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Abstract. In this paper, we propose a restarted variant of the Lanczos method for symmetric
eigenvalue problems named the thick-restart Lanczos method. This new variant is able to retain an
arbitrary number of Ritz vectors from the previous iterations with a minimal restarting cost. Since
it restarts with Ritz vectors, it is simpler than similar methods, such as the implicitly restarted
Lanczos method. We carefully examine the effects of the floating-point round-off errors on stability
of the new algorithm and present an implementation of the partial reorthogonalization scheme that
guarantees accurate Ritz values with a minimal amount of reorthogonalization. We also show a
number of heuristics on deciding which Ritz pairs to save during restart in order to maximize the
overall performance of the thick-restart Lanczos method.
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1. Introduction. Given an n×n matrix A, its eigenvalue λ and the correspond-
ing eigenvector x are defined by Ax = λx. If the matrix size is large and only a smaller
number of eigenvalues are wanted, a projection-based method is usually used [16, 18].
These types of methods usually build orthogonal bases first and then perform the
Rayleigh–Ritz projection to extract approximate solutions. There are some alterna-
tive projection methods, such as the harmonic Ritz value method [14], but the most
significant difference among the projection eigenvalue methods is how they generate
their bases. For this reason, most of the eigenvalue methods are named after their
basis generation procedures.

When the matrix is symmetric, the Lanczos method (see Algorithm 1, [11, 16,
20]) is the most commonly used method. Other frequently used methods include
the Arnoldi method (see Algorithm 2, [1, 20, 24]) and the Davidson method [6, 7,
23]. The Arnoldi method and the Lanczos method are mathematically equivalent
on symmetric eigenvalue problems. The Lanczos method is used more frequently
because it takes advantage of the fact that most coefficients hj,i computed in step (c)
of Algorithm 2 are zero (hj,i = 0, j = 1, . . . , i − 2), and the matrix formed from hj,i

is symmetric (βi−1 ≡ hi−1,i = hi,i−1, αi ≡ hi,i). This allows the Lanczos method
to avoid a significant amount of arithmetic operations. The Davidson method offers
more functionality, such as preconditioning, flexible restarting options, etc., but it
also uses more arithmetic operations per iteration and more computer memory.

There are many different variations of the Lanczos method depending on factors
such as restarting, reorthogonalization, storage schemes for the Lanczos vectors qi, and
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THICK-RESTART LANCZOS METHOD 603

Algorithm 1. The Lanczos iter-
ations starting with r0. Let β0 =
‖r0‖, and q0 = 0.

For i = 1, 2, . . .,
(a) qi = ri−1/‖ri−1‖,
(b) p = Aqi,
(c) αi = qTi p,
(d) ri = p− αiqi − βi−1qi−1,
(e) βi = ‖ri‖.

Algorithm 2. The Arnoldi iter-
ations starting with r0.

For i = 1, 2, . . . ,
(a) qi = ri−1/‖ri−1‖,
(b) p = Aqi,
(c) hj,i = qTj p, j = 1, . . . , i,

(d) ri = p−∑i
j=1 hj,iqj ,

(e) hi,i+1 = ‖ri‖.

so on. This paper will discuss a restarted Lanczos method, and in the remainder of this
section we will discuss the motivations for restarting and briefly review the commonly
used restarting schemes. We plan to store the Lanczos vectors in a computer’s main
memory. This significantly reduces the scope of the discussion. The issues related to
reorthogonalization and details of how to restart are discussed later in the paper.

In both Algorithms 1 and 2 a new vector qi is generated in each iteration. These
vectors are needed when performing reorthogonalization and computing the Ritz vec-
tors. Often a large number of iterations are needed to compute an eigenvalue. On
most machines, there is not enough computer memory to store the Lanczos vectors.
In addition, the number of arithmetic operations associated with the reorthogonali-
zation and the Rayleigh–Ritz projection grows as the number of vectors increases. A
restarted method avoids these difficulties by limiting the maximum number of vectors
it generates at any time. When the maximum number is reached, a set of new start-
ing vectors is computed and the method is restarted. Typically the restarted Lanczos
method stores the Lanczos vectors in core, which allows fast access. Because the
maximum number of vectors is usually modest, the arithmetic operations required by
reorthogonalizations and the Rayleigh–Ritz projection are reasonably small. These
features allow a restarted method to execute efficiently.

There are a number of ways to restart the Lanczos method. Since Algorithm 1
can start with only one vector, the most straightforward way is to use the Ritz vec-
tor if one eigenvalue is wanted. If more than one eigenvalue is wanted, we can lock
the converged ones and combine the rest into one starting vector [18]. Typically, a
restarted Lanczos method with one of these restarting schemes needs significantly
more iterations to compute a solution than the nonrestarted version. Recently, there
has been a number of significant developments in restarted methods. The implicit
restarting scheme is a successful strategy that has been applied to both the Arnoldi
method [24] and the Lanczos method [2]. Another successful technique is the dynamic
thick-restart scheme [7, 10, 15, 25]. Because the thick-restart scheme uses Ritz pairs
directly, it is also known as an explicit restarting scheme. The most commonly used
thick-restart method is the thick-restart Davidson method. When used with identity
preconditioner, this method is mathematically equivalent to the implicitly restarted
Arnoldi method with exact shifts [25]. Since the implicit restart scheme does not
restart with Ritz vectors, a separate postprocessing step is required to compute the
final Ritz vectors when the users need eigenvectors. This postprocessing step is not
needed with an explicit restarting scheme that keeps the latest Ritz vectors in the cur-
rent Krylov subspace. The thick-restart procedure is only slightly different from the
Rayleigh–Ritz projection, whereas the implicit restarting procedure is more complex.
The implicitly restarted Arnoldi method is known to have stability concerns [13]; ex-
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604 KESHENG WU AND HORST SIMON

plicitly restarted methods do not have the same concerns. For these reasons, we set
out to develop and study a thick-restart Lanczos method for eigenvalue problems in
this paper.

2. Thick-restart Lanczos algorithm. We have briefly reviewed the features
of the thick-restart procedure and the Lanczos method. In this section we will show
how the two may be combined to form an eigenvalue method.

Before any restarting takes place, the restarted Lanczos method proceeds as de-
scribed in Algorithm 1. Assume that m iterations are allowed before restarting. After
m iterations, the vectors qi satisfy the Lanczos recurrence

AQm = QmTm + βmqm+1e
T
m,(2.1)

where Qm = [q1, . . . , qm], em is the last column of the identity matrix with m columns,
and Tm ≡ QT

mAQm is an m×m symmetric tridiagonal matrix constructed from αi and
βi, ti,i = αi, ti,i+1 = ti+1,i = βi. Using the Rayleigh–Ritz projection, we can produce
approximate solutions to the eigenvalue problem. Let (λ, y) be a pair of eigenvalue
and eigenvector, i.e., an eigenpair, of Tm; then λ is an approximate eigenvalue of A
and x = Qmy is the corresponding approximate eigenvector. They are also known
as the Ritz value and the Ritz vector. The residual of this approximate solution is
defined to be Ax− λx. For symmetric eigenvalue problems, the norm of this residual
is a good indicator of the solution quality.

When restarting, we first determine an appropriate number of Ritz vectors to
save, say, k, then choose k eigenvectors of Tm, say, Y , and compute k Ritz vectors,
Q̂k = QmY . The following derivation can be carried out by assuming Y to be any
orthonormal basis of a k-dimensional invariant subspace of Tm. Since the matrix
Tm is symmetric, there is no apparent advantage to use any basis set other than
the eigenvectors. If Y are eigenvectors of Tm, the vectors saved during restart Q̂k

are Ritz vectors. To distinguish the quantities before and after restart, we denote the
quantities after restart with a hat. For example, the projected matrix Tm after restart
is T̂k ≡ Y TTmY . Since we have chosen to restart with Ritz vectors, the matrix T̂k

is diagonal and the diagonal elements are the Ritz values. Immediately after restart,
the new basis vectors satisfy the relation

AQ̂k = Q̂kT̂k + βmq̂k+1s
T ,(2.2)

where q̂k+1 ≡ qm+1 and s ≡ Y T em. We recognize that this equation is an extension
of (2.1) because the residual vector of every Ritz vector in Q̂k is parallel to q̂k+1. In
Algorithm 1, the Lanczos recurrence is extended one column at a time by augmenting
the current basis with qi+1. In the same spirit, we can augment the basis Q̂k with
q̂k+1.

To continue extending the basis, we follow the augment Krylov subspace method
[3, 19] and use the Gram–Schmidt procedure to enforce the orthogonality of the whole
basis. The expression for q̂k+2 is

β̂k+1q̂k+2 = r̂k+1 ≡ (I − Q̂k+1Q̂
T
k+1)Aq̂k+1(2.3)

= (I − q̂k+1q̂
T
k+1 − Q̂kQ̂

T
k )Aq̂k+1

= (I − q̂k+1q̂
T
k+1)Aq̂k+1 − Q̂kβms.

The scalar β̂k+1 in the above equation is equal to the norm of the right-hand side so
that q̂k+2 has unit norm. Since the vector Q̂T

k Aq̂k+1 is known (= s), we only need to
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THICK-RESTART LANCZOS METHOD 605

compute α̂k+1 as in step (c) of Algorithm 1. The vector q̂k+2 can be computed by

replacing step (d) with r̂k+1 = p̂− α̂k+1q̂k+1−
∑k

j=1 βmsj q̂j , where p̂ = Aq̂k+1. While

computing q̂k+2, we also extended the matrix T̂k by one column and one row, which
produces an arrowhead matrix T̂k+1. The Lanczos recurrence relation (see (2.1)) is

maintained after this step, more specifically, AQ̂k+1 = Q̂k+1T̂k+1 + β̂k+1q̂k+2e
T
k+1,

where β̂k+1 = ‖r̂k+1‖. Even though T̂k+1 is not tridiagonal as in the original Lanczos
method, further steps of the restarted Lanczos algorithm can be carried out using
three-term recurrence, as shown next.

After we have computed q̂k+i (i > 1), to compute the next vector q̂k+i+1, we
again go back to the Gram–Schmidt procedure,

β̂k+iq̂k+i+1 = (I − Q̂k+iQ̂
T
k+i)Aq̂k+i

= (I − q̂k+iq̂
T
k+i − q̂k+i−1q̂

T
k+i−1)Aq̂k+i − Q̂k+i−2(AQ̂k+i−2)T q̂k+i

= Aq̂k+i − α̂k+iq̂k+i − β̂k+i−1q̂k+i−1,(2.4)

where by definition α̂k+i is q̂Tk+iAq̂k+i and β̂k+i is the norm of the right-hand side.
The above equation is true for any i greater than 1. From this equation we see that
computing q̂k+i (i > 2) requires the same amount of arithmetic work as in the original
Lanczos algorithm; see Algorithm 1. The matrix T̂k+i ≡ Q̂T

k+iAQ̂k+i can be written
as follows:

T̂k+i =




T̂k βms

βmsT α̂k+1 β̂k+1

β̂k+1 α̂k+2 β̂k+2

. . .
. . .

. . .


 .

The above formulas show how to continue the Lanczos iterations after the first
restart. The derivation is based on the facts that the Lanczos vectors are orthogo-
nal and that they satisfy the Lanczos recurrence. Since the vectors resulting from
the above formulas also satisfy the same conditions, the procedure can be repeatedly
restarted. It is clear that this restarted algorithm is cheaper than the straightfor-
ward versions of the augmented Krylov methods. If k vectors (Q̂k) are saved, the
augmented Krylov subspace method needs the projection matrix Q̂T

k AQ̂k in order to

proceed. The crucial step here is determining how to generate AQ̂k. Usually one
either explicitly multiplies A and Q̂k or computes AQ̂k from stored AQm of previous
iterations. However, because of (2.2), Q̂T

k AQ̂k is available without performing any
matrix-vector multiplication with A or storing AQm in computer memory. Similar
to the nonrestarted Lanczos method, using the Lanczos recurrence relation we can
compute the residual norms of the approximate eigenpairs without explicitly com-
puting the residual vectors. This allows us to measure the quality of the solutions
efficiently.

The matrix Tm is no longer tridiagonal after the first restart but can still be
stored in an efficient manner. As mentioned before, the matrix T̂k is diagonal, and
its nonzero values can be stored as α̂1, . . . , α̂k. The array (βms) is of size k and can

be stored as β̂1, . . . , β̂k. In short, the arrays α̂i and β̂i are

α̂i = λi, β̂i = βmym,i, i = 1, . . . , k,(2.5)
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606 KESHENG WU AND HORST SIMON

where λi is the ith saved eigenvalue of Tm, the corresponding eigenvector is the ith
column of Y , and ym,i is the mth element of the ith column. After restart the first k
basis vectors satisfy the following relation:

Aq̂i = α̂iq̂i + β̂iq̂k+1, i = 1, . . . , k.

It is easy to arrange the algorithm so that q̂i and qi are stored in the same memory
location. The hat symbol is dropped in the following description of the algorithm.

Algorithm 3.
The thick-restart Lanczos iterations starting with k Ritz vectors and a residual

vector rk such that Aqi = αiqi + βiqk+1, i = 1, . . . , k, and qk+1 = rk/‖rk‖. The value
k may be zero, in which case αi and βi are uninitialized and r0 is the initial guess.

1. Initialization.
(a) qk+1 = rk/‖rk‖,
(b) p = Aqk+1,
(c) αk+1 = qTk+1p,

(d) rk+1 = p−αk+1qk+1−
∑k

i=1 βiqi,
(e) βk+1 = ‖rk+1‖,

2. Iterate. For i = k + 2, k + 3, . . .,
(a) qi = ri−1/βi−1,
(b) p = Aqi,
(c) αi = qTi p,
(d) ri = p− αiqi − βi−1qi−1,
(e) βi = ‖ri‖.

The difference between Algorithms 1 and 3 is in the initialization step. When k
is zero, the initialization step of the two algorithms are the same. Algorithm 3 can
take on an arbitrary number of starting vectors, but Algorithm 1 cannot. When k
is greater than zero, the initialization step orthogonalizes Aqk+1 against all existing
k+1 vectors. In all subsequent steps, the same three-term recurrence is used for both
Algorithms 1 and 3.

It is easy to see how an existing restarted Lanczos program can be converted to
generate orthogonal bases using the above algorithm. To convert a complete eigen-
value program, the Rayleigh–Ritz projection step needs to be modified because the
matrix Tm is not tridiagonal in the new method. Our options include treating it as
a full matrix, treating it as a banded matrix, and using Givens rotations to reduce
it to a tridiagonal matrix. After deciding what to do, we can use an appropriate
routine from LAPACK or EISPACK to find all eigenvalues and eigenvectors of Tm.
At this point, as in any other version of the Lanczos method, we can evaluate the
residual norms of the approximate solutions and perform a convergence test [9, 18].
In addition, based on Ritz values and their residual norms, we can also decide which
Ritz pairs to save. This allows us to compute only those Ritz vectors that are needed
for restarting.

Following the same argument used to show that the implicitly restarted Arnoldi
method is equivalent to the thick-restart Davidson method, it is easy to show that the
thick-restart Lanczos method is mathematically equivalent to the implicitly restarted
Lanczos method [27]. We derived the thick-restart Lanczos method by using the
augmented Krylov subspace concept which may lead to bases that do not span Krylov
subspaces. This equivalence property indicates that the bases built by this method in
fact span Krylov subspaces, though the starting vectors for the Krylov sequences are
not explicitly known. A corollary of this equivalence property is that the new method
is a Krylov subspace method. Because of the equivalence relation, we expect the new
method to be as effective as the implicitly restarted Lanczos method. One advantage
of the new method is that it is simpler to implement as a computer program.

This concludes the description of the new algorithm. In the remainder of this
paper, we will focus on two issues related to implementing the eigenvalue method
on computers: how to maintain orthogonality among the Lanczos vectors, and which
Ritz pairs to save when restarting.
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THICK-RESTART LANCZOS METHOD 607

Table 3.1
Information about the test matrices used.

Name N NNZ Description
NASASRB 54870 2677324 shuttle rocket booster structure from NASA
S3DKT3M2 90449 3753461 cylindrical shell, uniform triangular mesh
S3DKQ4M2 90449 4820891 cylindrical shell, quadratic elements

3. Orthogonality of the basis. The above description of the thick-restart
Lanczos method is accurate only when carried out in exact arithmetic. When imple-
mented as a computer program, the round-off errors of floating-point arithmetic will
cause the Lanczos vectors to lose orthogonality. A similar issue also exists for other
variants of the Lanczos method and has been extensively studied before. The typical
cure for loss of orthogonality is reorthogonalization through the Gram–Schmidt pro-
cedure. The commonly used reorthogonalization schemes are no reorthogonalization
[4, 26], the selective reorthogonalization [17], the partial reorthogonalization [22], and
the full reorthogonalization. In this section we will exam three of the four schemes,
i.e., no reorthogonalization, full reorthogonalization, and partial reorthogonalization.
We leave out the selective reorthogonalization because it has similar objectives to the
partial reorthogonalization scheme, and the latter one was shown to be more effective
[21].

If no reorthogonalization is performed, we avoid the arithmetic operations as-
sociated with reorthogonalization, and we need to access only the two most recent
Lanczos vectors when building the basis. If eigenvectors aren’t needed, there is no
need to access the earlier Lanczos vectors. Not performing reorthogonalization may
reduce both operation count and memory requirement of a nonrestarted Lanczos pro-
gram. The same is not true for the thick-restart Lanczos method. The thick-restart
Lanczos method cannot be implemented without storing the Lanczos vectors since
they are an integral part of the restarting process. Not performing reorthogonaliza-
tion in the thick-restart Lanczos method reduces only the arithmetic operations. In
the nonrestarted Lanczos method, loss of orthogonality among the Lanczos vectors
leads to spurious solutions, even though the spurious solutions are duplicate copies of
the correct eigenvalues [9, 16]. To illustrate the issues related to loss of orthogonality
in the thick-restart Lanczos method, we conduct some tests using three symmetric
matrices listed in Table 3.1. These matrices are the largest symmetric matrices from
the MatrixMarket web site1 when the tests were conducted.

Figure 3.1 shows the orthogonality level of the bases built by the thick-restart
Lanczos method without reorthogonalization. The horizontal axis indicates how many
times the Lanczos method restarted, and the vertical axis is the Frobenius norm of
QTQ − I, where Q contains 20 Lanczos vectors. When vectors in Q are orthogonal
to machine precision, we would expect ‖QTQ − I‖F to be on order of 10−15. As
‖QTQ − I‖F becomes close to one, Q is no longer a set of linearly independent vec-
tors. Data in Figure 3.1 show that the loss of orthogonality progressively becomes
worse after the first few restarts. Similar loss of orthogonality has been observed in
the nonrestarted Lanczos method. Despite the loss of orthogonality, the nonrestarted
Lanczos method can still compute the eigenvalues accurately. To see whether the
thick-restarted Lanczos method behaves similarly, we conduct further tests. For con-

1MatrixMarket URL is http://math.nist.gov/MatrixMarket.
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608 KESHENG WU AND HORST SIMON
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Fig. 3.1. The orthogonality level (‖QTQ− I‖F ) of the bases built by the thick-restart Lanczos
method without reorthogonalization (m = 20).

venience of discussion, we define δλ and δr to measure the errors caused by the loss
of orthogonality:

δλ ≡ |λ− xTAx/xTx|, δr ≡ ‖Ax− λx‖ − |βmeTmy|.
These two quantities together will be called the floating-point errors in this paper.
If the Rayleigh–Ritz projection is carried out using exact arithmetic on an exactly
orthogonal basis, both δλ and δr are zero. If the Lanczos vectors are orthogonal to
the machine precision (ε), then the floating-point errors are on the order of ε‖A‖.

Table 3.2 shows the five largest Ritz values and their corresponding δλ and δr
computed by the thick-restart Lanczos method without reorthogonalization (m = 20).
Since all values of δλ are close to ε‖A‖(= ελmax), these Ritz values are close to their
exact values. Given that the Ritz values are accurate, δr indicates errors in the Ritz
vectors. If the Ritz vectors are accurate, δr is expected to be close to ε‖A‖. The values
of δr in Table 3.2 are several orders of magnitude larger than ε‖A‖, which indicates
that the eigenvectors are not computed accurately. Similar characteristics are also
present in the nonrestarted Lanczos method. What is also similar is that they both
generate the same kind of spurious solutions. For example, the largest eigenvalue of
S3DKQ4M2 is a simple eigenvalue; however, from Table 3.2, we see it is computed
twice.

The most straightforward way to cure the loss of orthogonality problem is to per-
form full reorthogonalization. Since the full reorthogonalization maintains the orthog-

Table 3.2
The five largest eigenvalues computed by the thick-restart Lanczos method without reorthogon-

alization.

NASASRB S3DKT3M2 S3DKQ4M2
λ δλ δr λ δλ δr λ δλ δr

2648056755 1E-6 2E2 8798.436369 3E-11 7E-6 4601.653436 6E-11 2E-6
2647979344 1E-6 2E2 8796.715998 1E-11 7E-5 4601.653436 3E-11 7E-7
2634048615 4E-6 7E2 8794.143789 4E-11 1E-3 4600.851648 4E-11 3E-6
2633679289 1E-6 9E2 8793.936155 4E-11 7E-3 4599.515718 3E-12 2E-6
2606151408 3E-6 1E3 8792.317911 9E-12 8E-3 4598.281889 6E-11 2E-5
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THICK-RESTART LANCZOS METHOD 609

onality to the machine precision, reorthogonalization is necessary only if rTk+1rk+1 <

α2
k+1 +

∑k
i=1 β2

i after step (1.d) or rTi ri < α2
i + β2

i−1 after step (2.d) [28]. Usually it
is necessary only to orthogonalize ri against Qi once [16]. If the norm of ri reduced
significantly after the Gram–Schmidt procedure, it indicates that ri is almost a linear
combination of the current basis Qi. In other words, an invariant subspace has been
found. The algorithm can be continued with any unit vector that is orthogonal to
Qi. This is a different form of restarting which happens very infrequently. In this
case, βi should be set to zero. There are many different ways to implement the full
reorthogonalization procedure, for example, always performing the Gram–Schmidt
procedure once or twice, using a different criteria to determine when to invoke the
Gram–Schmidt procedure [5], etc. The scheme we have selected above appears to be
inexpensive and works well in tests.

The third reorthogonalization scheme is the partial reorthogonalization scheme
which simulates loss of orthogonality using the ω-recurrence and performs reortho-
gonalization only if the loss of orthogonality exceeds the user-specified limit. It is
relatively easy to adopt the ω-recurrence to the thick-restart Lanczos method [28].
Using the ω-recurrence, we can monitor the loss of orthogonality and maintain the
orthogonality to any reasonable level desired. Similar to the nonrestarted Lanczos
method, it is easy to show that the thick-restart Lanczos method can generate ac-
curate eigenvalues if the actual orthogonality level of the basis is no worse than

√
ε

[28]. The partial reorthogonalization procedure for the thick-restart Lanczos method
is very similar to that of the nonrestarted Lanczos method. One important caveat is
that the last residual vector before restarting, rm or equivalently qm+1 ≡ rm/‖rm‖,
must be orthogonal to the existing basis vectors to the machine precision. This does
not mean that the all earlier vectors need to be orthogonal to machine precision; it
merely means that the reorthogonalization process must be invoked in the last iter-
ation before restarting [28]. More details on the partial reorthogonalization can be
found in the appendix.

Figure 3.2 plots the orthogonality level of the Lanczos bases built by the thick-
restart Lanczos method with the partial reorthogonalization (m = 20). The difference
between the two curves is that the solid curve is generated with the modification
that always reorthogonalizes r20 while the dashed curve is generated without this
modification. This extra reorthogonalization ensures that r20 has no significant error
in the directions of the vectors to be discarded during restarting. Since errors in those
directions cannot be recovered in the future iterations, avoiding them improves the
overall quality of the bases. The two tests shown in Figure 3.2 clearly demonstrate
the importance of maintaining orthogonality of the last residual vector of a restarted
loop. The figure also demonstrates that when the last residual vector is orthogonal,
the orthogonality level of the whole basis can be maintained at a reasonable level.

The next set of tests will demonstrate that the thick-restart Lanczos method
with partial reorthogonalization generates accurate solutions [28]. To do this, we
compare the floating-point errors generated by the thick-restart Lanczos method with
partial reorthogonalization and with full reorthogonalization. To verify the results, we
also conduct the same test on an implementation of the implicitly restarted Lanczos
method with full reorthogonalization (ARPACK [12]). Table 3.3 shows the results
of this set of tests. The five largest eigenvalues of the three matrices are computed.
Corresponding to each eigenvalue, there is a pair of δλ and δr. The errors reported
in the table are the maximum errors of the five pairs. In these tests, we have used
a relatively small basis size (m = 10). The rationale for using a smaller basis size
is that the floating-point errors might be larger because more iterations are needed.
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Fig. 3.2. The orthogonality level (‖QTQ− I‖F ) of the bases prior to each restart.

Indeed the floating-point errors are slightly larger than when the basis size is 20. The
important point to note is that the errors of different methods are roughly the same.
Most of the quantities in Table 3.3 are about 10 ∼ 100ε‖A‖, which confirms that the
partial reorthogonalization scheme can maintain a very good orthogonality level (see
Figure 3.2) and generate accurate solutions.

It is possible for the orthogonality level in the Lanczos method with partial re-
orthogonalization to rise to the user-specified limit, typically

√
ε, in which case δr

would be on the order of
√
ε‖A‖, though δλ remains on the order of ε‖A‖. Table 3.4

shows an example where δr is significantly larger than ε‖A‖. In this example, the
smallest eigenvalues of NASASRB are computed. They are nine orders of magnitude
smaller than the largest one, and the relative gap ratio is on the order of 10−10. It
takes about 50,000 iterations for the thick-restart Lanczos method to reduce the resid-
ual norms of the five smallest Ritz values to 10−4. ARPACK reduces these residual
norms to about 104 using similar number of iterations and the same basis size. The
performance difference is mainly due to the differences in the restarting strategies
which will be discussed in next section. The size of ‖r‖ does not affect the value of

Table 3.3
The maximum floating-point errors of the five largest Ritz values computed using basis size (m)

10, where method I is the thick Lanczos method with partial reorthogonalization, method II is the
thick-restart Lanczos method with full reorthogonalization, and method III is ARPACK.

NASASRB S3DKT3M2 S3DKQ4M2
I II III I II III I II III

max δλ 7E-6 2E-5 6E-6 1E-10 4E-11 2E-10 5E-10 4E-10 3E-11
max δr 1E-5 2E-6 3E-6 5E-11 2E-10 7E-11 6E-10 3E-10 4E-10
MATVEC 185 185 184 2269 2269 4459 5119 5119 3646
restarts 46 46 39 465 465 1310 1516 1516 1516
time 11.5 12.0 14.6 200 213 577 533 555 504
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THICK-RESTART LANCZOS METHOD 611

Table 3.4
The maximum floating-point errors of NASASRB’s five smallest Ritz values computed using

basis size 1000.

I II III
max δλ 9E-7 2E-6 5E-7
max δr 7E-4 3E-6 4E-6
MATVEC 50471 50467 46761
restarts 51 51 61
time 9798(8PE) 8546(8PE) 8547(16PE)

δr. When full orthogonality is maintained, δr is on the order of 10−6 (∼ 10ε‖A‖); see
column II and III of Table 3.4. Because the smallest eigenvalues are much harder to
compute than the largest ones, many large eigenvalues reach convergence before the
smallest ones do. This provides ample opportunities for serious loss of orthogonality
to occur. The actual orthogonality level is near

√
ε in this case.

Tables 3.3 and 3.4 also contain some performance information about the different
methods. The CPU time reported is from a Cray T3E-900 at the National Energy
Research Supercomputer Center.2 The time in Table 3.3 is measured on two pro-
cessors. The numbers of processors used for Table 3.4 are next to the time values.
Since the two versions of the thick-restart Lanczos method use the same restart-
ing strategy, the time differences are mainly due to the different reorthogonalization
strategies. The results shown in Table 3.3 are representative of the typical case where
using partial reorthogonalization saves execution time. With full reorthogonalization,
the global reorthogonalization, i.e., the Gram–Schmidt procedure, is often invoked
once per matrix-vector multiplication. With partial reorthogonalization, the Gram–
Schmidt procedure is invoked only infrequently. The percentage of time saved is
relatively small because the Gram–Schmidt procedure can be performed much faster
than the parallel matrix-vector multiplications.

Table 3.4 shows an extreme case where using the partial reorthogonalization actu-
ally takes more time than using the full reorthogonalization. In this case, the partial
reorthogonalization algorithm invokes the global reorthogonalization frequently, about
once every three matrix-vector multiplications. Each time the global reorthogonali-
zation is invoked, the Gram–Schmidt procedure is applied on the two most recent
Lanczos vectors to make sure both vectors are orthogonal to the proceeding vectors
to machine precision. Since there are some Lanczos vectors that are not orthogonal
to machine precision against others, the Gram–Schmidt procedure might have to be
repeated more times than in the case where all Lanczos vectors are orthogonal to ma-
chine precision [28]. All these make the partial reorthogonalization more expensive
for solving this test problem.

In short, the loss of orthogonality among the Lanczos vectors has very similar ef-
fects on the thick-restart Lanczos method as on other variants of the Lanczos method.
Using the partial reorthogonalization, the thick-restart Lanczos method can generate
accurate eigenvalues but not always accurate eigenvectors. In most cases, using partial
reorthogonalization reduces the CPU time compared to using full reorthogonalization.
When implementing a general purpose Lanczos method, we would suggest using full
reorthogonalization. The tests performed in the next section use only the thick-restart
Lanczos method with full reorthogonalization.

2More information about the National Energy Research Supercomputer Center can be found at
http://www.nersc.gov.
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612 KESHENG WU AND HORST SIMON

4. Restarting strategies. The thick-restart Lanczos method offers the flexi-
bility of saving an arbitrary portion of the current basis during restarting. Given
this capability, a crucial problem is determining how to take full advantage of it.
A number of theoretical tools are available for analyzing restarting strategies used
in the implicitly restarted Arnoldi method and the thick-restart Davidson method
[2, 8, 15, 24]; however, the most successful strategies for deciding what to save are
based on heuristics. For example, ARPACK uses a heuristic strategy based on basis
size, number of eigenvalues converged, and so on. This section will briefly summarize
our experiences of using three such heuristics.

The first restarting strategy attempts to maximize the reduction of residual norms
at every step. This strategy is based on the one used in the dynamic thick-restart
Davidson method [25]. It is implemented using a parameter called the effective gap
ratio γ. In each step of the restarted Lanczos method, the residual norm is expected
to reduce by a factor proportional to e−

√
γ [15]. To maximize the residual norm

reduction, we need to maximize γ. If the eigenvalues of the matrix A are λ1 ≤ λ2 ≤
· · · ≤ λn, the gap ratio for λ1 is (λ2 − λ1)/(λn − λ1). When restarting to compute
the smallest eigenvalue while saving the eigenvectors corresponding to λ2, . . . , λk, the
effective gap ratio is [15, 25]

γ = (λk+1 − λ1)/(λn − λ1).

When used in the Davidson method or the Lanczos method, the eigenvalues in the
above definition are replaced with the computed Ritz values. Because the Ritz values
may not be good approximations to their corresponding eigenvalues and because there
are far fewer Ritz values than the eigenvalues m 
 n, the computed gap ratio γ may
be quite different from the actual gap ratio. Typically, when k is large, say, k ≥ 2m/3,
the computed gap ratio γ is significantly larger than the actual gap ratio. Another
problem with maximizing γ is that it is a monotonic function of k. The maximum
value for k is m − 1. If this maximum value is used, m − 1 Ritz pairs are saved
during restarting, and the restarting procedure is invoked after every matrix-vector
multiplication. Computing m−1 Ritz pairs takes a considerable number of arithmetic
operations. Since the computed γ is larger than its actual value, the reduction in
residual norm is much less than expected. To reduce the number of Ritz pairs saved,
the developers of the dynamic thick-restart Davidson method [25] enforce a limit on
k, k ≤ m− 3. In our experiences, we found that reducing the size of k often reduces
the overall execution time. The following formula is found to be a reasonable choice,
k ≤ max(neig, (3m+2nc)/5), where neig is the number of eigenvalues to be computed
and nc is the number of eigenvalues converged so far.

In the dynamic thick-restart Davidson method, instead of maximizing the residual
norm reduction of each iteration, we choose to maximize the residual norm reduction
of the whole restarted loop, i.e., maximize ξ ≡ (m− k)

√
γ. Alternatively, we can also

choose to maximize µ ≡ (m − k)γ. Both ξ and µ are not monotonic functions of k;
we actually need to search through all possible values of k to find their maximums.
Typically these strategies yield a smaller k than maximizing γ. However, to avoid
potentially choosing exceedingly large k, we also use the same restriction on k as in
the previous case.

Table 4.1 shows some examples of how the three restarting strategies work and
compares them to a simple restarted Lanczos method (LANSO-locking) and the im-
plicitly restarted Lanczos method implemented in ARPACK. It shows both iteration
counts and time used to compute the five largest eigenvalues of the three test matrices.

D
ow

nl
oa

de
d 

09
/0

6/
12

 to
 1

36
.1

59
.2

35
.2

23
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



THICK-RESTART LANCZOS METHOD 613

Table 4.1
Time and iterations needed to compute five largest eigenvalues of the test matrices (m = 20).

NASASRB S3DKT3M2 S3DKQ4M2
Iter. Time Iter. Time Iter. Time

LANSO-locking 2170 266 2678 464 > 5000 > 1000
ARPACK 145 23.0 973 233 961 257
TRLAN max γ 88 14.0 693 195 784 232
TRLAN max µ 96 14.4 684 167 741 196
TRLAN max ξ 92 12.9 691 165 757 191

The time reported is the number of seconds on a DEC alpha processor running at
450MHz. The simple restarted Lanczos method always restarts with the Ritz vector
corresponding to the largest Ritz value that is not converged yet, and it locks the
converged Ritz pairs. The program is implemented on top of the LANSO package
maintained by Beresford Parlett of UC Berkeley. Table 4.1 shows that the three
versions of the thick-restart Lanczos method use less time than the simple restarted
Lanczos method and ARPACK on the test problems. The differences among the three
versions of the thick-restart Lanczos method are relatively small.

This set of examples clearly demonstrates that the restarting strategy is important
to the overall effectiveness of the eigenvalue methods. The strategies suggested here
give reasonable performances compared to the existing strategies used in ARPACK.
Some of the known techniques not discussed here include saving Ritz pairs from the
opposite end of the spectrum and taking into account the residual norms when com-
puting gap ratio. Our tests indicate that there are some advantages to using these
techniques in combination with those described earlier in this section [29]. However,
the modified strategies do not consistently outperform the simple ones shown in Ta-
ble 4.1.

5. Summary. In this paper, we described an explicitly restarted Lanczos method
for symmetric eigenvalue problems called the thick-restart Lanczos method. It is the-
oretically equivalent to the implicitly restarted Lanczos method. The main advantage
of the new method is that it is simpler to use. We studied three different reortho-
gonalization schemes and found that the loss of orthogonality has similar effects on
this restarted Lanczos method as on the original nonrestarted Lanczos method. In
other words, without reorthogonalization, it usually generates accurate eigenvalues;
with the partial reorthogonalization, it is guaranteed to generate accurate eigenvalues;
only with the full reorthogonalization can it generate both accurate eigenvalues and
accurate eigenvectors.

Through some examples, we also demonstrated the importance of employing an
effective restarting strategy and suggested a number of restarting heuristics. Tests
showed that these strategies are as effective as the best-known strategies.

Appendix. Partial reorthogonalization. This appendix gives more details on
how to implement the partial reorthogonalization scheme in the thick-restart Lanczos
method. We address three issues in three subsections: ω-recurrence for the thick-
restart Lanczos method, global reorthogonalization, and local reorthogonalization.

A.1. Monitoring loss of orthogonality. An important ingredient of the par-
tial reorthogonalization is the ω-recurrence for monitoring loss of orthogonality [22].
This subsection extends the ω-recurrence for the thick-restart Lanczos method. The
derivation of the recurrence is relatively straightforward. To start with, we will rewrite
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614 KESHENG WU AND HORST SIMON

(2.1), (2.3), and (2.4) to accommodate round-off errors during the actual computa-
tions:

Aqi = αiqi + βiqk+1 + di (i ≤ k),

Aqk+1 = αk+1qk+1 +

k∑
j=1

βjqj + βk+1qk+2 + dk+1,

Aqi = αiqi + βi−1qi−1 + βiqi+1 + di (i > k + 1).

In the above equations, di represents the error associated with expressing Aqi in terms
of other quantities (‖di‖ ≤ ε‖Aqi‖).

The ω-recurrence uses ωi,j ≡ qTi qj as the measure of loss of orthogonality. For
symmetric matrices, we can use the relation qTj Aqi = qTi Aqj and the above three
equations to generate a recursion for ωi,j :

βiωi+1,j = (αj − αi)ωi,j + βjωi,k+1 − βi−1ωi−1,j + dTj qi − qTj di (j ≤ k),

βiωi+1,k+1 = (αi − αk+1)ωi,k+1 +

k∑
j=1

βjωi,j + βk+1ωi,k+2 − βi−1ωi−1,k+1

+ dTk+1qi − qTk+1di,

βiωi+1,j = (αj − αi)ωi,j + βjωi,j+1 + βj−1ωi,j−1 − βi−1ωi−1,j + dTj qi − qTj di

(k + 1 < j ≤ i− 1),

βiωi+1,i = αi(1 − ωi,i) − βi−1ωi,i−1 + qTi di.

To use the recursion, we need to evaluate the quantities ±dTj qi. In our implemen-

tation of the ω recurrence, we simply replace ±dTj qi with ε‖Aqi‖. The above set of
equations can be used only when i is greater than k + 1. Among the first k + 2 Lanc-
zos vectors, q1, . . . , qk+1 are not generated by the current Lanczos iterations, and only
qk+2 is computed in the current Lanczos iterations; see (2.3). Since the computation
of qk+2 explicitly involved all previous vectors, the decision of whether to perform
reorthogonalization has been studied [5]. We need only apply the ω-recurrence when
computing qi, i > k + 2.

Let W denote the matrix formed from ωi,j . One important point to note here is
that the (i + 1)st row of W depends only on the two previous rows. This indicates
that if the orthogonality levels of qk+1 and qk+2 are known, the above recurrence can
be carried forward. In practice, we try to make qk+1 and qk+2 orthogonal to previous
vectors to machine precision. This can prevent the loss of orthogonality among the
first k vectors from significantly affecting the orthogonality level of the new vectors
computed later. Since qk+1 after restarting is qm+1 before restarting, this also explains
why qm+1, i.e., rm, has to be computed accurately; see Figure 3.2. For similar reasons,
when qi needs global reorthogonalization, we should orthogonalize both qi and qi−1

[21].

A.2. Global reorthogonalization. The global reorthogonalization here refers
to the process of applying the Gram–Schmidt procedure to explicitly orthogonalize qi
against all previous vectors. This is necessary when qi has exceeded the user-specified
limit on loss of orthogonality, say, ‖(ωi,1, . . . , ωi,i)‖ ≥ √

ε. Using the ω-recurrence
to simulate the loss of orthogonality, when to invoke the global reorthogonalization
procedure can be easily determined. Typically, if the Gram–Schmidt procedure is
invoked, it may be repeated to ensure the desired orthogonality level is achieved. The
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THICK-RESTART LANCZOS METHOD 615

remainder of this subsection will briefly examine the decision of how many repetitions
to use. To answer this question, we need to find out how effective the Gram–Schmidt
procedure is and when to stop.

Let z be an arbitrary vector and Q be a set of Lanczos vectors that are nearly
orthogonal; the process of repeatedly applying the Gram–Schmidt procedure can be
written as z(i) = (I −QQT )z(i−1), where z(0) ≡ z. Define w(i) ≡ QT z(i); the orthog-
onality level between z(i) and Q can be measured by ‖w(i)‖. It is easy to see that
QT z(i) = (I − QTQ)QT z(i−1) and ‖w(i)‖ ≤ ‖I − QTQ‖‖w(i−1)‖. If ‖I − QTQ‖ < 1,
repeating the Gram–Schmidt procedure will eventually reduce ‖w(i)‖ to a very small
number. When the Gram–Schmidt procedure is carried out in exact arithmetic, z(∞)

is exactly the same as orthogonalizing z against an exactly orthonormal basis of Q.
When the Gram–Schmidt procedure is carried out in finite-precision arithmetic, it is
likely to produce a z(∞) that is orthogonal to Q to machine precision. However, the
solution may not be the same as in the exact arithmetic case.

Previously, it was argued that when qi needs reorthogonalization, it should be
orthogonalized to machine precision [21]. We adopt the same stopping criteria for our
global reorthogonalization. Orthogonalizing to machine precision can be expressed as
requiring ‖w(i)‖ < ε‖z(∞)‖. Since z(∞) is not computed, the above condition can be
rewritten as ‖w(i)‖ < ε‖z(i)‖. In the process of computing z(i), w(i−1) is computed.
The above equation can be expressed in known quantities as

‖I −QTQ‖‖w(i−1)‖ < ε‖z(i)‖.
Using the relation between ‖w(i)‖ and ‖w(i−1)‖, we can estimate ‖I − QTQ‖. The
above stopping criteria can be implemented efficiently. This stopping test differs
from earlier ones in that it takes into account of the orthogonality of Q [5, 12]. This
characteristic is important to the partial reorthogonalization since Q may be of varying
orthogonality level.

A.3. Local reorthogonalization. To implement a robust Lanczos method, the
local orthogonality should always be maintained. When the global reorthogonalization
is not necessary, we apply an explicit local reorthogonalization. This local reortho-
gonalization uses the Gram–Schmidt procedure to orthogonalize qi+1 against qi and
qi−1. It needs to be done only once, but doing so has two important consequences.
It ensures that ωi+1,i and ωi+1,i−1 are on the order of ε and that αi and βi are ac-
curate to the machine precision. Both of these conditions are crucial ingredients in
guaranteeing the accuracies of eigenvalues computed by the thick-restarted Lanczos
method [28].

Acknowledgments. The authors would like to thank the referees for invaluable
suggestions and comments.
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