmable logic (FPGA), their
technique configures the NN topology and weights themselves. Thus, while requiring
expertise much lower than that required for programming FPGAs and even using
high-level synthesis tools, their technique can accelerate a broad range of applications.
Their experiments show that their approach provides speedup and energy saving with
bounded degradation of QoR.

Lopes et al. [2009] note that, for achieving a desired final QoR with iterative solvers,
a user can lower the precision of intermediate computations and run more iterations or
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vice versa, as opposed to direct solvers, for which final QoR depends only on the preci-
sion of intermediate computations. On FPGA, for a fixed area constraint, lowering the
precision of the iterative solver allows greater parallelism. Based on this, they present
an ACT for accelerating the solution of a system of linear equations on an FPGA. They
plot the variation of computation time and iteration-count (for convergence) with differ-
ent mantissa widths. From these two plots, the optimum mantissa-width (i.e., precision)
that minimizes the computation time for a desired QoR is found. Thus, by balancing the
operation precision and iteration count, they achieve a large performance improvement
over a double-precision implementation, while achieving the same final QoR.

5.7. Using Scalable Effort Design For Approximate Computing

In several cases, the level of effort required for performing different tasks of an appli-
cation may be different. Several ACTs use this feature to tune the effort expended on
a per-task basis.

Grigorian et al. [2015] present a technique that uses both precise and NN-based
approximate accelerators, while enforcing accuracy constraints using error analysis.
The execution starts with computationally easier approximations, continues onto more
complex ones and ends with a precise computation. After each stage (except the last
one), application-specific LWCs (see Section 3.2) are performed to measure output qual-
ity. The tasks with acceptable output quality are committed and only remaining tasks
go to the next stage. Most tasks are expected to be committed in early stages, which
reduces the overall overhead. Further, by choosing the LWCs suitably, user-specified ac-
curacy can be achieved at runtime. NN models allow training for different functionality
without the need to modify topology, which obviates the need of design flexibility pro-
vided by FPGAs; hence, they implement all the accelerators in digital ASIC technology.
They show that, compared to using either precise accelerators alone or software-based
computation, their technique provides significant energy and performance advantage.

Venkataramani et al. [2015] present a technique for improving energy efficiency of
supervised machine-learning classifiers. They note that, in real-world datasets, differ-
ent inputs demand different classification efforts, and only a small fraction of inputs
need full computational capability of the classifier. Using this, their technique allows
the dynamic tuning of the computational efforts based on difficulty of input data. They
use a chain of classifiers with increasing complexity and classification accuracy. Each
stage in the chain has multiple biased classifiers that can detect a single class with
high precision. Depending on the consensus between outputs of different classifiers,
confidence in a classification is judged based on which the decision to terminate at a
stage is made. Thus, only hard inputs go through multiple stages, while simpler inputs
get processed in only a few stages. Classifiers of different complexity and accuracy
are created by modulating their algorithm parameters, for example, neuron and layer
count in an NN. Their technique also allows trading off the number of states, their
complexity and input fraction classified at every stage to optimize the overall classi-
fication efforts. They show that their technique reduces the number of operations per
input and energy consumption of the classification process.

5.8. Reducing Error-Correction Overhead Using Approximate Computing

Conventional error-correction mechanisms such as redundant execution and use of
ECC incur high overhead [Mittal and Vetter 2015]. Some ACTs leverage the error-
tolerance property of applications to reduce this overhead.

Shi et al. [2015] present a technique for trading application accuracy with soft-error
resilience overhead, while achieving 100% soft-error coverage. The programmer
identifies the noncritical code such as perforable loops. Based on this, redundant
execution for soft-error protection is applied only to the critical code. When redundant
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execution is turned off for the noncritical code, low-overhead resilience mechanisms,
such as checking of store instructions by HW-level redundant address calculation,
are used for ensuring application correctness. Due to soft errors, results of certain
iterations in a perforable loop may have to be dropped in the worst case. This, however,
only affects accuracy and not correctness. For a multicore processor, resilience is
independently modulated for each core. They show that their technique reduces the
performance overhead of resilience.

Xu and Huang [2015] leverage error-tolerance capability of datacentric applications
for reducing ECC overhead in Flash-based SSDs. Using error-injection experiments,
they show that different data have different impacts on output quality, and their ap-
plications can tolerate a much higher error rate than that targeted by Flash SSDs.
They design a framework for monitoring and estimating soft-error rates of Flash SSD
at runtime. Based on the error rate of the SSD obtained from this framework and the
error rate that can be tolerated by the application, their technique dynamically lowers
the ECC protection or avoids using ECC altogether. They show that their approach
provides significant performance and energy efficiency gains with an acceptable QoR.

6. APPLICATION AREAS OF APPROXIMATE COMPUTING

To show the spectrum of application of AC, Table VI roughly classifies the techniques
based on their application/workload domain. Note that these categories are not mu-
tually exclusive and may include others as subcategories. Of the benchmark suites,
PARSEC (e.g., Sidiroglou et al. [2011]), SciMark (e.g., Sampson et al. [2011]), Media-
Bench (e.g., Liu et al. [2012]), PhysicsBench (e.g., Yeh et al. [2007]), UCI machine-
learning repository (e.g., Du et al. [2014]), Caltech 101 computer vision dataset (e.g.,
Rahimi et al. [2015]), SPEC benchmark (e.g., Roy et al. [2014]), MiBench (e.g., Roy et al.
[2014]), and more, have been frequently utilized. These domains and benchmark suites
find application in or represent many other real-life problems also, such as robotics,
artificial intelligence, and fluid dynamics, which clearly shows the growing importance
of AC.

7. CONCLUSION AND FUTURE CHALLENGES

In this article, we surveyed the techniques proposed for approximate computing. We
highlighted the opportunities and obstacles in the use of AC, then organized the tech-
niques in several groups to provide a bird’s eye view of the research field. We conclude
this article with a brief mention of challenges that lie ahead in this field.

Most existing ACTs have focused on multimedia applications and iterative algo-
rithms. However, these error-resilient workloads comprise only a fraction of the com-
putational workloads. As these “low-hanging fruits” gradually vanish, researchers will
have to turn their attention to general-purpose applications, thus extend the scope of
AC to the entire spectrum of computing applications.

Several current large-scale software packages have been written in conventional
languages that assume precise operations and storage. Facilitating development of
code that fully exploits the inexact hardware and approximation strategies while also
meeting quality expectations requires a powerful and, yet, intuitive and simple pro-
gramming language. Significant work is required to transform today’s research-stage
programming frameworks for AC into mature and robust code development platforms
of tomorrow.

Using approximation in a single-processor component alone can have an unforeseen
effect on the operation of other components and is likely to lead to erroneous or myopic
conclusions. Going forward, a comprehensive evaluation of the effect of AC on the
entire system and use of AC in multiple components is required. Further, since existing
systems use several management schemes such as data compression, prefetching, and
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Table VI. A Classification Based on Research Fields, Frameworks or Applications Where AC is Used

Classification References

Image processing or
multimedia

[Amant et al. 2014; Ansel et al. 2011; Baek and Chilimbi 2010; Chippa
et al. 2013; Cho et al. 2014; Esmaeilzadeh et al. 2012a, 2012b; Fang et al.
2012; Goiri et al. 2015; Grigorian et al. 2015; Grigorian and Reinman
2014, 2015; Gupta et al. 2011; Hsiao et al. 2013; Keramidas et al. 2015;
Khudia et al. 2015; Kulkarni et al. 2011; Li et al. 2015; Liu et al. 2012;
Mahajan et al. 2015; McAfee and Olukotun 2015; Miguel et al. 2014;
Misailovic et al. 2014; Mishra et al. 2014; Moreau et al. 2015; Raha et al.
2015; Rahimi et al. 2013, 2013, 2015; Ringenburg et al. 2014, 2015; Roy
et al. 2014; Samadi et al. 2013, 2014; Samadi and Mahlke 2014; Sampson
et al. 2011, 2013; Sartori and Kumar 2013; Shoushtari et al. 2015;
Sidiroglou et al. 2011; Sutherland et al. 2015; Vassiliadis et al. 2015; Xu
and Huang 2015; Yazdanbakhsh et al. 2015a; Yeh et al. 2007; Yetim et al.
2013; Zhang et al. 2014]

Signal processing [Amant et al. 2014; Esmaeilzadeh et al. 2012a, 2012b; Grigorian and
Reinman 2014; Gupta et al. 2011; Hegde and Shanbhag 1999; Li et al.
2015; McAfee and Olukotun 2015; Samadi et al. 2014; Varatkar and
Shanbhag 2008; Venkataramani et al. 2012; Yazdanbakhsh et al. 2015a]

Machine learning [Amant et al. 2014; Ansel et al. 2011; Baek and Chilimbi 2010;
Chakradhar and Raghunathan 2010; Chippa et al. 2014; Du et al. 2014;
Esmaeilzadeh et al. 2012b; Goiri et al. 2015; Khudia et al. 2015; Li et al.
2015; Moreau et al. 2015; Raha et al. 2015; Ranjan et al. 2015; Samadi
et al. 2013; Samadi et al. 2014; Shi et al. 2015; Tian et al. 2015; Vassiliadis
et al. 2015; Venkataramani et al. 2013; Venkataramani et al. 2014; Xu and
Huang 2015; Zhang et al. 2015]

Scientific computing [Carbin et al. 2013; Eldridge et al. 2014; Esmaeilzadeh et al. 2012a;
Grigorian et al. 2015; Grigorian and Reinman 2015; Khudia et al. 2015;
McAfee and Olukotun 2015; Misailovic et al. 2014; Moreau et al. 2015;
Ringenburg et al. 2015; Roy et al. 2014; Sampson et al. 2011, 2013; Xu and
Huang 2015; Yazdanbakhsh et al. 2015a]

Financial analysis [Amant et al. 2014; Baek and Chilimbi 2010; Grigorian and Reinman
2014, 2015; Khudia et al. 2015; Mahajan et al. 2015; Miguel et al. 2014;
Misailovic et al. 2014; Moreau et al. 2015; Ringenburg et al. 2015; Samadi
et al. 2014; Shi et al. 2015; Sidiroglou et al. 2011; Zhang et al. 2015]

Database search [Baek and Chilimbi 2010; Byna et al. 2010; Chippa et al. 2013; Düben et al.
2015; Miguel et al. 2014; Sidiroglou et al. 2011; Venkataramani et al. 2013]

MapReduce [Goiri et al. 2015; Xu and Huang 2015]

dynamic voltage/frequency scaling, ensuring synergy of ACTs with these schemes is
important for smooth integration of AC in commercial systems.

As the quest for performance confronts resource constraints, major breakthroughs
in computing efficiency are expected to come from unconventional approaches. We
hope for a promising near future in which approximate computing helps in continuing
the historic trends of performance scaling and becomes the mainstream computing
approach for all classes of processors.
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