Robert I.. Kraul and Lynn A. Streeter

Coordination in SOFtWAare
Development

ince its inception, the software industry has been in crisis. As Blazer
noted 20 years ago, “[Software] is unreliable, delivered late, unrespon-
sive to change, inefficient, and expensive . . . and has been for the past
20 years” [4]. In a survey of software contractors and government con-
tract officers, over half of the respondents believed that calendar over-
runs, cost overruns, code that required in-house modifications before
being usable, and code that was difficult to modify were common prob-
lems in the software projects they supervised [22]. Even today, problems
with software systems are common and highly-publicized occurrences.

While there is no single cause of the software crisis, a major contrib-
utor is the problem of coordinating activities while developing large
software systems. We will argue that this coordination becomes much
more difficult as project size and complexity increase. Coordination
difficulties are not limited to software development, though, but are
an inherent aspect of work in any large organization. Viewed from
this perspective, some of the mechanisms used to coordinate work in
large organizations in general ought to have applicability to software
development. In particular, we examine the respective roles of tormal and informal communication
mechanisms in coordinating work on software projects. We will argue that most of the existing coordina-
tion support tools have used formal communication procedures, and that there is a need for nurturing
informal communication procedures as well.

Coordination has been defined as the direction of “individuals’ efforts toward achieving common and
explicitly recognized goals” [3] and “the integration or linking together of different parts of an organiza-
tion to accomplish a collective set of tasks” [23]. In software development, it means that different people
working on a common project agree to a common definition of what they are building, share informa-
tion, and mesh their activities. They must have a common view of what the software they are constructing
should do, how it should be organized, and how it should fit with other software systems already in place
or undergoing parallel development. To build the software efficiently, they must share detailed design
specifications and information about the progress of software modules. In sum, they must coordinate
their work so that it gets done and fits together, so that it isn’t done redundantly, and so that components
of the work are handed off expeditiously.

Characteristics of Software Development

Achieving a successful software system requires tight coordination among the various efforts involved in
the software development cycle. Yet this coordination is difficult to achieve. As Curtis, Krasner and Iscoe
[11] note in their study of large software development projects, communication bottlenecks and break-
downs are very common. Indeed, several characteristics of software development make these coordina-
tion problems not just common, but inevitable [6, 8].

Scale. A fundamental characteristic of many software systems is that they are very large and far beyond
the ability of any individual or small group to create or even to understand in detail. If a software system
were small, effective coordination could occur because a single individual or small group could direct
its work and keep all the implementation details in focus. Indeed, large projects are more successful if
a single, often exceptional, individual with both application-domain knowledge and software knowledge
guides and coordinates the project [11]. But this ideal is impossible for many large software systems,
where system size is measured in millions or tens of millions of lines of code and the life of the

commumIcATIONS OF THE ACs March 1995/ Vo35, No. 3 B



project is measured in years.'

Efforts of this scale invariably lead
to specialization and a division of
labor. These organizational responses
in turn lead to compartmentalization
of interdependent actors through
geographic, organizational, and so-
cial boundaries. Within these bound-
aries, unique subgroup perspectives,
cohesiveness, ethnocentrism, and
unwillingness to trade information
increase (e.g., [7]). Barrie
graphic, organizational, or social—
reduce people’s opportunities and
eagerness to share information and to
learn from distant colleagues [18].
While compartmentalization  pro-
motes organizational efficiency in
large groups by shielding people
from unnecessary information, it
nonetheless creates new coordination
tasks. Compartments limit people’s
breadth of experience, leading to er-
rors, narrowness, and insufficient
opportunity for comparing knowl-
edge, and can reduce the motivation
to interact with relevant others and to
accept new ideas.

Uncertainty. The inherent uncer-
tainty in software development com-
pounds the coordination problems
produced by large scale alone. By
uncertainty, we mean the unpredict-
ability of both the software and the
tasks that software engineers per-
form. Unlike much manufacturing,
software development is a nonrou-
tine activity. Many software systems
are one-of-a-kind projects with no
existing prototypes, applications or
systems to simply modify or change.

Further, uncertainty increases be-
cause specifications of the software’s
functionality change over time [9,
11]. Change in software specifications
arises because the external world that
the software was designed to support
changes, as business needs, user de-

—geo-

"The software used to run ground control for
the Apollo spacecraft in the 1970s contained
about 23 million lines of code [12]. The code for
AT&T’s 5ESS switch is about 10 million lines of
code. The software to allocate lines in a tele-
phone network contains over 10 million lines of
code. Each generation of software is typically
larger than the one that preceded it. Assuming
typical productivity (measured in lines of new or
changed production-quality code per staff year),
a software system with one million lines of code
might require 500 staff-years of effort (Martin,
personal communication), if one considers the
analysts, programmers, support staff, testers,
document writers, managers, and admini
tive personnel involved in a large project.

o

70

March |

sires, computer platforms, input data,
and the physical world itself all
change. The likelihood of change is
greatest whenever software is used
directly by people, because it is often
only by using software that purchas-
ers and users understand its capabil
ties and limitations. When software is
used in circumstances for which it
wasn’t designed specifically, the users
are likely to demand new capabilities
that had not been envisioned during
the initial design.

Software development also is un-
certain because specifications for it
are invariably incomplete. Incom-
pleteness partially results from lim-
ited domain knowledge and divi
of labor typical of software projects
[11]. Too few people working on a
software  project have sufficient
knowledge about the domain in
which they are working. A project
group writing software for a heads-
up display for pilots needs in-depth
knowledge of aircraft and aviation, as
well as knowledge of computer
ence. 'lypically, analysts with varying
degrees of domain knowledge inter-
view customers and users, and then
write specifications for software archi-
tects and designers. In this process,
relevant domain information is inevi-
tably lost.

Some of the users’ needs will not be
uncovered by the analysts, and some
of the analysts’ discoveries will not be
reflected in the specifications. Thus, a
major coordination problem in soft-
ware development is that at many
points the information that software
architects and programmers need to
make decisions is not available to
them through documents, although
users, analysts, and others in the proj-
ect may have the knowledge neces-
sary for these decisions.

Finally, software is uncertain be-
cause the different subgroups in-
volved in its development often have
different beliefs about what it should
do and how it should do it. For exam-
ple, analysts translate users’ needs
into requirements for system capabili-
ties. This task is exceedingly difficult
and open to error and misrepresen-
tation, since it involves synthesizing,
representing, and often reconciling
different user needs and views, as is
the case when different groups of
end-users have different levels of

S
ion

Vol.38, No. 5 COMMUNICATIONS OF THE ACM

computer skill. While analysts may
try to adopt the point of view of the
software’s users, designers and pro-
grammers often have a more techni-
cal focus, with an emphasis on ease of
development and efficiency of com-
putation. As more groups become
involved in software development,
disagreements among them inevita-
bly increase. These differences in
points of view must be resolved for
coordination to succeed.

Interdependence. The large size
and uncertainty in software work
would be less of a problem if software
didn’t require precise integration of
its components. Much software is
built of thousands of modules that
must mesh with each other perfectly
for the software system to operate
correctly. The recent disruption of
the AT&T long distance network [20]
shows how unanticipated interactions
among software modules can have
disastrous consequences. Poor coor-
dination between subgroups produc-
ing software modules could lead to
failure in integrating the modules
themselves.

Informal  communication. Both
practical experience and organiza-
tional theory suggest that previous
efforts in software engineering have
not solved the coordination problems
in large software projects. The combi-
nation of large size, uncertainty, and
interdependence requires  special
coordination techniques that may not
be necessary in more routine produc-
tion environments. At the risk of
oversimplification, one can say that
most proposed remedies for the soft-
ware crisis have taken one of three
approaches: (1) technical tools, rang-
ing from new workstations to syntax-
directed editors and higher level lan-
guages, to improve the productivity
of individual developers, (2) modu-
larization, both technical, such as ob-
ject-oriented  programming, and
managerial, such as the organiza-
tional separation of the requirements,
coding, and testing functions, to en-
capsulate the behavior of program
elements and individual software
professionals, and thereby reduce the
needs for coordination, and (3) for-
mal procedures, both technical, such
as version control software, case tools,
and specification languages, and
managerial, such as test plans, deliv-




ery schedules, and requirements doc-
uments, to control communication
among development personnel.

While these techniques have un-
doubtedly contributed to a modest
increase in software productivity over
the past twenty years [6] they only
partially address the problems of co-
ordination in software development.
Tools to increase the productivity of
individual programmers by defini-
tion do not solve coordination prob-
lems. Likewise, while successfully lay-
ered architectures and structured
programming techniques may re-
duce the number of interfaces be-
tween modules, different people with
different perspectives still must agree
on what is to be built and must fit to-
gether pieces of software. Problems in
consensus  formation, information
sharing and coordination that don’t
show at one level invariably surface at
another. Finally, formalization, while
necessary and applicable for many
tasks, may be misapplied to tasks that
are difficult to routinize.

Prior research shows that formal
and informal communication are best
suited for different types of activities.
By formal communication we mean
communication  through  writing,
structured meetings, and other rela-
tively non-interactive and impersonal
communication channels. In the case
of software development, formal
communication includes techniques
such written specification docu-
ments, formal specification lan-
guages, status review meetings, and

automated reporting and tracking of

program errors. These are in contrast
to informal communication, by which
we mean personal, peer-oriented,
and interactive communication. For-
mal communication is useful for coor-
dinating routine transactions within
groups and organizations, but it often
fails in the face of uncertainty, which
typifies much software work. Under
these circumstances, informal com-
munication may be needed for coor-
dination [23].

Analyses of communication in re-
search and development settings, al-
though not looking at software devel-
opment per se, have shown the heavy
and effective use that professionals
make of informal communication for
exchanging information. The major
findings are easy to summarize. First,

informal, interpersonal communica-
tion is the primary way that informa-
tion flows into and through research
and development organizations [1, 2,
21]. Second, in the world of research
and development as in many other
domains [10, 25], the ease of acquir-
ing information is at least as impor-
tant as the quality of the information
in determining the sources that peo-
ple use. Therefore physical proximity
of a source is a major constraint on
engineers’ work-related information
[2]. Third, getting information and
coordinating activity through infor-
mal, interpersonal communication is
valuable both for individuals and for
their organizations, especially as re-
search and development tasks be-
come more uncertain [19, 21].

The previous discussion points to a
major and perhaps unresolvable ten-
sion in large software development
projects. Because of interdepen-
dence, different groups involved in a
software development project must
be tightly coordinated. Because of the
high degree of uncertainty typical of
software projects, informal, interper-
sonal communication should be a
valuable method for achieving this
coordination. But because of the
large size of these projects, the ineffi-
ciencies of pairwise face-to-face com-

munication may preclude the use of

informal communication as a practi-
cal technique for solving coordina-
tion problems. And because of the
tight coupling necessary between
software modules, speech, which is
the primary medium of informal
communication, may be too impre-
cise to communicate well and too
ephemeral to serve as a record of the
information exchange.

This article is an empirical exami-
nation of the conditions under which
different techniques are used to coor-
dinate software development and the
conditions under which they actually
succeed or fail in improving coordi-
nation. For the reasons just de-
scribed, we concentrate on the con-
trast between relatively formal,
impersonal techniques, such as de-
sign and requirements documents
and status tracking methodologies,
and relatively informal, interpersonal
techniques, such as peer discussion
and unstructured electronic mail.
Structured, interpersonal meetings,

[ eojtwun Development

such as status reviews or design re-
views, are intermediate on this for-
mality dimension.

A Survey Study of Coordination
in Software Development

We surveyed the intergroup coordi-
nation practices across 65 projects in
one large software development com-
pany. The survey focused on three
factors: 1) coordination practices
used, 2) structural characteristics of
projects that might interact with the
practicality and utility of various co-
ordination techniques, and 3) the
success of the projects on several di-
mensions. We were particularly inter-
ested in features of the projects and
the coordination practices that influ-
enced the sharing of information and
of goals.

The research site. The research site
was the software development divi-
sion of a research and development
company that employed approxi-
mately 3,000 managers, analysts, soft-
ware Cngineel's, programmers, test-
ers, and documentation specialists.
Collectively, the staff worked on the
development of a wide range of prod-
ucts for the telecommunications in-
dustry, using a wide range of tech-
niques. In general, projects were
organized around a waterfall devel-
opment model and had standard
development  environments, code
reviews, and quality programs. In
terms of scale, they ranged from two-
to four-person projects, developing
software for PCs, on the one hand,
and large mainframe systems, with 14
million lines of code already devel-
oped and 150 people on staff on the
other. The median project had over
15 people on staff at the time of the
survey, in 1990. In terms of the soft-
ware life cycle, the projects ranged
from those in the specification stage
with active negotiations with clients
and other development organiza-
tions, to more maintenance-oriented
projects, where new releases were
meant to fix bugs and add small num-
bers of features.

While all projects used both formal
and informal communication to coor-
dinate activity, the balance differed
across projects. For example, in proj-
ects on the more formal end, differ-
ent units of the company wrote re-
quirement specification documents

communicaTIONS OF THE AcM March 1995/Vol. 35, No.3 71



en/lwtur Development J

and designed software architecture.
I'he requirements unit conveyed in-
formation about needed software
capabilities to the development unit
through these formal specification
documents. In more informal proj-
ects, the same 30-person department
was responsible for assessing software
capabilities and for actually writing
the code. Their communication was
through informal, interpersonal con-
tacts supplemented by sketchy re-
quirements  documents.  Similarly,
some departments made  extensive
use of electronic mail and bulletin
boards to distribute project knowl-
edge, while others did not use these
facilities.

Sample. The sample consisted of
150 supervisory groups involved in
some aspect of software development,
representing approximately 80 dif-
ferent software systems or major sub-
components of a system. We call the

people working on one of th SYS
tems a project. The coordination sur-
vey was sent to 750 people (150 first-
level supervisors and 600 technical
staff). People from all phases of soft-
ware development, from require-
ments to field support, were included
in the sample. Eighty-eight percent of
the sample returned the question-
naire after three mailings, and of
these, 563, or 75% of the total sample,
returned usable data.

There were 65 projects for which
at least two people provided data.
Projects with only one respondent
were dropped. The number of re-
spondents per project ranged from 2
1o 47 with a mean of 7.6 and median
of 4. Depending on the question,
analyses are based on 563 individuals
or projects. At the project level,
the data were averaged over all re-
spondents who reported working on
the same software system.

Measures. The survey measured
the following aspects of software de-

velopment within a project. Table 1
shows examples of all measures.

1. Structural characteristics of projects.
These include project size, in terms of
number of employees, project age, and
stage in the software life cycle. Two
other structural characteristics were
important and require additional
explanation. One, organizational inter-
dependence, the extent to which

Table 1. Independent and dependent variables,
with examples of scale items

STRUCTURAL CHARACTERIS

PROJECT SIZE

1. Number of people working on this project across the company

PROJECT AGE

1. Maximum number of years that any project member worked on the
project

PLANNING

AGE

1. Percent of project staff having as their major work activity either
requirements analysis and specification or high-level software architecture
and design

ORGANIZATIONAL INTERDEPEND:!

(5-items, Alpha = 0.69)

1. Extent to which your work is interrelated with people in your division, but
outside your group

2. Extent to which work is related with the work of others outside your
division, but within the assistant vice presidential area

3. Extent to which work is related with work outside the assistant vice
presidential area, but within the vice presidential area

PROJECT CERTAINTY

(8-item, Alpha = 0.65, Adapted from [23])

1. Clearly defined body of knowledge or subject matter guiding work on the
project
2. Extent to which people in a particular district do the same type of work

Stability of the detailed specifications for the project

FORMAL IMPERSONAL PROCEDURES

(5-items, Alpha = 0.63)

1. Project documents and memos
2. jject milestones and delivery schedules
3. Modification request and error tracking procedures
1. Data dictionaries
FORMAL, TERPERSONAL PROCEDURES
(5-items, Alpha = 0.74)
1. Status review mece

2. Design review meetings
3. Code inspections

INFORMAL, INTERPERSONAL PROCEDURES

(2-items, Alpha = 0.56)
1. Group meetings
2. Colocation of requirements and development staft

ELECTRONIC COMMUNICATION

(2-items, Alpha = 0.38)
1. Electronic mail
2. Electronic bulletin boards

INTERPERSONAL NETWORK

(1-item)
1. Number of supervisors from outside the project talked 1o in the previous
two years

T2 e 1995/V0L 35 No. S commumicaTIONs oF THE Ack



Table 1.

PROJE

" MEMBERS 1

ORMED

(5-items, Alpha = 0.83)
Management on the project has an accurate view of how well the project is
going

2. Immediate manager is a good source of information about relevant work
from other areas of company

3. People are well informed about project status

COORDIN/

TON SUC

5-items, Alpha = 0.65, Adopted from [13])
1. Lack of duplication and redundancy in the work of groups on the project
ixtent to which the group avoids working in a “crisis mode”

CLIENT S

ATISFACTION

(12-items, Alpha = 0.85)
1. Ease of learning product
2. Absence of defects in the software
3. Company responsiveness in providing fixes 1o problems you encountered
4. Overall quality of the products and services provided
5. Suppose that you had a need for another software product in this area
How likely would you be to choose our company as a provider?

MANAGERS' EVALUATION

(2-items, Alpha = 0.91)
1. The quality of the software development process: how efficiently and
effectively a project does software development, in terms of use of
personnel, meeting schedules, maintaining good communications, et
2. The quality of the software product delivered to the client: from the
client’s point of view, was the software delivered on time, does it have the
right mix of features, and is it error-fre

SOFTWARE PRODUCTIVITY

(I-item)
L. Number of new or changed lines of uncommented code per staff member
per quarter

SOFTWARE QUALITY

(5-item, alpha = 0.76)

1. Number of field errors reported per thousand lines of new or changed
uncommented code (reverse-scored)

2. Number of errors found in system test per thousand lines of new or
changed uncommented code (reverse-scored)

3. Number of days to fix a moderately severe field fault (reverse-scored)

members of a project get inputs from  include: 1) formal, impersonal coordina-
and pass outputs to other groups  tion techniques, such as written re-
within the company, outside of their quirements documents, modification
immediate supervisory group. The request tracking, and data dictionar-
other, project certainty, is the extent ies; 2) formal, interpersonal techniques,
to which a project is stable and con-  such as requirement review meetings,
sists of tasks that are well understood status review meetings, and code in-
and easily accomplished by local spection meetings; and 3) informal in-

expertise. terpersonal techniques, such as unsched-

uled group meetings or co-location of
2. Coordination  techniques used. Re-  requirements and  design  staff.
spondents were asked how exten-  Among the informal techniques, we

sively they used various coordination  examined separately 4) electronic com-
techniques on their projects. These  munication, such as electronic mail

COMMUNICATIONS OF TME AcM Mich 1997

and electronic bulletin boards, and 5)
interpersonal networks.

The interpersonal network mea-
sure requires additional explanation.
Respondents were given a list of 100
first-level supervisors randomly se
lected from the software develop-
ment units and asked to identify all
those with whom they had talked in
the previous two years. Projects in
which people had many contacts out-
side the project had extensive inter-
personal networks.”
3. Outcome measures. This article con-
centrates on two measures of the con-
sequences of using different coordi-
nation techniques. One, the informed
scale, is based on respondents’ assess-
ments of how informed they and
their managers were. The other, the
coordination success scale, reflects
how coordinated they believed their
projects were. To assess the validity of
th measures, we included three
additional outcome measures avail-
able for subsets of the projects: (1)
senior managements’ assessments of
the quality of the software product
and process, (2) software metric data
on productivity and quality, and (3)
client ratings of the quality of the soft-
ware product.

A. The informed scale measures re-
spondents’ assessments of how ade-
quately informed they and the proj-
ect’s managers were about project
status and responsibilities.

B. The coordination success scale
measures respondents’ assessments
of how well their projects were going
and integrating with the work of
other organizations.

C. Higher managements’ evaluations
of software quality. The nine senior

ome reviewers have questioned the validity of
using the number of contacts outside a supervi-
sory group as a measure of a project’s interper-
sonal network. They would have preferred an
estimate of an information gatekeeper’s network
instead [2, 21]. While focusing on the highly
communicative gatckeepers might have pro-
duced better data than computing contacts for
the average member of the staff, such a proposal
requires some way to pre-identify gatckeepers
for sampling, a problem we did not know how to
solve. However, consider the worst case in which
a few highly effective gatekeepers maintain the
interproject contacts. We reasoned that even
here gatckeepers will often be providing the
names of other people to contact (as well as sub-
stantive information) to members of their
groups. Thus, even in this case, the number of
outside people known to the average project
member is a sensible measure, and unlike other
measures, the mean is an unbiased estimate of
the project’s interpersonal network.

73




managers responsible for software
projects in this company rated proj-
ects about which they had personal
knowledge in terms of (1) the quality
of the software produced and (2) the
quality of the software development

process. These managers’ span of

control ranged from 200 to 600 peo-
ple, averaging at about 500 people.
We have data for 59 projects. In their
instructions they were told that “the
quality of the software development
process refers to factors such as hav-
ing good coordination among differ-

ent groups working on the project,
meeting milestones and schedules,
knowing and controlling project sta-
tus, and having good personnel mo-

rale.” On the other hand, quality of

the software product was defined to
be “producing software products that
meet the needs of the customers, that
do what they were intended to do,
that are easy to use, that meet perfor-
mance targets, that are appropriately
bug-free when delivered and that are
sy to change and maintain.” Qual-
ity also included client satisfaction

MORE VALUE
THAN USE

Requirement reviews
Co-organization O
Co-location
Discussions with boss
Group meetings

o Source code

Data dictionaries

Value of coordination techniques

O Management case tools

Customer testing fo)
Design reviews

O Code inspections

O Project bulletins

Discussion
with peers O,

Project documents
QO Milestone schedules

© O Error tracking

O Status reviews

Electronic mail

judged as relatively valuable given the amoul

are used.

LESS VALUE
THAN USE
. | | | |
2 3 4 5 6

Use of coordination techniques

Note. Figure shows the relationship between the extent to which software engineers used a
technique to spread information and coordinate their work and how much they valued it.
Underlined techniques had value that was significantly different from what one would predict
from the amount they were used. Techniques above and to the left of the regression line were

the right of the regression line were judged as relatively valueless relative to the amount they

nt they are used, while techniques below and to

Figure 1. Comparing the use and value of coordination techniques

March 1995/Vol. 38, No. 3 COMMUNICATIONS OF THE ACM

with the software and the organiza-
tion producing it. Managers’ assess-
ments of these two dimensions were
highly correlated, and were averaged
across questions and across managers
to produce a single managerial assess-
ment for each project. On average,
each manager rated 17.9 projects,
and each project was rated by 3.1
manage:
D. Soft metric data. Software
metrics were collected quarterly as
part of project management for all of
the major software projects in this
company. We used a subset of these
metrics that contained data for the
largest number of projects. These
included  productivity measures—lines
of new or changed source code pex
staff-month—and software quality mea-
sures including the number of errors
per 1,000 lines of code found during
code inspection, during testing, and
in the field, and time to fix field faults
of moderate severity. We standard-
ized each of the measures to have a
mean of 0 and a standard deviation of
1, and we averaged two years’ worth
of data surrounding the time of the
questionnaire administration (that is,
eight quarters) to obtain a stable es
mate for each project. Data are avail-
able for 53 projects.

E. Client satisfaction data. Corpo-
rately-collected survey data were
available from project managers and
end-users of the software in client
sites for the 18 largest of the 65 soft-
ware projects. We used a subset of the
items collected on this corporate sur-
vey for our purposes. Clients were
asked to rate the overall quality of the
software, responsiveness and helpful-
ness of the developers, the degree to
which the software met client needs,
the adequacy of training and docu-
mentation, and whether they would
buy from the software company
again. These items were combined to
form a client satisfaction scale. Be-
tween ten and several hundred cli-
ents provided data for each project.
Respondents’ data were averaged to
provide a single client satisfaction
measure for each project.

Results

The coordination techniques that
projects with different characteristics
use and the conditions under which
they find them valuable are discussed



Table 2. Predicting the use and value of coordination techniques

I eojlwurr Development

Formal Formal Informal

Project impersonal interpersonal interp El i Interp 1
h istic: proced procedures proced icati k

Use Value Use Value Use Value Use Value Use
Project age 0.17 0.04 0.13 0.14 0.16 —0.03 -0.03 -0.06 -0.08
Project size 0.32* 0.02 0.50% 0.08 -0.20 0.07 0.21 0.10 —0.30*
Planning
stage 01302 =0.01 =0.05 0.36% 0.27* 0.28* 0.14 0.18 0.14
Group inter-
dependence —0.02 0.10 =0.18 —0.18 =0.01 —0.02 0.34* —0.03 0.42%
Project
certainty 0.24* 0.39* 0.16 0.32% —0.08 0.46* 0.10 0.06 0.29*
Use of the
coordination
technique 0.56* 0.40% 0.48* 0.77*

Note. Entries are the standardized beta weights in a

regression analysis predicting the use and value of coordination techniques (columns) by project characteristics

(rows). Use of a lechmique was enteved into the equation predicting its value. Interpersonal networks were measwred differently from the other coordination

techmiques. A distinction between use and value was
*p < 0.05
/ = 65 projects

in this section. In a later section, we
will attempt to determine whether
the use of any of these techniques
tually aids coordination or contrib-
utes to the success of the projects.

Techniques for spreading project
information and coordinating work.
We examined the conditions under
which projects used formal proce-
dures and informal ones to coordi-
nate work, and the value they judged
these procedures to have. For each
technique respondents made two rat-
ings: (1) the extent to which the peo-
ple used the technique in their proj-
ects to get work done and (2) the
value of each technique for “spread-
ing project information and coordi-
nating the work” regardless of its
use.”

Each rating was made using a
7-point Likert scale with “1” indicat-
ing “no use” or “low value” and “7”
indicating “used a lot” or ‘“high
value”. Analyses are based on two

ac-

linear regressions, one predicting
techniques used from characteristics
of projects and the second predicting
their perceived value from project
characteristics and use. The project is
the unit of analysis.

As Table 2 shows

projects tended

*Note that the procedure was different for the
interpersonal networks measure. For this mea-

sure, respondents cor ac ation:
roster, rather than estimating how frequently
they used interpersonal networks. They did not

rate the value of the networks

not made.

to use formal impersonal procedures
ject documents, milestone
ry schedules, and error
tracking significantly more when the
projects were certain, larger, and had
passed the requirements and design
stages of their life cycles. The more
they were used, the more these for-
mal procedures were judged valu-
able, and they were judged especially
valuable when projects were more
certain.

Formal information  exchange
meetings such as requirements and
status reviews were used most in large
projects. They were judged most
valuable when projects were more
certain and when they were in plan-
ning stages. On the other hand, proj-
ects tended to use informal, interper-
sonal  communication,
unscheduled meetings, very fre-
quently, and regardless of project
size, certainty, or life cycle. This infor-
mal communication was judged espe-
cially valuable when the project was
certain and when it was in the plan-
ning stages. Finally, electronic com-
munication was used more when
projects were heavily dependent on
input from other groups in the com-
pany. No project characteristics pre-
dicted the value of electronic commu-
nication, once one controlled for its
use. Note that the association of use
and value was reliably stronger for
electronic communication than it was

and delive:

such as

tor any other coordination technique.
Finally, projects had more extensive
interpersonal networks when the
project was smaller, when it de-
pended on input from other groups
in the company, and when it was
certain.

Figure 1 extends these results by
looking at the use and value of partic-
ular techniques. As Figure 1 shows,
use and value were highly correlated.
People tended to judge techniques
they used more as more valuable for
two reasons. First, people select valu-
able coordination techniques to use.
Second, people have a strong ten-
dency to like anything they are famil-
iar with, independently of its intrinsic
value [24]. Our analysis attempts to
correct for this inherent use-value
bias or correlation.

Figure 1 shows the line found by
regressing the use of all the coordina-
tion techniques on value. Those tech-
niques that are above the regression
line were judged to be more valuable
than predicted by current use, while
those below the line were judged to
be less valuable than one would ex-
pect, based on their use. Techniques
that were judged to be statistically sig-
nificantly more or less valuable than
would be predicted by their use (that
is, outside the 95% confidence inter-
val of the regression line) are under-
lined. Techniques that are signifi-
cantly more valuable than indicated

commuNicATIONS OF THE ACM March 1995/ Vol 38, No. 5 T3



|

eu/lware Development [

by their use include both informal
discussions with geographically local
colleagues (discussions with boss, dis-
cussions with peers, group meetings)
and other interpersonal procedures
that make new points of view avail-
able to the local work group. Thus
requirements reviews, design re-
views, and customer testing allow
personnel with different responsibili-
ties and points of view, such as 1
quirements analysts, systems engi-
neers, architects, programmers,
testers, and customers, to comment
on each other’s work interactively,

but in a structured setting.

The co-organization of require-
ments and development—the place-
ment of these functions under a sin-
gle line of management—allows for
more  frequent  communication
among the personnel responsible for
these functions. Techniques that re-
spondents judged to be statistically
significantly less valuable than pre-
dicted by their use tended to be for-
mal coordination techniques, both
interpersonal ones in which the infor-
mation conveyed is relatively routine
(code inspections, status reviews) and

o
MORE VALUE
THAN USE Other project
members
5—
Nonproject
company
members
a4l o
8 Boss
2
3 Client O Project d at
@ roject documentation
o experts o
[
£
k)
o
2
©
=8 Source code
Vendors
'O Books and journals
2 -
O Electronic bulletin boards
LESS VALUE
THAN USE
. 1 | 1 | |
1 2 3 4 5 6
Use of help sources
Note. Figure shows the relationship between the extent to which software engineers used a
source to get help on a work problem and how much they valued it. Underlined sources had
value that was significantly different from what one would predict from the amount they were
used. Sources above and to the left of the regression line were judged as relatively valuable
given the amount they are used, while sources below and to the right of the regression line
were judged as relatively valueless relative to the amount they are used.

Figure 2. Comparing the use and value of sources of help

76

March 1995/Vol. 38, No. 3 COMMUMICATIONS OF THE ACM

impersonal ones (project documents,
examination of source code, mile-
stones schedules, and error tracking).

How do software professionals get
help? The way project members deal
with specific work problems also re-
flects coordination patterns in soft-
ware development. We asked people
to describe their most recent project-
related problem. A variety of techni-
cal and managerial problems were
reported. ‘Technical problems in-
cluded such difficulties as dealing
with corrupt data in a database, de-
ciding on a new programming lan-
guage to use on a project, determin-
ing whether a particular piece of data
was needed for an interface, or inves-
tigating why a software module ran
too slowly. Managerial problems in-
cluded specifying a human interface
that was being jointly defined by two
separate companies, calculating a
complete cost estimate for a new proj-
ect, or handling a conflict in responsi-
bilities between a developer and a
document writer.

From the list of nine information
and consultation sources, respon-
dents rated (1) the extent to which
the source was used to solve the par-
ticular problem and (2) the potential
usefulness of the source, whether or
not it was actually used. Again, rat-
ings were made on 7-point Likert
scales with “1” indicating that the
source was “‘not consulted” or was of
“low” potential usefulness, and “7"
that the source was “strongly con-
sulted” or of “high” potential useful-
ness.

Figure 2 parallels Figure 1 and
shows which information sources
were valued more than one would
expect from their use (above the line),
and which were valued less than one
would predict from their use (below
the line). By far, other people were
the most used and valued sources of
help in software development proj-
ects and, compared to various docu-
ments, were valued more than was
predictable from their use. Consistent
with previous research (for example,
[2]), software engineers overwhelm-
ingly get their information from
other people, and the ease of getting
the information is a critical determi-
nant. Thus, in our data, three of the
four information sources used most
were other people. Other project




Table 3. Intercorreiations among outcome measures

Coordination

success

Managers’ Client

evaluations

satisfaction

Software
quality

Software
productivity

Coordination success 1.00

Management ratings 0.13** (65) 1.00

Client satisfaction 0.61%* (18) 0.16 (18) 1.00

Software productivity S0.1380 (51 0.11 (51) —0.26 (16) 1.00

Software quality =0.05 (51) =0.06 (15) =0.11 (16) 0.36%* (51) 1.00

Note.
Entries are Pearson correlation coefficients

Number of projects on which each correlation s based is i parentheses

) < 0.01

Table 4. Path coefficients for predicting outcome measures

Independent

variables

Dependent variables

Project age
Project size
Interdependence
Planning stage
Project certainty
Interpersonal
networks
Formal
procedures
Certainty*
networks
Members
informed
Adjusted R*

0.09

0.00 0.17 —0.02

U B7E 0.28* =0.05

—0.02 —0.09

3§ —0.28* —0.13
0.22¢ 0.27* 0.56%*
0.35%*

=022
=0, 3728

0.35 0.27 0.40

03024 0.22
=0.11 0.23
0.1 —0.47%*

0.00 0.01

0.30%* 0.24
—0.08 0.321

0.01 0.267

0.17 0.03

0.46* —0.26%

0.55 0.30

Note: Entries are standardized Beta Coefficients
ip < 0.10

*p<0.05

<001

members, often those in close physi-
cal proximity to the respondent, were
used as information sources far more
than any other source.

On the other hand, people who
were difficult to access (other com-
pany employees not on the project,
subject matter experts from outside
the company, and vendor represen-
tatives) were used as information
sources substantially less than other
project members. Yet these outsiders
were judged to be valuable sources of
help, more so than was predicted by
the degree to which they were used.
In contrast, all forms of written docu-
mentation were judged as less valu-
able than personal contacts, and some
of them were judged to be signifi-

cantly less valuable than one would
predict from their use (project docu-
ments and memos, books, and jour-
nals, and electronic bulletin boards).
Again, these results suggest the value
of getting information by interper-
sonal means from outside one’s im-
mediate work group.

among mea-
sures. This article focuses on coordi-
nation success, but coordination suc-
cess is only one indicator of success in
software development projects and
may even be irrelevant if it bears no
relationship to other measures of suc-
cess. Moreover, the measure of coor-
dination success used in this study is
based on the responses of workers
and first-level supervisors in each

7,
Interr

COMMUNICATIONS OF THE AcM March 1995/Vol. 38, No. 3

project. To assess the validity of this
measure, we computed the Pearson
correlations among all the outcome
measures available. This analysis is
presented in Table 3.

The most important finding re-
vealed in Table 3 is that staff mem-
bers’ assessment of their project’s
coordination strongly correlates with
customers’ satisfaction with the soft-
ware development company and the
software it produces. A second inter-
esting finding is that senior manage-
ment’s assessment of the quality of
projects is unrelated to other mea-
sures of project success. Finally, mea-
sures of software productivity and
software quality, based on software
metric data, are interrelated: projects

77



. - Coordination
- - N — - —
-+— Project characteristics techniques Outcomes
—0.47
Management
—0.28 0.26 ratings
Planning 0.28 Use of formal,
stage ™| impersonal
027 procedures ~0.26
Project 034
size +
032
-0.37 Interpersonal
0.26 > networks 0.35
0.39 0.22 1
Project
certainty 0.55 _ | Members | 0.46
| informed
.46 — A
0.4 _Organizational b 0.53 ry
interdependence —0.28
Interpersonal networks
-0.37
0.25 Project certainty v
0.25 0.29
Project Coordination
age 0.30

Figure 3. Factors influencing successful coordination

that produce many lines of code also
produce code of good quality (that is,
fewer errors, faults, and shorter time
to fix field faults). Yet these software
metric data are unrelated to clients’
assessments of the project. Why the
software metric data failed to corre-
late with other outcome measures
not clear. It may be that the metrics
collected and used in this company
are not the appropriate ones. Indeed,
it is generally the case that much
validation against known out-

mor
comes is needed in the area of soft-
ware metrics. It may be also that com-
paring even valid metrics across
projects is problematic; metrics may
only be useful as a comparison within
a single project.

Predicting Coordi;
this section we use path analysis to
understand the project characteristics
and coordination techniques that
predict successful project coordina-
tion. The coordination success scale—
our measure of the degree to which a
project is well coordinated—was dis-
cussed previously.

S In

Path analysis uses a system of linear

regression equations o lest causal
hypotheses by holding constant the
effects of antecedent variables when
imating the causal impact of a focal
variable. In the path analysis, we as-
sumed the following causal ordering:
structural  characteristics,
project age, size, and interdepen-
dence could potentially influence a
project’s certainty. Together these
project characteristics could potenti-
ally influence the coordination tech-
niques a project adopts, which, in
turn, could potentially influence how
well informed project members were
and how successfully the project was
coordinated. This causal ordering is
consistent with both the prior litera-
ture on task certainty and coordina-
tion (e.g., [21, 23]) and the literature
on software engineering (e.g., [8,
12]). However, like all path analyses
based on cross-sectional data, the
ordering can be debated. For exam-
ple, the lack of success on a project

such as

could cause managers to increase its
size (one of the dangers Brooks [9]
warned about), or the coordination
techniques that a project adopts may

T8 vk 1995/ V0l 35, No. § commumICATIONS OF THE AcM

affect the project’s certainty.

Figure 3 presents the path model
showing only significant relationships
among the variables from Table 2
and the outcome The
numbers on the arcs are the stan-
dardized beta weights from Table 4.
The standardized beta weight is a
measure of strength of association. It
shows the direction and magnitude of
change in a dependent variable (in
standard deviation units) when an
independent variable increa by
one standard deviation unit. For ex-
ample, project size positively predicts
usc of formal, impersonal procedures
(with a standardized beta weight of
0.28), whereas use of formal imper-
sonal procedures predicts managerial
ratings (with a standardized beta
weight of 0.25), but does not predict
coordination success (the two boxes
are not connected). Note that the in-
formation shown in Figure 3 com-
bines two separate path analyses, one
predicting coordination success and
the other predicting higher manage-
ment’s ratings of projects. The results
of the two analyses are displayed
together  for completeness  and
coherence.

measures.

The first conclusion to be drawn



from Figure 3 is that projects with dif-
ferent characteristics differed in the
degree to which they were coordi-
nated. As one might expect, projects
that were older, smaller, and less in-
terorganizationally  interdependent
were better coordinated. In addition,
projects that were more technically
certain (that is, stable, homogeneous
and confronting routine problems)
had project staff who were better in-
formed and better coordinated. In-
terestingly, both project age and

project interdependence had part of

their effects on coordination success
through project certainty. That is,
older projects were on average more
certain, and this factor made coordi-
nation easier to accomplish. Similarly,
projects that were less interdepen-
dent have more control over the di-
rections they set and the resources
available to them. These factors made
project members more informed
about decisions that affected project
success. These factors also made proj-
ects more certain and, in turn, better
coordinated.

We had seen earlier that projects
with different characteristics rely on
different coordination techniques. In
particular, we have seen that larger
projects, more certain projects, and
projects that have passed beyond the
planning phases of the software life
cycle were more likely to use formal,
impersonal coordination techniques
such as written documents, milestone
and delivery schedules, and manage-
ment tracking of errors and change
requests. An interesting finding re-

vealed in Figure 3 is that the use of

formal procedures is not associated
with better intergroup coordination
once one controls for the conditions
under which they are used.

Figure 3 shows the factors that pre-
dict whether members of a project
had a dense interpersonal network
that extends beyond the project’s
boundaries. (See also Table 2.) In
projects that were highly interdepen-
dent, members of the project by ne-
cessity knew many people outside
their projects. In large projects, the
interpersonal network was within the
project and the average project mem-
ber knew far fewer people outside of
their project.* Finally, more certain
projects have more extensive inter-
personal networks.

The maintenance of an extensive
interpersonal network was associated
with better project outcomes. In par-
ticular, in projects in which members
talked to others outside of the proj-
ect, both project members and their
management knew more about proj-
ect status and commitments. This
greater awareness aided their inter-
group coordination.

Another interesting finding shown
in Figure 3 is the statistical interaction
between project certainty and inter-
personal networks. This interaction

means that the beneficial effects of

interpersonal networks were most
pronounced when projects were un-
certain. This finding is consistent
with organizational research—that
informal, interpersonal communica-
tion is necessary for coordination pri-
marily under conditions of uncer-
tainty.

dicti M.

Pr g gers’ A

Although not the primary focus of the
study, it is interesting to note that
senior managers’ assessments of the
quality of the software process and
product that they managed was unre-
lated to either their staff’s assessments
of the success of their project’s coor-
dination, client’s satisfaction with the
company, or the software quality
metrics.

Figure 3 and Table 4 show the fac-
tors that significantly predicted se-
nior managers’ assessments of the
projects. Managers judged older
projects that were self-contained and
that relied heavily on formal, imper-
sonal coordination techniques as
more successful.

Discussion

The results suggest the value of both
informal and formal interpersonal
communication as mechanisms for
sharing information and achieving
coordination in software develop-
ment. While much of the recent at-
tention in software engineering has
been on methods for formalizing
communication among specialists,
the data from this study suggest that,
to be successful, these methods must
at least be supplemented with inter-

“In these large projects one suspects that the
role of gatekeepers is extremely important for
maintaining contacts outside the project. Unfor-
tunately, here we had no way to identify gate-
keepers.

COMMUNICATIONS OF THE AcM March 1995/Vol.38, No. 3

l eajtwarp Development

personal communication. Software
development requires personal com-
munication across functional bounda-
ries to cope with uncertainty. Mana-
gerial and  technical  problems
continually arise in the process of cre-
ating software, and while people can
solve some of these problems them-
selves or by examining relevant docu-
ments, other problems demand infor-
mation or cooperation from other
people. An employee who doesn’t
understand the work flow that soft-
ware was designed to support, who
needs to decide which of two modules
to change to fix a bug, who needs
another’s module changed, or who
needs more information to clarify a
functional specification document,
generally requires help from some-
one else in the software development
process.

The standard response when one
confronts a problem that cannot be
solved alone is to go to a colleague
close by. However, not all the neces-
sary knowledge, relevant viewpoints,
or requisite power can be gathered
from local colleagues, who are often
consulted as much for convenience as
for relevance or competence. Per-
sonal contact with those outside of the
immediate supervisory group is one
way to get this information. Thus,
projects with denser cross-boundary
networks were better informed and
coordinated. Extensive personal net-
works were particularly beneficial in
uncertain projects.

However, direct contact between
organizational members is not a pan-
acea for coordination problems in
large software projects, both because
of the excessive transaction costs re-
sulting from the many pairwise con-
versations and because of the ephem-
eral nature of the information
transferred in them. Thus, a large
project will also need formal commu-
nication like requirements review
meetings, design review meetings,
and opportunities for customers to
test software. These settings allow the
diverse groups involved in the proj-
ect to come together in a controlled
way. In the present study, project
members judged these meetings
across functional areas to be espe-
cially valuable, relative to their use.
Not all meetings were judged as valu-
able, however. In particular, meet-

79



euﬂwun’ Deuvelopment J

ings in which routine information
was exchanged or that only involved
members of the project team, such as
status review meetings or code in-
spections, were judged as less valu-
able than one would predict from
their extensive use.”

In the company described here,
formal, impersonal modes of coordi-
nation, such as project documents,
memos, and bulletins, milestone and
delivery schedules, and mechanisms
for monitoring and approving re-
quests to modify the software were a
standard part of the software devel-
opment process and hence heavily
used. Surprisingly, once one con-
trolled for the conditions under
which they are used, namely in
larger, more certain projects that had
moved beyond the planning stages,
greater reliance on them was not as-
sociated with better coordination.
Moreover, project staft’ viewed these
formal coordination procedures as
less valuable than one would expect
from their extensive use. These find-
ings suggest some of the limitations
on formal procedures and processes.

Senior managers are likely to be
major beneficiaries of formal project
management procedures. These pro-
cedures are often used to enable se-
nior managers to establish control
and gain feedback about the software
development process. In the com-
pany we studied, staff members often
complained, for example, that soft-
ware metric data and status reviews
were used primarily by senior man-
agers and had little impact on the
day-to-day software development
process. These senior managers rated
most highly projects that were rela-
tively self-contained (i.e., had few
organizational dependencies) and
about which they received standard-
ized reports (i.e., the projects that re-
lied heavily on formal project man-
agement procedures). We interpret
this pattern to mean that they pre-
ferred projects where they thought
they were in control. However, the

®It is important to point out, however, that par-
ticipants’ assessments of meetings is only one
index of value. It is possible for a project to ben-
efit from meetings, even though participants
individually don’t benefit or don’t perceive the
benefit. Thus, code inspections, for example,
may reduce errors and therefore downstream
expense, even though the benefit may accrue to
maintenance organizations, and not to the initial
developers.

managers may have been misled by
an 1llusion of control, since their
judgments of projects were unrelated
to their customers’ satisfaction or with

their staff members' assessments of

them.

Implications. One may draw both
practical and theoretical implications
from the results of this research. Our
data suggest strongly that personal
communication is important for suc-
cessful coordination in software de-
velopment, but it may be too expen-
sive, too ephemeral, or too local to be
an effective communication mecha-
nism. Thus, without technological
assistance, greater use of personal
communication channels might in
fact have deleterious effects on devel-
opment. For example, if people are
working near peak efficiency, creat-
ing more pairwise communications
might result in overload. The chal-
lenge in software engineering should
not be to devise methods to minimize
personal communication as, for ex-
ample, formal specification languages
are intended to do. Rather a goal
should be to make interpersonal
communication more efhicient and
effective by remedying the problems
of expense, ephemerality, and
parochialness.

Consider, for example, the well-
known tendency for informal com-
munication to be mediated by physi-
cal proximity and, as a result, to be
too local. Engineers typically get their
information from people who are in
their immediate area. Thus, more
time is spent with neighbors than is
productive. Software engineers need
to acquire information and under-
standing from those who are remote
and otherwise would be barred from
the core of the development process,
such as problem domain experts,

users, vendors of computers and of

auxiliary = software, documentation
specialists, or training personnel. The
expertise that these specialists can
bring to bear is potentially relevant
throughout the development pro-
cess, although in a waterfall develop-
ment model, it is typically applied at
()nly a few points. For example, users
may be interviewed when the func-
tional requirements are being de-
fined and again during software test-
ing, but may be totally uninvolved
during the coding phases of develop-

March 1995/Vol. 38, Nu. 3 COMMUNICATIONS OF THE ACM

ment, when many of the subsiantive
details of design are fleshed out.

There are both managerial and
technological solutions to this prob-
lem. Both participatory design [16]
and the hiring of domain experts to
be part of the software development
team are attempts to make the users’
experience and perspective available
throughout the project. However, as
users become increasingly integrated
into the software project, they may
lose their distinctive point of view and
hence their value. Other experts have
advocated that samples of users fre-
quently test intermediate versions of
the software, so that the naive users’
perspective is continually injected
into the software development pro-
cess [14].

Formal project meetings, in which
different stateholders make or review
highly consequential but uncertain
decisions on functional requirements
or software architecture, are an im-
portant mechanism currently used to
insure that different points of view
are represented. Decisions reached at
such meetings have important conse-
quences for the project as a whole.
Yet these meetings have important
limitations. The meetings themselves
are often inefficiently run, they often
have disproportionate attendance
from local representatives, and the
rationale for important decisions is
often lost to people who didn’t attend
the meetings. These problems sug-
gest that computer and communica-
tion tools for conferences or distrib-
uted meetings are likely to be useful,
by opening up the meetings, making
them more efficient, and providing
an archive of the meeting (see [15,
17]) for recent discussions on com-
puter-supported meetings).

In addition to recommendations
for improving the software develop-
ment process, this study has some
implications for software engineering
research as well. Our conclusions
about coordination in software devel-
opment are consistent with the large
literature about coordination in orga-
nizations generally. QOur findings
about the importance of interper-
sonal communications for dealing
with problems of uncertainty have
been identified in organizations as
diverse as hospitals [13], social ser-
vices agencies [23], and research and



development organizations [21]. We
believe that the large literature on
organizational theory, developed in
non-software settings, has more rele-
vance to software development than
had been recognized previously in
software engineering. @

References
1. Adams, J.S. The structure and dy-
namics of behavior in organizational
boundary roles. In M.D. Dunnette,
Ed. Handbook of Industrial and Organi-
zational ~ Psychology.  Rand-McNally,
Chicago 1976, 1175-1199.

. Allen, I.J. Managing the Flow of Tech-
nology. MIT Press, Cambridge, Mass.,
1977.

. Blau, P. and Scott, W.R. Formal organi-
zations. Scott, Foresman, San Fran-
cisco, 1962,

. Blazer, R. Imprecise program specifica-
tion. Report ISI/RR-7
tion  Science
1975.

. Boehm, B.W. Software engineering.
IEEE Trans. Comput., (Dec. 1976),
1226-1241.

. Boehm, B.W. Software Engineering
Economics. Prentice-Hall, Englewood
Cliffs, NJ, 1981.

. Brewer, M.B. and Kramer, R.M. The
psychology of intergroup attitudes
and behavior. Annual Review of Psy-
chology 36, 1985, 219-243.

. Brooks, F.P. The Mythical Man-Month

Addison-Wesley, Reading, Mass.,

1975.

Brooks, F.P. No silver bullet: Essence

and accidents of software engineer-

ing. IEEE Comput. Soc. 20, (Apr.

1987), 10-18.

Culnan, M.J. Environmental scan-

ning: The effects of task complexity

and source accessibility on informa-

tion gathering behavior. Decis. Sci. 14

(1983), 194-206.

. Curtis, B., Krasner, H., and Iscoe, N.
A field study of the software design
process for large systems. Commun.
ACM 31, 11, (Nov. 1988), 1268-1287.

12. Fox, |.M. Software and its Development.
Prentice-Hall, Englewood Cliffs, NJ,
1982.

13. Georgopoulos, B.S., and Mann, F.C.
The Community General Hospital. Mac-
millan, NY, 1962.

14. Gould, ]J.D., and Lewis, C. Designing
for usability—Key principles and
what designers think. In Proceedings of
CHI'83. ACM Press, New York, 1983,
pp- 50-53.

15. Hiltz, S.R., and Turoff, M. The network
nation: Human communication via com-
puter.  Addison Wesley, Reading,
Mass., 1978.

r

@

'S

36, Informa-
Institute, December,

o

o

<

®

©

1

bd

1

jomy

1

17.

18.

1

©

20.

21.

22.

23.

w

24.

25.

b

Kyng, M. Designing for cooperation:
Cooperating in design. Commun. ACM
34, 12 (Dec. 1991), 65-73.

McCloud, P. An assessment of the
experimental literature on electronic
support of group work: Results of a
meta analysis. Human-Comput. Interac-
tion 7, 3 (1992), 251-280.

Newcomb, T.R. The Acquaintance Pro-
cess. Holt, Rinehart and Winston, New
York, 1961.

Pelz, D.C. and Andrews, F.M. Scientists
in Organizations: Productive Climates for
Research and Development. Wiley, New
York, 1966.

Travis, P. Why the AT&T network
crashed. Telephony 218, 4 (January 22,
1990), 11
Tushman,

z

M.L.
roles in the innovation process. Admin
Sci. Q. 22, 4 (1977), 587-605.

U.S. General Accounting Office. Con-
tracting for Computer Software Develop-
ment—Serious Problems Require Man-
agement  Attention  to  Avoid Wasting
Additional Millions. U.S. Department
of Commerce, National Technical In-
formation  Service, P880-105638,
Washington, D.C., 1979.

Van de Ven, A.H., Delbecq, A.L., and
Koenig, R. Jr. Determinants of coor-

Special - boundary

dination modes within organizations.
Amer. Soc. Rev. 41 (1976), 322-338.
Zajonc, R.B. Attitudinal effects of
mere exposure. J. Personality and Soc.
Psych. 9, 1968, 1-28.

Zipf, G.K. Human Behavior and the
Principle of Least Effort. Addison-
Wesley, Cambridge, Mass., 1949.

About the Authors:

ROBERT E. KRAUT is a professor of so-
cial psychology and human-computer in-
teraction at Carnegie Mellon University.
Current research interests include organi-
zational communication and the social
impact of information technology, includ-
ing office automation and employment
quality, technology and home-based em-
ployment, the communication needs of
collaborating scientists, the design of in-
formation technology for small-group in-
tellectual work, and the impact of national
information networks. Author’s Present
Address: Carnegie Mellon University,
School of Computer Science, 5000 Forbes
Avenue Pitsburgh, PA 15213; email:
robert.kraut@cmu.edu

LYNN STREETER is a senior director at
U.S. West Technologies and manages the
applied research computing effort. Cur-
rent research interests include speech per-
ception and analysis, human/computer
interface design, communications in large
software projects, information retrieval,
and information services. Author’s Pres-
ent Address: U.S. West Advanced Tech-
nologies, 4001 Discovery Drive, Boulder,
CO 80303; email: Istrect@advtech.uswest
com

Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct commercial
advantage, the ACM copyright notice and the
title of the publication and its date appear, and
notice

given that copying is by permission of
ation for Computing Machinery. To
. or to republish, requires a fec
andfor specific permission.

© ACM 0002-0782/95/0300 $3.50

COMMUNICATIONS OF THE ACM Muaich 1995/ Vol. 38, No. 3



