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COMPUTATION OF THE GAMMA, DIGAMMA, AND TRIGAMMA
FUNCTIONS*

JOHN L. SPOUGEt

Abstract. This paper gives an approximation for the gamma function that, while different, has
the same form as one by Lanczos [SIAM J. Numer. Anal., B1 (1964), pp. 86-96]. Both approxi-
mations correct Stirling’s approximation with contributions from the gamma function’s poles, and
both require O(-loge) time independent of z to calculate z! with a relative error e. At compara-
ble accuracies, this paper’s approximation requires slightly more computation than Lanczos’ but is
clearly superior in two ways: its coefficients are given by simple formulas and the error estimates
apply not only to the gamma function, but also to its derivatives. Thus approximations for the
digamma and trigamma functions are also given. Let Fa,1/2(z z!(z - a)-Z-(1/2)ez+a(27) -(1/2)

and fa(z) lnFa,1/2(z), with z complex and a real. Several lemmas in the paper require "Stir-
ling inequalities," i.e., bounds on IFa,1/2(z)l. To this end, the classical Binet integral for fo(z) is
generalized from a 0 to all real a. Since the generalized Binet integral is a Laplace transform,
the requisite Stirling inequalities follow from the complete monotonicity of such transforms. The
proof of the main theorem uses the calculus of residues and presents a lemma generalizing Plana’s
theorem, which, like the Euler-Maclaurin sum formula, evaluates the difference between a sum and
the corresponding integral. This paper also presents a factorial approximation that is both simpler
and more accurate than Stirling’s approximation.

Key words. Stirling’s approximation, calculus of residues, Binet integral, complete monotonic-
ity inequalities

AMS subject classifications. 40-04, 41A20, 30E10

1. Introduction and statement of results. This paper gives simple and com-
putationally efficient formulas for the gamma, digamma, and trigamma functions.
Section 1.1 provides a historical introduction. The new results then fall into three
distinct classes corresponding to 1.2, 1.3, and 1.4: Stirling inequalities, formulas for
the gamma function and its derivatives, and formulas for the digamma and trigamma
functions.

Section 1 attempts a general, heuristic overview of the results and defers detailed
proofs to 2. (No heuristic in 1 is intended as a completed proof.) Theorems and
lemmas are therefore numbered by subsection, so that the reader can always find the
proofs for 1 in the corresponding subsection of 2 (e.g., the proof for Theorem 1.3.4,
which is the fourth theorem in 1.3, is found in 2.3).

1.1. General background. The gamma function extends the factorial function
from the natural numbers to the complex plane according to the normalization

(1) z!----- F(z + 1).

To avoid the gamma function’s cumbrous normalization, the factorial function can be
defined directly for all complex z with a Weierstrass product

)zz-i 1 +
k--1
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932 JOHN L. SPOUGE

where Euler’s constant - limn- (’] k-1- ln n) 0.57721... [1, p. 255]. In
the complex plane, the factorial is an analytic function whose only singularities are
simple poles at the negative integers. The fundamental recursion z! z. (z- 1)!
shows that for k 1,2,3,... the residue at z -k is (-1)k-l[(k- 1)!] -1. Because
of the reflection theorem

7rz
(3) (-z)!z! sinrz’

methods for computing z! can assume Re z _> 0 without loss of generality.
(z + 1) (d/dz)lnz! is often called the digamma function, while ’(z) is called

the trigamma function [1, p. 258]. The Weierstrass product equation (2) shows

(4) (z + 1) -’), + E
k=l

(z--k)-l],

which implies the fundamental recursion (n-1)(z + 1) (n-1)(Z) + (--1)n-l(n-
1)!Z-n. Consequently, tables of ff(z) and its derivatives once helped to compute sums
of the form -](z + k) -n. Currently the digamma and trigamma functions probably
arise most frequently as definite integrals, e.g., the Gauss integral

(5) ffs(z+l)=
t et-1

dz

for Re z > 0, which can be derived from (4) by noting that w-1 f’ e-tdt for Re
w > 0, and knowing that --y f’[e-tt-1- (et- 1)-l]dt.

In this paper, a will denote an arbitrary real number unless stated otherwise.
Define wz ez Ln w, where Lnz In [z[ +i Arg z, [Arg z[ < r, is the principal branch
of the natural logarithm. The theory of the factorial often uses functions of the form

(6) Fa,o(z) z!(z + a)-Z-eZ+a(2r) -1/2.

For example, let A be any real number, 0 < A < r. Stirling’s approximation
Fo,1/2(z)--* 1 holds as [z]-- , uniformly in any sector Itrg z] _< r-/x <
[10, p. 278]. Consequently, Fa,/2(z) --* 1 as Iz + a -. c, uniformly in any sector
[Arg (z + a)] <_ r- A < r.

Press, Flannery, Teukolsky, and Vetterling [8, p. 167] state without qualification
that no method for calculating the factorial is "quite as neat as the [following] approx-
imation derived by Lanczos," which uses contributions from the factorial function’s
poles to correct Stirling’s approximation [5]:

(7) z! (z + a) z+1/2 e-(z+a) (27r)1/2 co + E c(z + k) -1 + e(z)
k--1

where the optimal value of N depends on a. Lanczos’ formulas for the {ck} take
about a page to write out and are too complicated to reproduce here. Anyway, since
a computer program should avoid unnecessary recalculations by storing the {ck} to
required decimal accuracy, Lanczos tabulated some numerical values. The smallest
error bound in his table, le(z)l _< 2.10-1 for Re z >_ 0 and a 5.5, requires only
N 6 terms in the sum.
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THE GAMMA FUNCTION 933

Equation 7 can be rewritten as

N

(8) F ,1/2 (z) co + c (z + +
k--1

Neglecting e(z) in (8) incurs a relative error which propagates to
(7) when computing z!. The following Stirling inequality assures that this relative

error is at most (-)1/2 1.07504... times e(z).
LEMMA 1.1.1. IFa,1/2(z)i >_ ()1/2 whenever a >_ 0 and Re z >_ O. Moreover, the

bound is sharp since F1/2,1/2(0)--()1/2.
Neither Lanczos [5] nor his references appear to give this crucial link between

e(z) and the relative error in z!, and despite other authors’ impressions [8, p. 168],
Lanczos explicitly links e(z) and the relative error only when N 1 in equation (7).
This apparent lacuna motivates a digression on Stirling inequalities.

1.2. Results on Stirling inequalities. Define

(9) fa(Z) Ln Fa,1/2 (z).

will be fixed in f(z) and can remain implicit.) Stirling inequal-(The subscript 0 5
ities are bounds on IFa,/2(z)l, or equivalently, on Re f(z).

The Binet integral

(10) fo(z) e-tz
t

1 +
et- 1 -t t-:dt

for Re z > 0 [10, p. 248] can be demonstrated by differentiating and comparing the
result to the Gauss integral in (5). The Binet integral has an easy generalization.

LEMMA 1.2.1. Let a be any real number. Then

(11) fa(z) e-tz
t

et- 1
[1 + (a- 1/2)tie-t } t-2dt

for Re z > max(-1,-a).
Because Binet integrals are Laplace transforms, simple inequalities on their inte-

grands yield the following lemma.
LEMMA 1.2.2. Let z x + iy. fa(z) has the following properties whenever

x > max(-1,-a).
(1) Fix z, and consider fa(z) as a function of a. Re fa(Z) decreases for a < 5

and increases for 1/2 < a.

Re fa(x+iy) > fa(X) and fa(X) strictly increases to 0(2) Fix a <_ 5"
limx__, fa(x).

(3) Fix a > 1. Re fa(X + iy) < fa(x), and fa(X) strictly decreases to 0
limx_, fa (x).
The proof of Lemma 1.1.1 in 2.1 is based on the hierarchy of Stirling inequalities in
Lemma 1.2.2.

1.3. Results on the gamma function. The following theorem is the most
practical distillate of this paper’s results. Let the ceiling [a] denote the unique integer
satisfying [a] 1 < a <_ Va].
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934 JOHN L. SPOUGE

THEOREM 1.3.1. Neglect e(z) in equation (7), and set N [a 1, co 1, and

(12) ck (2)-1/2 (-1)k-1 -1/2 k+a
(k- 1)! (-k +a)

k e-

fork 1,2,...,[a-1. For a >_ 3 and Re (z+a) > 0, the relative error when
computing z! is less than al/2(27c)-(a+I/2)[Re(z + a)] -. Thus for Re z >_ O, the
relative error is less than a-1/2(27r) -(a+l/2).

The next theorem is curiosity.
THEOREM 1.3.2. The relative eor in the approximation

() z (2)

ta (2)-/-(ln)[n( + )]-.
Since (2e)-1/2-(ln2)= 0.053..., equation (13) is not only simpler than Stir-

ling’s approximation, but nearly twice as accurate for any z > 0.
Both Theorems 1.3.1 and 1.3.2 follow from a much more general theorem, which

avvi not oy to Fa,/() but so to a,O() V,/(Z)( + a)-(O-(/)), w
a 0 . To motivate the generalization, consider once again the {c} in Theorem
1.3.1. By Stirling’s approximation, c0 1 is the value of Fa,1/(z) at z , while
other e are then residues of Fa, (z) at z -1,-2,...,-([a] 1).

Define Fo 1 if 0 , and Fo 0 otherwise. Let

(- a)--o+a(2)(14) ,0() (-- 1)

so Stirling’s approximation implies G,o(w) Fo as-w- a] , uniformly in
any sector ]Arg(-w- a)[ - < w. Also, let e,o(z) stisfy

[a-I 1)_
[?a,O(Z) FO % (271") -1/2 E (- (-] + a)C-e-a+a(z + ])-1

k=l
(] 1)!

(15)
COS 71"0 f-a Ga o(t)) dw+ + a,O(Z)

7r J_cx

where any empty sum (a <_ 1) is to be interpreted as 0. Since Fa,O(Z) Fo as

Iz + a - x, uniformly in any sector IArg(z + a)l _< r A < r, Fo is the value
of Fa,o(z) at z c, while the terms of the sum are the residues of Fa,O(Z) at z
-1,-2,...,-([a] 1), just as in Theorems 1.3.1 and 1.3.2.

Since the branch cut for (-w- a)-- is ]Arg(-w- a)l r, or equivalently
-w < a, the integrand Ga,O(W)(w- z)- is well-defined for w < -a when a >_ 0.
For 0 > 1/2, the integral converges at w -cx by Stirling’s approximation and ratio

comparison with (-w- a)-+(/2)(w- z)- [9, p. 638]. For 0 , cosr0 0 and
the integral term is to be interpreted as 0.

THEOREM 1.3.3. Let a >_ 0 >_ 1/2. The error term in (15) is

eriO f Ga,o(-a- iv) dv
ea,O(Z)

27r Jo e2r(v-ia) 1 --a + iv- z
(6)

e- Ga,o(-a + iv) dv
9 Jo -j#i-a-_- --a + iv- z"
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THE GAMMA FUNCTION 935

The two sides of (15) are matched for their behavior at z oc and their poles
at z -1,-2,...,-([a 1). Taking the difference of the two sides suggests a loose
analogy with Liouville’s theorem: if f(z) is a bounded entire function, then f(z) is
constant. Standard proofs of Liouville’s theorem differentiate the Catchy integral for
f(z), then use an arbitrarily large circular contour to show that if(z) - 0 (e.g., [6, p.
137]). The proof of Theorem 1.3.3 is similar in spirit.

By Cauchy’s theorem

1 /c Fa’(w)
dw,(17) Fa,o(z)

w- z

where C is a sufficiently small closed contour encircling z counterclockwise. Since
Fa,o(w)(w- z) -1 is analytic in the domain between C and contour Cb in Fig. 1,
equation (17) remains true when C in it is replaced by Cb [6, p. 248]. The Catchy
integral around Cb is conveniently partitioned into contributions from the four sub-
contours specified in Fig. 1: (1) the large circular arc bC2,--2A centered at w -a;
(2) the two vertical segments bC+A subtending a total angle 2A from w -a; (3)
the small closed circles C-k around the poles z -1,-2,...,-([a 1) of w!; and
(4) the upper and lower indented contours :t:Cb,_a] along the branch cut (-oc,-a]
of F,o(w).

bC+A q;,-a]

bC_A --t,

d.--qb,-a] C-1 /

’""-.... bC2 -2 ........"
FIG. 1. The oriented contour C in the w-plane is shown in dotted line. Solid points are marked

at z and -1,-2,-3, and -4. A branch cut extends from -(x) to -a -1.5. Hollow points are marked
at -a, at the point b -4.5 above and below the branch cut, and at the points b :t: i(-b- a)tanA
subtending a total angle 2A from -a. Also labeled are: (1) the large circular arc bC2r-2A comprising
points w satisfying both Iw + a -(b + a) and IArg(w + a)l _< r A; (2) the two vertical segments
bC:I:A comprising points w satisfying both Re w b and r-A <_ Inrg(w+a)l < 7r; (3) the small closed
circle C-1 around the pole -1 of z!; and (4) the subcontours :l:Cb,_a] above and below (-b,-a].
The minus sign preceding the subcontour C,_a indicates that the contour’s normal orientation

from b to-a is reversed. C+[b,a] are indented around the poles -2,-3, and -4 of z!.

As b - -oc for fixed A, followed by A --, 0, the subcontours make the following
contributions to Fa,o(w) in equation (15)" (1) the subcontour bC2--2A contributes Fo;
(2) the subcontours bC+a contribute nothing; (3) the subcontours C-k contribute the
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936 JOHN L. SPOUGE

+/- +residues at z -1,-2,... -([a]-l); and (4) the subcontours C[b,_al contribute the

integral and error terms. The generalization of Plana’s theorem [10, p. 145] in Lemma
2.3 1 exposes the branch-cut contribution from +/-Cb a as the difference between a

sum and the corresponding integral, much like the difference in the Euler-Maclaurin
sum formula [10, p. 127].

When (15) is differentiated term by term n times (n 0, 1, 2,...) with respect to
z, the derivatives of the integral in (15) [9, p. 669] can be obtained by differentiating
the respective integrands. Since the same is true for the two integrals in (16) [6, p.
370], the following bound can be obtained.

THEOREM 1.3.4. The error term’s nth derivative is bounded by

(18) I(n) [Re(z,-a,O(Z) <_ Ca on! + a) -(n+

where

1 (2) f0 v-(19) Ca,o (a 1)! le2"v e2ia[
dv"

When 0 , the absolute error bound for ca, 1/2 (z) in Theorem 1.3.4 and the lower
bound for Fa, 1/2 (z) in Lernrna 1.1.1 combine to give the relative errors in Theorems
1.3.1 and 1.3.2 for computing z!.

The following theorem is another curiosity.
and all valuesTHEOREM 1.3.5. Equation (15) has a limiting form valid for 0 >_ -of z:

(20)
[al-1

zl= lim(z+a)z+ E (-1)k-1_
(- )!

k=l

(-k+ a)k-e-(Z+’)(z + k) -1

Multiplying (20) by lima- aZ+(z + a)-(z+) 1 gives a form similar to the final
equation in Lanczos [5].

1.4. Results on the digamma and trigamma functions. Because Theorem
1.3.4 bounds errors for derivatives of the factorial function, it effectively bounds errors
for the digamma and trigamma functions, the logarithmic derivatives of the factorial
function. The notation that follows facilitates the statement of the theorems.

Let Q(z) be any quantity expressed in terms of the {F(a?)l/2 (z) }. Equation (8)
and its derivatives give expressions for {F(.)/2(z)}.___, If the error terms {e(2/2 (z)
are omitted when substituting these expressions into Q(z), an error is induced. The
error’s absolute value will be denoted by e[Q(z)].

(n)Because of (9), the derivatives of fa (z) can be expressed in terms of the {F,1/2 (z)}.
From (6), the digamma function can be expressed as

(21) + f();(z + 1) ln(z + a)- (a- )(z + a) -1

and the trigamma function as

(22) ’(z + 1) (z + a) -1 + (a 1/2)(z + a) -2 + f’(z).

Straightforward but tedious inequalities lead to absolute error bounds for the digamma
and trigamma functions.
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THE GAMMA FUNCTION 937

Let D [1 -()1/2(2rr)-2]-1 1.02111
THEOREM 1.4.1. For Re z > 0 and a > , the absolute error induced in (z+ 1)

satisfies

e [f(z)] < D(ln2a)a1/2 (2)-("+1/2)[Re(z + a)] -1

<_ D(ln 2a)a-1/2 (2w) -(a+1/2).

Bounds on the corresponding relative error can be derived from the Gauss integral
in (5). If z x + iy, then I(z + 1)[ _> (x+ 1), and if x > 0, then (x+ 1) increases.
(x0 + 1) 0 for x0 0.462..., so for Re z _> xl > x0, the relative error in (z + 1)

is less than the absolute error in (23) divided by (x + 1).
For the reader’s reference, 9(2) 0.42278... for Xl 1 and (x) lnx.
THEOREM 1.4.2. For Re z >_ 0 anda >_ , the absolute error induced in (z+l)

satisfies

(24) e [f(z)] < D(31n2 2a ln2a + 2)a1/2 (2r)-("+1/2)[Re(z + a)] -.
Differentiating the Gauss integral shows that I’(z + 1)1 _< ’(x + 1), so the

following bound on the relative error applies only to real numbers: for x >_ 0, the
relative error in ’(x + 1) is less than D(31n2 2a- ln2a + 2)al/2(2)-("+/2).

For the reader’s reference (x) x- as x -. x.
Typically, the relative errors in Theorems 1.3.1, 1.4.1, and 1.4.2 are not very differ-

ent, although the digamma and trigamma functions theoretically require a few more
terms in (8) than the factorial function to obtain comparable accuracy. Numerical
experiments for 3 _< a <_ 11 indicate, however, that for x _> 1 the maximum relative
errors for (x + 1) and ’(x + 1) never exceed the one for x!. Hence in practice, even
when computing the digamma and trigamma functions, the number of terms in (7)
can be set by Theorem 1.3.1 for the factorial.

2. Proofs of results. Each result in 1 is proved in the corresponding part of
2, e.g., the proof for Theorem 1.3.4 is found in 2.3.

2.1. Proof of Lemma 1.1.1. Let a > 0 and Re z > 0. Lemma 1.2.2, proved
in 2.2, justifies all inequalities in the following. LnlF,,i/2(z)] Re Ln F,,/2(z)
Re fa(Z) >_ Re f/2(z) >_ Re/1/2(Re z) > Re/1/2(0) 1/21n(). Exponentiation
yields Lemma 1.1.1.

2.2. Proofs of results on Stirling inequalities. The order of proof is Lemma
1.2.1 and then Lemma 1.2.2.

Proof of Lemma 1.2.1. Fix a a0, where a0 is an arbitrary real number.
Both sides of (11) are analytic in the simply connected domain D {z Re z >
max(-1,-a0)} [10, p. 92]. Hence, proving (11) for a subdomain D of D proves it for
D [6, p. 147].

Restrict z to the subdomain D {z: Re z > max(0,-a0)+ 1}. For a 0,
equation (11) is just Binet’s integral (10) at z. When a is between 0 and a0 inclusive,
differentiation with respect to a under the integral is justified in D [10, p. 92]. Both

a)- (11) holds in D for arbitrarysides of (11) have the derivative (a- )(z + ,so
a a0, which proves the lemma.

Proof ofproperty 1 in Lemma 1.2.2. From the proof of Lemma 1.2.1, a Re fa(Z)
Re (a 1/2)(z + a)-l (a 1/2)(x + a)[(x + a)2 + y2] -1, which is negative for
a < and positive for < a.
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938 JOHN L. SPOUGE

Proof of property 2 in Lemma 1.2.2. Equation (11) defines fa(Z) as a Laplace
transform. In general, if (t) is continuous for t _> 0, and the Laplace transform

(z) f e-tZ(t)dt converges for Re z > x0, then ()(z) f e-tz(-t)n(t) dt
for Re z > x0, n 0,1,... and lim__.(n)(x) 0 [11, pp. 440-451]. Also, if
(t) > 0 for all t > 0, then (z) has the following "complete monotonicity properties"
[2, p. 439] for x > x0"

(1) (--1)n+l(n+l)(x) > 0 SO (--1)no(n)(x) strictly decreases to 0 as x cx.

(2) Re o(n)(x-Jr-iy) ](n)(x + iy)] (--1)n(n)(x).
The integrand in (11) suggests the inequality

t 1/2t <(25)
e 1 sinh 1/2 t

for t > 0. Hence for all a,

(26) { t
[l + (a )t]e_at } t_2Co(t)

<{e-1/2t-e-at-(a-1/2)te-at}t-2 qSa0 (t),

where the equalities define Ca(t) and Ca0(t). When a _< 1/2, -Ca(t) > --a0(t) >_ 0, SO

property 2 follows from the coraplete monotonicity properties with -Ca.
Proof of property 3 in Lemma 1.2.2. Property 3 is best proved in conjunction

with the next lemma, which is needed later.
LEMMA 2.2.1. For a >_ 1, x > - and n 1, 2,...,

Ja,1/2 (X -- iy) < (-1 ,1/2 (x)
(e;)

< (-1)n-1 In (a- 1/2)(x + a) -1
dxn-1 x +

If (t) > 0 held for all t > 0 and a 1, the complete monotonocity properties
would imply both property 3 in Lemma 1.2.2 and the first inequality in (27). But when
t > O, et(et- 1) > 0, so (t) and (t)et(et- 1) have the same sign. When t > 0
and a 1, (t)eat(et- 1) equals a power series in t with nonnegative coefficients, so

Ca(t)eat(et- 1) > 0, implying Ca(t) > 0.
The second inequality on the right side of (27) follows from the complete mono-

tonicity property 1 with (Ca0 Ca)t, because differentiating the quantity inside
the square brackets in (27) with respect to x shows that it is the Laplace transform
of 0(t)t.

2.3. Proofs of results on the gamma function. The order of proofs is The-
orems 1.3.3, 1.3.4, 1.3.1, 1.3.2, and finally 1.3.5.

Proof of Theorem 1.3.3. Fix A > 0, and consider a sequence of contours Cb like
the one shown in Fig. 1, but with b [a] k- , k 0, 1, 2, The contributions
from the four subcontours will be estimated as b + - for fixed A, followed by
A+0.

(1) The subcontour bC2-2" Since Fa,e(z) Fe uniformly on bC2-2 as b +
-, bC2-2A’s contribution to the Catchy integral approaches Fe(1- A-I). The
corresponding limit as A + 0 is Fo. Hence bC2-2 contributes the first term in (15).
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THE GAMMA FUNCTION 939

(2) The subcontours bC+A Restricting wz to its principal branch mandates that
(_w)Z wZe-,iz(sgn Im w), where sgn x denotes the sign of a real number x. Because
sgn Im (w + a) sgn Im w and because of the reflection theorem in (3),

(28) Fa,O(w) Ga,O(w)
_ie-ri(w+O) sgn Im w

eTriw g-Triw

Stirling’s approximation implies Ga,O(W) ---+ FO as b -- -oc, uniformly for any w on
bC+/x. Also Re w b -[a] k- 1/2, so e2riRe w -1. Hence

(29)
_ie--rri(w+O)sgn Im w

eriw e-riw
1

<1.
e--2r]Im wl-k 1

So Fa,O(W) O(Fo) O(1) as b + -oc, uniformly on bC+zx, bC+A’S contribution
to the Cauchy integral in (17) is bounded by (2r) -1 times the length of bC+zx times
the maximum magnitude of the integrand on bC+zx. When b + -oo for fixed A, the
contribution is of order

(30) (27r) -1 (2lb + al tan A)lb + a1-1 7r
-1 (tan A).

Thus, when A --+ 0, bC+zx makes no contribution to (15).
(3) The subcontours C-k: C_k’s contribution to the Cauchy integral in (17) is

the residue of -Fa,o(w)(w z) -1 at w -k. Because the residue of w! at w -k is
(-1)k-l[(k- 1)!] -1, the residue of -Fa,o(w)(w- z) -1 is the kth term of the sum in
(15).

(4) The subcontours -+-Cb a" From (28) along the upper side of the branch cut

Fa,o(w) equals

_ie-riO
(31) F+a,O(W) Ga,O(W) e2riw 1’

while on the lower side, it equals

ieriO
(32) F,o(W) Ga,o(w) g--27riw 1"

A series of lemmas will calculate how much the branch contours +C;,_a contribute
to the Cauchy integral in (17).

LEMMA 2.3.1. Let b and c be real numbers, b < c. Let G(w) be any function
bounded and analytic in the strip b <_ Re w <_ c. A branch point at w b or w c is
permitted if G(w) is finite there. Then

It] c

z_-’ G(k) cos frO Pf C(w)
sin rc(w O)

dw
sin rrw

(33) = G(w)
e-

+ ; G(w)
e

e-2w 1
dw

e2w 1
dw

+
e2(v-iu) 1 e2(v+iu) 1

where the floor [cJ is the unique integer satisfying [cJ c < [c] + 1. "P" indicates
the Cauchy principal value 4 the integral [6, p. 031 ad := g(c) g(b).
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940 JOHN L. SPOUGE

the left side, if either b or c is an integer, the corresponding term in the sum should
be halved. In the second expression, C[b:k,c] (analogous to Cb,_a] in Fig. 1) are upper
and lower indented contours oriented along the real axis from b to c.

The left side is incidental to the rest of the paper, but interesting. When 0 0, the
expression is the difference between a sum and the corresponding integral. Equation
(33) then parallels a standard proof of Plana’s theorem [10, p. 145], which like the
Euler-Maclaurin sum formula [10, p. 127] involves the difference between a sum and

however (33) becomes the principal valuethe corresponding integral. When 0 ,
of a cotangent integral [3, p. 339], and intermediate values 0 < 0 < 1/2 give linear
combinations of the two extreme results.

Proof of Lemma 2.3.1. In the second expression, the indentations of ClUb,el around

poles of (e:2ri 1) -1 contribute partial residues adding up to the sum in the first
expression [6, p. 206]. The rest of ClUb,c] contributes the principal value because of the
identity

e-rO erio sin r(w 0)(34)
e-2riw 1 + e2riw 1 sin rw

The second equality in (a3) is proved by integrating G(w)(e- 1)-1 around
an indented rectangle with corners b, c, c + Joe, and b + Joe, equating the result to 0,
and then multiplying by e-riO to yield

[/0G(W) e_2ri dw e_rio G(u + iv)
dv(35)

b,c] 1 e2r(v-iu) 1 u=b

Adding this equation to a similar one with -i replacing gives the second equality.
LEMMA 2.3.2. Under the conditions of Lemma 2.3.1,

(36)

e2riw 1
dw +

,el [b,cl

-2 cos r0 G(w)dw

-i e_ri0 G(u + iv)
e2r(v-iu) 1

eriO
G(W) e_2riw 1

dw

e.io a(u iv) ]=
e2r(v+iu) 1] u=b

dv.

Proof of Lemma 2.3.2. The second term on the right side of (36) is the common
expression in (33) times (-1). Substituting (34) with 0 0 into the integrands on
the left of (36) then proves Lemma 2.3.2.

Because of (31) and (32) the contribution :t:C a
makes to the Cauchy integral

in (17) is the same as the common value in (36) when c -a, G(w) Ga,o(w)(w-
z)-l(-i), and the integrals are premultiplied by (2ri) -1. The restriction a _> 0
in Theorem 1.3.3 derives from the requirement that G(w) be analytic in the strip
b< Rew < c.

After substitution and premultiplication in (36), as b -- -oc the first term on
the right side approaches the integral in (15). When u b in the second term and
b -oc, Stirling’s approximation implies Ga,o(b :1: iv) --, 1 uniformly for any v.
Because b -[a] k- 1/2, e:2rib -1. Thus the magnitude of the second term
evaluated as u b- -oc is bounded by

(37) -1 f0 1 1

7r e2rv + 1 Re(z b)
dv - O.
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THE GAMMA FUNCTION 941

Because all other terms in (15) have been accounted for, the second term on the right
side of (36) evaluated at u c -a must be the error term ea,0(z). This proves
Theorem 1.3.3.

Proof of Theorem 1.3.4. The factors in the nth derivative of the integrand of (16)
must be bounded for v >_ 0. The following equations bound factors in Ga,(-a + iv)"

(38)

In

The first equality in (38) follows from the factorial function’s Weierstrass representa-
tion in (2). Hence (a- 1)! _< I(aTiv-1)![e(1/2)rv. Also, because the principal branch
of the logarithm is used in complex exponentiation,

(39) e(a-O) lnv--1/2rv

va-O- 1/2v

Combining (3S) and (39) with le+io[ Ie+ivl- 1 and other obvious estimates yields
(18) and (19), which proves Theorem 1.3.4.

Proof of Theorem 1.3.1. [e2- e2il-1 <- e2"v- 1)-1= ’}k--1 e-27rkv, SO

integrating term by term in (19) when a > gives C,o <_ C,,o, where

(40) C,0 (a- 1)! r
((a 0 + 1)(2r) -(a-o+1)

-z The nextand (z) -}=1 k is the Riemann zeta function [10, p. 265]. Set 0 3"
lemma bounds C2,1/2.

LEMMA 2.3.3. For a > O,

(41)
(a- )!

_
(a- 1)! < a"

Proof of Lemma 2.3.3. Let a > 0. Lemma 1.2.2 implies that f1/2(a- 1/2)
lnF1/2,1/2(a- 3) < 0 and that f(a- 1)= lnF1,1/2(a- 1) > 0. Hence

(a- 1/2)!
__

F1/2,1/2 (a- 1/2)
(42) (a-1)-----. a F1,1/2 (a- 1)

Thus C* c 1/2al/2 -(a+l/2)
,1/2 < (3) (27r) for a >_ 3, because (a + 1/2) < (3.5)

1.12... < 1.16 .... ()1/2. Because of Lemma 1.1.1, multiplying a bound for ca,1/2 (z)
by ()1/2 bounds the relative error in z!, so Theorem 1.3.1 follows.

Proof of Theorem 1.a.2. Theorem 1.a.4 with a 0 and n 0 implies
-1F1/2,1/2(z) 1 + el/2,1/2(Z), where 11/2,1/2(z)1

_
C1/2,1/2[Re(z -}- )] Since
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942 JOHN L. SPOUGE

(e2rv -- 1) -1 -k=l(--1)k-le-2Ekv, integrating term by term in (19) gives C1/2,1/2
2-1/2r-2 ln2. Multiplying C1/2,1/2 by the factor ()1/2 from Lemma 1.1.1 gives the
stated relative error.

Proof of Theorem 1.3.5. Fix z and 0. Multiply both sides of (15) by (z +
a)Z+Oe-(z+a)(2r) 1/2, which has limit 0 as a cx. Thus any term on the right of
(15) that is bounded for sufficiently large a can be omitted in the limit as a
Because of Theorem 1.3.4 and (40), both 1 and ea,0(z) can be omitted. For 0
this proves the theorem because the integral term in (15) is 0 then, whereas for 0 >2,
the next lemma bounds the integral term, thus showing that it can be neglected.

LEMMA 2.3.4. IGa,1/2(w)[

_
(e8) 1/2 for w <_ -a 1 and a >_ 2"

Lemma 1 2.2 justifies all theProof of Lemma 2.3.4. Let w <_ -a-1, where a _> 7"
inequalities in the following: lnGa,1/2(w)= -lnFl_a,1/2(-w- 1)=-fl-(-w- 1)

ln(). Lemma 2.3.4 follows by exponentiating.-f1/2(-w 1) <_ -f1/2(7) 7

Hence ]f_--I Ga,o(w)(w z)-ldw <_ ()1/2 f_--l(_w a)_(1/2)_Odw. Also,

,If--a-1 Ga,O(W)(W z)-ldw <_ (27r)l/2[(a 1),]-l[Re(z -+- a)] -1, so ]f_- Ga,o(w)

(w_z)_ldw <_ ()1/2 (0_7) + (a!) Thus the integral term is bounded

and can be neglected.

2.4. Proof of results on the digamma and trigamma functions. In this
section 0 1/2 always. For brevity, the dependencies on 0, a and z are sometimes
suppressed. The order of proof is Theorem 1.4.1 and then Theorem 1.4.2.

Proof of Theorem 1.4.1. Rearranging the nth derivative of the equation Fa, 1/2 (z)
exp[fa(Z)] gives

(43) f(’)-
F(n) (f’ 1))F Pn f(n-

where Pn is a multivariate polynomial given explicitly by the Ivanoff [4] and Faa di
Bruno formulas [7, p. 214]. All the coefficients in Pn are nonnegative.

Recall the e-notation defined in the Introduction. The recursion (43) for f() has
one ancillary quantity F(n)/F whose error is bounded by

(44)
F(n)
F

F(n)

e[F]) (IFI- e[F])-.
The final factor (IF,I/2I- e[Fa,1/2]) -1 can be bounded because Lemma 1.1.1 shows
that IFa,1/21 >_ ()1/2, while Theorem 1.3.4 with n 0 shows that elF,,l/2] <_
a-lCa,1/. The next lemma shows a-lCa,1/2 < ()1/2()1/(2)-2 for a _> 23-. The
restriction a >_ in the theorems simplifies inequalities while maintaining reasonable
stringency.

3LEMMA 2.4.1. Ca,l/2 < ()1/2()1/2(271")-2 for a >_ 5"
Proof of Lemma 2.4.1. The proof of Theorem 1.3.1 in 2.3 contains the inequalities

(45) Ca1/2, __( C’a,1/2 < () a 1/2 (2r) -(a+ 1/2)
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THE GAMMA FUNCTION 943

Since the right side decreases for a :> -, Lemma 2.4.1 follows by setting a - on the
right.

All quantities on the right side of (44) can be bounded. First, IFa,1/21-e[Fa,1/2] >
()/2[1- (-)1/2(2)-2] ()/2D-. Second, Theorem 1.3.4 bounds elf(n)] and

F(n) /Fa Ican6IF] Finally, a,/. ,/ be bounded by solving (43) for F(n)/F, and bounding

Ifa(n)l with Lemma 2.2.1.
Equation (44) with n 1 requires [F] <_ Ca,/.[Re(z + a)] -1 and [FI <_

Ca,/[Re(z +a)]- <_ a-Ca,/[Re(z +a)] -1 from Theorem 1.3.4. Lemma 2.2.1 gives

IFa,/2/ a,/21 Ifal < -ffa(O) < ln2a-l+a- Hence because-l+1/2a-l+a-1 < 0,
for a > - and Re z > 0, (44) with n 1 yields

(46)
j
< D(ln2a)(-) Ca,1/2[Re(z +a)]-.

The bound for Ca, 1/2 in (45) gives (23)in Theorem 1.4.1.

Proof of Theorem 1.4.2. Equation (43) with n 2 gives P2(f’) (f,)2, so a
bound for e[P2] _< e[f’](21f’l + e[f’])is required. Equation (46) bounds e[f’], and
the paragraph preceding, If’l Ifal The bound for (2If’ + ell’I) can be simplified
because for a _> , e[f’] _< D(ln2a)a-I/2(2r)-(a+/2) <_ 1- a-. The first inequality
is (23), while the second is elementary. Hence

(47) e[P] _< 0(2 In2 2a In 2a) Ca, 1/2 [ae(z + a)] -1

Equation (44)with n 2 requires e[F] < Ca,/2[Re(z+a)]- and e[F"] < 2Ca,1/2[Re(z
+ a)] -3 <_ 2a-2Ca,1/2[Re(z + a)] -1 from Theorem 1.3.4. Equation (43) and Lemma
2.2.1 give IFa’,l/9./Fa,/21 Ifa + (f)2[ < f(0)+ Ifa(0)] 2 < ln22a + 2- 2a-2, the

last inequality holding for a > -32. Hence for a > -32 and Re z > 0, equation (44) with
n 2 yields

(48) e
Fa,1/2

< D(ln2 2a + 2) -- Ca, 1/2 [Re(z + a)] -.
Adding (47) and (48) and substituting the bound for Ca,I from (45) gives (24) in
Theorem 1.4.2.

3. Discussion. The calculation of z! in Theorem 1.3.1 is unusually efficient, since
a computation with relative error e requires O(-log e) time independent of z. The
only numerical drawback to Theorem 1.3.1, which is not serious, is that for large a its
coefficients are large and their signs alternate, causing numerical cancellation in (7).

The coefficients computed from Theorem 1.3.1 agree remarkably with Lanczos’ co-
efficients for equation (7) [5], despite the dissimilarity of the generating formulas. For
example, for a 2 and N 1, Lanczos gave co 0.999779... and c 1.084635...,
and an error bound le(z)l _< 2.4.10-4 for Re z _> 0. For a 2, Theorem 1.3.1 gives

(49) z’ (z + 2)z+1/2e-(z+2)(27r) 1/2 [1 + (27r)-1/2 e ]z
+ (z)

Numerically, the coefficients are co 1 and c 1.084437
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944 JOHN L. SPOUGE

The error bound in Theorem 1.3.1 is reasonably tight. Numerical experiments
for 3 _< a _< 11 indicate that the bound is too generous by a factor of about (2)2 to
(2r)3. Given a desired error ]e(z)l the bound therefore overestimates the number of
terms N [a 1 required in (7) by only 2 or 3.

Numerical experiments show Lanczos’ coefficients {ck } for (7) to be slightly supe-
rior to the coefficients in Theorem 1.3.1. For example, the smallest error Lanczos [5]
tabulated was le(z)l _< 2.10-1 for Re z _> 0, requiring N 6 terms in the sum, and
numerical experiments do indeed confirm that N 6 terms suffice. By comparison,
Theorem 1.3.1 gives a relative error of 2.10-l for 10 terms in the sum (with a 11),
while numerical experiments indicate that 7 terms (with a 8) actually suffice.

A few extra terms in (7) do not prolong computations significantly, however.
(7) contains the exponential operation, which requires more computing time than
elementary arithmetic operations. Thus, when the accuracy required exceeds available
tabulations of Lanczos’ coefficients, calculating {ck} from Theorem 1.3.1 is certainly
simpler than using Lanczos’ complicated formulas, and the resulting computation is
not significantly slower.

The series (15) for F,,(z) computes z! more easily and accurately with 0 than
First, the unattractive integral term persists except when cos 0.with 0 > .

More importantly, even when cosr0 0, Fa,O(z) Fa,1/2(z)(z + a) -(-1/2) 0 as

Iz + a --, cx, which inflates the relative error when computing z! at large Iz + a I. (15)
with 0 does, however, compute z! remarkably efficiently.

Theorem 1.3.4 also provides error bounds for the factorial’s derivatives that have
no analogue in Lanczos’ paper [5]. In Theorems 1.4.1 and 1.4.2 these bounds yield
approximations for the factorial’s logarithmic derivatives, the digamma and trigamma
functions. The computations given for (z) and ’(z) are quite efficient, since a
relative error e again requires only O(-log e) time independent of z.

[101
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