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The reaction-limited kinetics of membrane-to-surface
adhesion and detachment

il

By M. DEmMBO, D.C. TorRNEY, K. SAXMAN AND D. HAMMER

Theoretical Biology and Biophysics (T-10), Theoretical Division,
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A.

(Communicated by J. D. Murray, F.R.S. — Received 22 September 1987)
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Biological adhesion is frequently mediated by specific membrane proteins
(adhesion molecules). Starting with the notion of adhesion molecules, we
present a simple model of the physics of membrane-to-surface attach-
ment and detachment. This model consists of coupling the equations for
deformation of an elastic membrane with equations for the chemical
kinetics of the adhesion molecules. We propose a set of constitutive laws
relating bond stress to bond strain and also relating the chemical rate
constants of the adhesion molecules to bond strain.

We derive an exact formula for the critical tension. We also describe
a fast and accurate finite difference algorithm for generating numerical
solutions of our model. Using this algorithm, we are able to compute the
transient behaviour during the initial phases of adhesion and detachment
as well as the steady-state geometry of adhesion and the velocity of the
contact.

An unexpected consequence of our model is the predicted occurrence
of states in which adhesion cannot be reversed by application of tension.
Such states occur only if the adhesion molecules have certain constitutive
properties (catch-bonds). We discuss the rational for such catch-bonds
and their possible biological significance. Finally, by analysis of numeri-
cal solutions, we derive an accurate and general expression for the
steady-state velocity of attachment and detachment.

As applications of the theory, we discuss data on the rolling velocity
of granulocytes in post-capillary venules and data on lectin-mediated
adhesion of red cells.
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The ‘peel test’ is an important method of assessing the performance and charac-
teristics of adhesives used in industrial and engineering applications. To do the
peel test, one half of a long strip of a flexible membrane of known bending modulus
is attached to a smooth surface by using various adhesives or methods of appli-
cation. The test then consists of measuring the rate (length per unit time) at
which the membrane is peeled off the surface when tension is applied to the free
end. Alternatively, one can measure the tension generated at a given rate of
peeling.

If one wishes to glue two parts together in a reliable manner, then one has to
decide between various means at hand, and the peel test can frequently give an
answer in a purely empirical fashion and without the need for any deep analysis.
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56 M. Dembo and others

On the other hand, in the context of cell adhesion, one wishes to use the peel test
as a scientific means of exploring the biochemical and biophysical basis of
adhesion. This means that it is helpful to develop quantitative formulations of
various hypothetical models of adhesion and to compare experimental results with
the predictions of these models.

Since the early studies of McEwan & Taylor (1966), several authors have
developed continuum models of the peel test as used in engineering (recent
examples are Crocombe & Adams (1981, 1982) and Yamamoto et al. (1975); also,
see review by Krenceski et al. (1986)). These models view the adhesive layer
separating the membrane from the surface as a continuum that obeys more or less
complicated viscoelastic or viscoplastic constitutive relations. Numerical methods
are used to compute the detailed distribution of stresses that are developed in
the adhesive during the peel test. Various modes of failure of the adhesive are
associated with certain critical values of the stress.

These models cannot be carried over to a biological setting without some
modification. In part, this is because of the very small size of the gap separating
an adherent cell from the surface to which it binds. Because this gap is of the same
order of magnitude as the size of typical cell surface glycoproteins (cell adhesion
molecules included), it is neither appropriate nor possible to characterize the
intervening material as a continuum with respect to a curvilinear axis that spans
the cell-to-surface gap. Additional motivation for rejecting the concept of a
continuous ‘adhesive’ comes from the fact that there are usually only a few
(10°-10%) adhesion molecules per cell and from the fact that there are many other
components of the glycocalyx in the cell-to-surface gap. These latter components
may have nothing to do with adhesion or, in fact, they may work against adhesion
either passively (by taking up space) or actively (by mediating repulsive inter-
actions) (Bell et al. 1984; Bongrand & Bell 1984).

The discrete molecular basis of cell-cell or cell-surface bonding has been well
recognized in previous models of these phenomena. Bell and co-workers (Bell et al.
1984 ; Torney et al. 1986 ; Dembo & Bell 1987) have proposed and analysed several
detailed models of membrane-to-membrane and membrane-to-surface adhesion.
These models were primarily concerned with the balance between bonding
enthalpy, repulsive potentials, and mixing entropy ; the finite bending rigidity of
the cell membrane was modelled by placing an upper constraint on the area of
contact. These models did not consider the effect of tension applied to the
membrane and were restricted to states of thermodynamic equilibrium.

Evans (1985a, b), has discussed models that include the effects of bending
rigidity and tension but without considering repulsive forces or mixing entropy.
Evans has considered states that depart from thermal equilibrium but only if such
states are kinetically trapped (i.e. only if they are in mechanical equilibrium).

In the present work we shall attempt to build on both these previous contri-
butions. Our main purpose is to develop an analytical expression for the steady-
state velocity of peeling as measured in a biological version of the peel test.
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Ficureg 1. The geometry of membrane-to-surface adhesion is illustrated. The surface to which
the membrane binds is taken as coincident with the X-axis of Cartesian coordinates.
Position along the contour of the membrane is tracked by the arc-length coordinate, s. At
the free extremity (s—>— c0), tension (7},) is applied to the membrane at a particular angle
(6,,) with respect to the surface. At the clamped extremity (s >+ 0o0) the membrane is firmly
attached to the surface so as to prevent lateral slippage.

THE MODEL

Figure 1 shows the geometry of the peel test and introduces some basic notation.
We take the surface to which the membrane binds as coincident with the X-axis
of Cartesian coordinates in the laboratory frame. The position along the contour
of the membrane is tracked by an arc length coordinate, s. The shape of the
membrane at any instant of time, ¢, is specified by the locus of points X(s,?),
Y(s,t). At one extremity, (s——o0), tension is applied to the membrane at a
specified orientation with respect to the surface. At the other extremity (s —++ c0),
we presume that the membrane is firmly clamped to the surface. The latter
precaution is taken to ensure that the membrane cannot slip horizontally with
respect to the surface.

Bonding between the membrane and the surface is presumed to be mediated by
specific adhesion molecules. The surface density of free or unattached adhesion
molecules is given by a function of arc length and time, 4(s,¢); the density of
consummated membrane-to-surface bridges is given by A,(s,t). The formation
and breakage of cell-to-surface bonds at any position of the membrane is taken to
be a reversible stochastic chemical rate process of the simple type

Ky(Y)
Ap = A, (1)
K(¥)

As indicated by (1), the forward and reverse reaction rates (K; and K,) are

functions (to be specified subsequently) of the vertical separation between the
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58 M. Dembo and others

membrane and the surface. In a more general theory these rate functions could
also depend on the slope of the membrane with respect to the surface.

We shall restrict consideration to cases in which the adhesion molecules are
anchored in the plane of the membrane (i.e. the molecules are not free to diffuse
or slip in a lateral (fashion). In this event, the total density of adhesion molecules
must be a fixed constant:

Ay(s,8)+ Ay(s,8) = Ayogar- (2)

By using (2), the continuity equation for the bond density becomes

0, Ay(s,t) = Ki(Y) Aora) — (K (Y) + K (X)) Ay (s, 1) (3)

A point on the membrane is said to be in ‘contact’ with the surface if the bond
density at this point is greater than or equal to some small positive quantity called
the ‘contact threshold’. We denote the contact threshold by 4, .. The first point
of contact between the membrane and the surface (denoted by P,) is defined to be
the smallest value of s such that 4,(s,?) = 4,, .

Suppose that we choose initial conditions such as P, exists and is at the origin
of arc length ¢ = 0. Because bonds can form and break, P, will in general be
a function of time. We have not attempted a rigorous mathematical proof;
nevertheless, we find by direct numerical construction that P, is both continuous
and differentiable. Given that this is so, the peeling velocity can be defined to be
the first-time derivative of P,,

Voi(t) = 0, Py(t). 4)

According to this equation, negative values of V,, correspond to rates of bonding
or annealing between the membrane and surface.

Our definitions of contact point and peeling velocity imply that both these
quantities depend on the seemingly arbitrary choice of a value for the contact
threshold. Fortunately, this is only true during the phase of peeling when the bond
distribution and the shape of the membrane are changing rapidly (see Results).
During this transient phase, different parts of the membrane move in different
ways, and there is no absolute way to define the peeling rate in terms of a single
quantity. The situation changes at large times once a steady or periodic process
of peeling or annealing is achieved. If the process is a steady state, then it can be
shown that the value of V,; must become independent of the choice of contact
threshold. If the process is periodic, then although the detailed wave-form could
depend on A, ., the average of ¥V, over one cycle is independent of contact
threshold.

In our subsequent discussions when we refer to peeling rate we sometimes fail
to state the value of the contact threshold with respect to which this quantity is
defined. In such cases it should be understood that the peeling rate in question
refers to a steady or periodic process. It is therefore independent of the choice of
contact threshold.

Let us now adopt a frame of reference such that the contact point is synonymous
with the origin of arc length:

§=s—P,t). ()
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Kinetics of adhesion and detachment 59

In the new coordinates, the peeling velocity appears explicitly as a virtual
convection term in the continuity equation for the bond density

0,4, = Vpla.s"Ab+KfAtota1“(Kf+Kr)Ab- (6a)

The instantaneous value of the peeling velocity now becomes explicit because in
the new coordinates the bond density is always equal to the contact threshold at

. in
he origin Vo =—(K;4;— K, A,)/(0;4,) at3=0. (6b)

Given K;(Y) and K.(Y), (6a,b) constitute an explicit relation between the
kinetics of bonding and the membrane shape. The converse relation must also be
explicit. We therefore propose to adopt what is doubtless a very simplistic model of
what may be called the ‘bonding stress’. To this end, a cell-to-surface bond will
be viewed as a simple Hookean spring with spring constant x and A. We think of
these bonds as being stretched vertically between points on the membrane and the
projection of these points on the surface below. In consequence, the normal and
tangential components of the bonding stress on the membrane are

Opor = Ap k(Y —A)0; X (Ta)
and Oan = — Ay k(Y —2A)0; Y, (7b)

respectively.

We shall henceforth assume that bonding stresses are the only distributed
stresses of importance. We thus neglect forces due to shearing motions of sur-
rounding viscous fluid, transmembrane pressure gradients and nonspecific
repulsive or attractive potentials between the membrane and the surface (e.g.
electrostatic and electrodynamic potentials). The treatment of these additional
stresses can readily be accomplished but at considerable cost in terms of
pedagogical clarity. In addition, one can show that in a certain sense frictional
stresses (such as hydrodynamic stresses) are dominated by the bonding stresses
when one is ‘sufficiently close’ to thermal equilibrium. This is simply because such
stresses are proportional to the velocity of peeling.

For given normal and tangential stresses, it is well known that in the absence
of inertia, the tension and curvature of a thin inextensible membrane are governed
by the coupled nonlinear system (Evans & Skalak 1980; Evans 1985a):

(T +0.5M,C%) = — 0., (8)
M, 20 —CT = —a,,,. 9)

In these expressions, M, is the modulus of bending, C is the curvature and 7' is
the tension.
In addition to (8) and (9), we know by definition of the curvature that

C' = (0:X) (03 Y)— (33 X) (05 )

= (03 Y)/ (0 X), (10)
and by definition of the arc length that
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60 M. Dembo and others

To form a well posed mathematical system, (6a, b), (7a, b), (8), (9), (10) and (11)
must be supplemented by appropriate boundary and initial conditions. At the free
extremity of the membrane (§——c0), we require,

0; Y= —sin (0p), (12a)
Ci,t)—~>0 (12b)
and T(3,t) - T, (12¢)

where 6, is the angle between the membrane and the surface at the free extremity
and 7}, is the tension applied at the free extremity (see figure 1).

At the clamped extremity (§—+ c0), we require the gap between membrane and
surface be such that normal stresses on the membrane approach zero. We also
require that the membrane be parallel to the surface. Thus

Y(3,t) > A (13a)
and 9 Y 0. (13b)

It is notable that according to our definition, ¢, is the included angle between
the clamped and the free extremities of the membrane. This angle is measured
when one is a very large distance away from the region of membrane bending and
should not be confused with the contact angle between liquids or between a liquid
and a solid. The latter quantities refer to the actual angle at which material
surfaces join.

As a consequence of the boundary conditions, it can be seen from (6a) that at
sufficiently long times A (5,0) 0, (14)

as §—>—o0. By the same token, if we let

Keq =Kf(A)/Kr(/1) (15(1)
be the equilibrium constant for formation of unstressed bonds, then
Ab(g’t)QAtotKeq/(l'i'Keq) =Ab,eq (15b)

as §—>+00.
As far as initial conditions are concerned, we shall restrict consideration to the
case where the starting bond distribution is a two-step function of the form

A,(3,0)=0 if § <0,
Ay(5,0) =4, , ifF=0, (16)
Ay(5,0) = 4, o ifF>0.

This function is the simplest choice if one requires that the contact point exist
at ¢ = 0 and that the limiting behaviour at § =4+ and — oo be appropriate.

The specification of our model is now almost complete, but it still remains for
us to provide an explicit form of the relation between the rate constants, K; and
K,, and the size of the cell-to-surface gap (Y). The starting point for deriving this
relation must be a clear appreciation of the need for thermodynamic consistency
between any such relation and the simple Hookean spring concept of the bonding
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Kinetics of adhesion and detachment 61

stress. The standard-state free energy of a Hookean spring stretched or compressed
until it has end-to-end length Y, can be expressed in the form

Gy = Gpo+0.5c(Y —A)2, (17a)

where G, is the standard state free energy of the unstretched spring. This means
that the equilibrium constant for formation of a stretched bond has the form

Y)/K(Y) = exp(—Gy/B,) = K, exp(—0.5c((Y —A)?)/B,),  (17b)

where B, is the product of Boltzmann’s constant and the absolute temperature
and K, is as given by (15a).

Equation (17b) means that if we specify K,, then K, is determined en passant.
The former specification can be accomplished if one makes good use of the
Arrhenius (or transition state) theory of chemical reaction rates. To apply the
transition state theory we need only remark on two facts. First, the free energy of
an unattached adhesion molecule is a constant that does not depend on the gap
separating the molecule from its potential attachment site. Secondly, the standard
state free energy of the transition state for formation of a stretched (or compressed)
bond will have the same Hookean form given by (17a). Of course, the base energy
of the unstressed transition state as well as the spring constant and rest length of
the transition state will be somewhat different from the corresponding quantities
for the final bonded state. For simplicity we shall assume that the differences
between the transition state and the bonded state can be described by a change
in the spring constant only.t This leads immediately to the expression

K((Y) = K(A) exp{—0.5x,,((Y —A)2)/B,}, (18)

where kg is spring constant of the transition state.
One may now combine (17b) and (18) to obtain the consistent expression for
K,:

K.(Y) =K, (A) exp{0.5(k— k) (Y —A)*/B,}. (19)

If the transition state is a stiffer spring than the bound state (i.e., if
(ks —K) > 0,) then (19) implies that the rate of disruption of a highly stretched
bond will actually be slower than the rate for disruption of an unstressed bond.
This at first might seem rather implausible, but in actuality it is easy to construct
molecular models of well-to-substratum bonds that will give this behaviour. The
basic mechanism of such models is similar to that of the child’s toy known as the
‘finger-prison’.} In other words, the stress created by stretching the bond acts as
a lever to lock the bonding groups more tightly together.

The predictions of our model depend very strongly on whether or not the bonds
are capable of finger-prison type of behaviour. This property of bonds is so
fundamental that it is useful to distinguish two entirely different types of bonds:
catch-bonds and slip-bonds. All bonds for which K, (Y) approaches zero as Y
approaches infinity are said to be catch-bonds; otherwise the bonds are said to be

t We shall consider an alternative hypothesis in Appendix 1.
1 A finger-prison is a flexible tube made of helically wound filaments. The object will admit
entrance of a finger, but it collapses and resists when egress is attempted.
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slip-bonds. From (19) it is apparent that any bonds for which kg is strictly greater
than « will be catch-bonds. Bonds for which «, is exactly equal to « qualify as
slip-bonds.

THE CRITICAL TENSION

The critical tension is the value of 7}, required to just overcome the tendency
of the membrane to spread over the surface. In many systems this quantity has
been measured experimentally (see Analysis of experiment).

We know of two ways to derive the exact analytic expression for the critical
tension predicted by our model: an approach based on energy conservation and an
approach based on horizontal force balance. We shall present the latter proof. An
application of energy arguments, to obtain the same final result but in a somewhat
different context, can be found in the Appendix of Evans (19854).

According to our model, bonding stresses always act in the vertical direction.
Thus the only horizontal forces acting on the membrane are due to the tensions
acting on the free and clamped extremities. A simple free-body diagram will thus
show that for horizontal forces to balance:

lim (3;X)T+ lim (3;X)T = 0.

§>—o0 §—>+00

If we now apply the boundary conditions, it follows that the tension at the
clamped extremity is given by

T, =— lim Q;X)7T =—T,, cos (0y). (20)

(.4
(§—>+ )

Let us now turn to the continuity equation for 4,, (6a). If we assume steady
state, then it is apparent that 4, can be expanded as power series in ¥V,

Ay = apgtay, Vy+ay, Vi+.... (21)
Substituting into (6a), collecting powers of V; and using (17b), we find that

0 = Aot Keq exp{—0.5(k/B,) (Y —2)*}
PO [LO+ K exp{—0.5(k/B,) (Y =2)%}]’

@ = (05 @)
ot (Kr+Kf)’

(22)

ete.
We now combine (21) with the expression for tangential stress (754). Substitution

of the resulting expression into the right-hand side of (8) yields:
oW,

p

) = —ap k(Y — ) (0 Y) +05(T + 0.5M, C?). (23)

Using (22) with the boundary conditions at the free extremity, we can integrate
(23) from — oo to §. The result is:

A ota1 B, In[1 +Keq exp{—0.5(x/B,) (Y —A)*}]
+0.5M,C*+T—T,, = O(V,). (24)
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Next we take the limit of (24) as §->+ o0 and apply (20) with the boundary
conditions at the clamped extremity :

[1 +cos (efx)] 77fx = Atotal Bz In [1 +Keq] + O(Vpl) (25)
Finally, because V,, is zero at the critical tension, we have proved that:

T = BzAtota.l In [1 +Keq]
erit (1+cos (By))

(26)

If we regard 6;, as analogous to the liqud—solid or liquid-liquid contact angle,
then it can be seen that (26) has the same form as the classical Young equation
(Adamson 1976). Continuing this analogy, the surface energy for bonding between
the membrane and the surface is equal to the numerator on the right-hand side of
(26). The only advantage of (26) is that the surface energy is given as an explicit
function of the Boltzmann factor, the total density of adhesion molecules, and the
equilibrium constant of the adhesion molecules: quantities subject to independent
measurement.

It is important to realize that (26) neglects the contributions of non-specific
attractive and repulsive potentials. Fortunately, it is possible to compute the
consequences of these additional factors by a straightforward generalization of the
arguments given above. We shall simply state the result and omit the detailed
proof.

Let I'(Y) be the conservative work required to bring a unit area of membrane
from infinite distance to vertical distance Y in the absence of bond formation. To
compute the critical tension when I is non-zero, we must first examine the roots
of the indicial equation

(Y —A)k =—0; 1.
If no positive root of this equation exists, then the bonding stresses are unable
to overcome the repulsive forces, and stable adhesion is not possible. In this event
the concept of critical tension is meaningless. If a positive root, Y,,, does exist,

eq’
then:
_ {Atotal Bz In [1 +Keq OXP("O5(K/BL) (qu_A)Z)]_I"( qu)}

Tern = (14 cos (6;,))

It can be seen from the above expressions that, in general, it will be safe to
neglect non-specific forces only if the value of A is large compared with the range
of these forces. Because the raison d’etre of adhesion molecules is precisely to
overcome repulsive forces, one has good teleological justification for suspecting
that this will often be the case.

NUMERICAL METHODOLOGY

The formula for the critical tension is an exact analytical result and is very
useful as far as it goes. However, because our model gives rise to a highly non-
linear system of partial differential equations (PDEs), it seems inevitable that any
really deep analysis must rest on the study of numerical solutions. Therefore it is
necessary to compute numerical solutions that are highly reliable and accurate.
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Furthermore, it is necessary to study many such solutions. This computational
efficiency is extremely important.

The major challenge in numerically solving our model is the necessity of
resolving structure over a very wide range of distance scales. The molecular scale
is defined by the distance v/ B,/k: (i.e. by the strain required to raise the internal
energy of a bond by one Boltzmann). At the other extreme, to apply the boundary
conditions at § = + and — oo, one must resolve distances that are large compared
with the radius of curvature of the membrane.

To overcome these difficulties, we utilize the fact that we are free to make the
bond density at the contact point (4, ) as small as we wish. If the contact
threshold is truly negligible, then we can ignore the bonding stresses on the
portions of the membrane that lies to the left of the contact point, because the
bond density at these points will be even smaller than the contact threshold. The
result is that, for § < 0, one can partially integrate the system of equations that
govern the membrane deformation and tension. We are thus able to replace the
boundary conditions at §—>— 0o, by matching conditions at § < 0. The matching
conditions are:

My050) = Tyl @ X) sin (O) — (0 V) cos G)l.  (27a)

T=- fx[(aé' Y) sin (efx)+ (aé’X) COS (0fx)]7 (27b)
0.5M, 0 =T, —T. 27¢)

We now proceed to introduce a finite difference formulation of the model and
solve the resulting nonlinear algebraic system by a relaxation method. The region
§ > 0 is divided into a large number of uniform segments. The number and length
of these segments are adjustable numerical parameters. All fundamental quan-
tities, bond densities, X and Y coordinates, as well as tensions, are edge-centred.
In the continuity equation (6a) the backward Euler scheme is used for the time
derivative, and upstream differencing with simple donor cell advection is used to
discretize the virtual convection term. Given bond densities from the previous
time step, a subroutine ‘Boncalc’ equation computes V,,, using (656), and then does
one cycle of an under-extrapolated Jacobi procedure for the linear system derived
from the continuity equation. X and Y coordinates of the segment edges are
regarded as fixed by this subroutine.

In a second subroutine, ‘Tencalc’, the tension at each segment edge is calculated
by numerically integrating (8), subject to the appropriate matching condition at
§ = 0. This subroutine regards bond densities as well as X and Y coordinates as
given.

In a third subroutine, ‘Ycale’, ¥ coordinates of segment edges are refined by
using the discretized forms of (9) and (10) with the appropriate boundary and
matching conditions. The large banded matrix that results from this discretization
is inverted by direct lower—upper (LU) decomposition. In Ycale, X coordinates,
tensions and bond densities are regarded as given.

In a final subroutine, ‘Xecalc’, the X coordinates of segment edges are adjusted
by using (11) and the existing ¥ coordinates. This ensures that segment lengths
are always completely fixed.

In each time step, Boncale, Tencale, Ycale, and Xcalc are repeatedly executed
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until a convergence criterion is satisfied. Then new bond densities are exchanged
for old, and the time is incremented. The overall iterative process is stable provided
the time step satisfies a Courant condition and is not too large compared with the
characteristic relaxation time of the bonding reaction near §=0. It is also
necessary that the slope of the membrane at § = 0 does not approach very close to
the vertical.

Before we present results that are based on the study of numerical computations
obtained with this algorithm, it is necessary to discuss the nature of the controls
and checks that we have conducted to convince ourselves that our numerical
results are accurate. First, and most elementary, were checks of Cauchy con-
vergence of the numerical method. This was studied by matched computations in
which all parameters were held fixed except for the segment size, the number of
segments to the right of the contact point, the contact density, the size of the time
step and the convergence criterion for the iteration at each time step. For any
given set of physical parameters, it was elementary to arrive at estimates of the
aforementioned numerical parameters such that a further doubling of numerical
accuracy results in only 1-2 % change in steady-state peeling velocity. This level
of accuracy was then routinely used.

The accuracy of those portions of the method that solve for the elastic deflection
of the membrane at fixed bond distribution were independently confirmed by
comparison with a class of approximate analytic solutions that are readily
obtained in the linearized small deflection limit. Accuracy of the order of 1%
was obtained.

Finally, a very important and independent check on the accuracy of the
numerical method was its ability to give the right value of the critical tension and
the right value of the clamping tension (20) and (26). For all parameters studied,
numerical determinations of the critical tension were found to be remarkably
accurate (better than 0.1 %).

INFORMATION STRUCTURE

Let us introduce a non-dimensional time variable:

{=K,A)t (280)
and non-dimensional arc length
§ = 5(x/B,)}
= (s=Pu(t) (/ B, (286)

The corresponding non-dimensional dependent variables are the non-dimen-
sional curvature and coordinates of the membrane:

C = C(B,/x), (29a)

X = X(k/B,)t, (29b)

Y= (Y=2) (x/B,)}; (29¢)

non-dimensional tension, T =T/T (294d)

peeling velocity, Vpl = [Vo/K,(A)] (k/B,); (29e)
3 Vol. 234. B
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and non-dimensional bond densities,

Ay =Ay/ 4, 0 (29)
and Ay =A,/4,, o (299)

After changing variables, it can be shown that for the above scaling, our model
is governed by five independent non-dimensional groups. We will take these to
be:

Koy = Ki(A)/K (), (304)

B = Ao By/ (M, k), (306)

F, = (k—k5)/, (30¢)

Orxs (30d)

and Ty = T/ Tersy- (30¢)

Technically, one should also include the non-dimensional contact threshold,

€ = b c/Ab eq’ (3Of)

but this is really an artificial quantity that is introduced mainly for numerical
convenience.

To do useful numerical studies it is helpful to have estimates of the applicable
non-dimensional quantities. In the case of 0 and T, such estimates are self-
evident. One may also reasonably assume that the variation of stiffness of the
adhesion molecules between transition state and bonded state (i.e., F) is only a
few percent. Other estimates of important parameters of our model for typical
biological systems are shown in table 1.

TABLE 1. ESTIMATES OF PARAMETERS USED IN THE MODEL FOR
TYPICAL BIOLOGICAL SYSTEMS

parameter estimated value unit
K, 107* to 10° —
Ao 10? to 102 em™?
K 0.01 to 10 dyn em™?
A 1to4 107% ecm
M, 10712 to 10713 ergs
B, 4.1x 107 ergs

The estimate of the bending modulus is based on the measurements of Evans (1983); other
estimates are adapted from the discussion of Bell et al. (1984). From the numbers listed above
it can be concluded that the value of f is typically much less than one. Physically this means
that the cell membrane is quite rigid compared with the bonds.

REsvLTS

Figure 2 illustrates the time dependence of the peeling velocity in the case of
slip-bonds. Computations corresponding to 7}, of twice the critical tension, 7},
equal to the critical tension and 7, of half the critical tension are demonstrated. To
show how the results depend on the choice of contact threshold, each computation
was done for ¢, = 107* (open symbols) and for ¢, = 107¢ (closed symbols). In all
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FieurE 2. Six computations of the time dependence of the peeling velocity in the case of slip-
bonds. In all cases the initial bond distribution is of the form given by (16). Three pairs of
curves are shown corresponding to 7}, = 0.5, 1.0 and 2.0. Within each pair the curve
corresponding to non-dimensional contact threshold (e, = 4, ./4, .,) of 107 is marked
by open symbols, and the curve for 107¢ by closed symbols. In all six computations
f=168x10"" 6, =in, K, = 1.0, and F, = 0.0. In all cases a steady state of peeling is
approached asymptotically at long times. Once this state is attained, the velocity does
not depend on the choice of contact threshold.

cases, the existence of an initial transient phase during which the peeling velocity
undergoes considerable excursions can be seen. During the transient phase, the
peeling velocity depends slightly on the choice of contact threshold. However, as
remarked earlier, the steady-state peeling velocity is independent of the choice of
contact threshold.

Figure 3 shows the typical time dependence of peeling and annealing for the case
of catch-bonds. To facilitate comparisons, the computations in figures 2 and 3 are
matched in all respects except that in figure 3 F, = —0.05 whereas in figure 2
F, = 0.0. There are some small changes in the time-course of annealing and in the
final steady-state annealing velocity ; these are more or less linear in ¥, and will be
discussed more fully later on. In contrast, the time-course of the peeling mode
(shown in the insert of figure 3) is completely transformed. Most importantly, the
steady-state peeling velocity in the insert of figure 3 is zero. This last result is a
completely general property of catch-bonds; if bonds are of catch-type and if the

3-2
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non-dimensional peeling velocity

1 2 3 4 5 6 7

non-dimensional time

Ficure 3. Six computations of the time dependence of peeling in the case of catch-bonds. The
format description of figure 1 applies equally well to this figure. Parameter values are also
the same as in figure 2, except that the value of ¥, = —0.05. In the case of catch-bonds, the
steady-state peeling velocity always equals zero when the tension exceeds the critical
tension. At tensions less than the critical tension there is little difference between slip-bonds
and catch-bonds.

tension is greater than or equal to the critical tension, then, no matter how other
parameters are chosen, the membrane will start to peel but will quickly grind to
a halt. This behaviour is all the more remarkable when one considers that for
tensions less than or equal to the critical tension, the behaviour of catch-bonds is
very similar to that of slip-bonds. In other words, the equations governing the
formation of catch-bonds seem to be (and in fact are) fully reversible in a
thermodynamic sense. Nevertheless, although the membrane can anneal to a
surface, it is impossible to peel it off again. The solution of this seeming paradox
lies in the fact that bond formation is only reversible at thermal equilibrium when
Maxwell’s demon is asleep. When tension in excess of the critical tension is applied,
the demon awakens.

Except to verify that steady states always occur after sufficient time, we have
not made an extensive study of the detailed characteristics of the transient phase
of peeling or annealing. Such a study might be very interesting, however, because
in some cases we find that the early kinetics of peeling are remarkably complex
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even in the case of slip-bonds. When K is large, the kinetics of detachment consist
of a long lag phase followed by abrupt acceleration and overshoot of the stable
peeling rate and finally an approach to the stable rate through a sequence of
damped oscillations. These phenomena are quite prominent in the computation
shown in figure 4. The potential complexity and long duration of the lag phase of
peeling should serve as a warning against overly facile assumptions in the inter-
pretation of experimental results. For example, in measurements of the rate of
detachment of adherent cells (Mohandas et al. 1974 ; Mege et al. 1986), it is possible
that the results are completely dominated by the initial transient.

T T T T
1 b 0 -
10 | -
> 9 - w
e
Q
= n
§8
g
= 7
g
<9
= 6 | |
8 15 20
2 5| .
O
.g \
< 4 o
o
=
3_ -]
2+ N
1k i
l l |
5 10 15 20

non-dimensional time

FigUrE 4. A computation illustrating the phenomena of lag-phase overshoot and damped
oscillations in the kinetics of peeling. Parameter values: 6, = in; T, = 2.0; 8 = 1.68 x 107,
K, =100; F, = 0. ¢, = 107® (open symbols) and 10~* (closed symbols).

We now consider the geometric character of the steady-state solutions of our
model. Figure 5a—c gives the steady-state solutions corresponding to the end
points of the three kinetic computations shown in figure 2. Figure 5a represents
a steady state of annealing, figure 5b shows the final state at the critical tension,
and figure 5¢ corresponds to a steady-state of peeling. These are typical of the
solutions obtained for all slip-bonds and also for catch-bonds if the tension is less
than the critical tension. Figure 6 shows the nature of the steady state in the case
of catch-bonds when the tension is greater than the critical tension. Parameter
values for the computation in figure 6 are matched with those of figure 3.
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(a)

non-dimensional variables

I | | | ! | 1 ! |
0 10 20 30 40 50 60 70 80 90

non-dimensional arc length

FIGURE 5(a,b). For description see opposite.

The horizontal axis in figures 5a—c and 6 corresponds to non-dimensional arc
length (3). As a function of §, each figure gives the non-dimensional gap separating
the membrane from the surface (¥), the non-dimensional bond density (4,), and
the non-dimensional tension (7). For those who are unfamiliar with the physics of
membrane bending, it is usually surprising to discover that Y undergoes damped
oscillations. At first approach its finite bending stiffness causes the membrane

to overshoot the equilibrium separation so that the bonds become compressed
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FioUrE 5. Spatial variation of ¥, 7, and 4, at steady state in the case of slip-bonds. Graphs
(a—c) correspond to T, = 0.5, 1, and 2, respectively. Other parameters are the same as in
figure 2: 0,, =3in; f=1.68x107*; K, = 1 and F, = 0. See (29a~h) for definitions of non-
dimensional quantities.
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Ficure 6. Spatial variation of Y,T, and Jb in the ‘catch-state’. Parameter values are the same
as in figure 3. The catch-state is caused by the presence of a few highly stretched bonds. The
density and distribution of these bonds cannot be seen on the standard scale but can be
demonstrated on the expanded scale of the insert. These few bonds by themselves must
counterbalance most of the tension applied to the membrane.
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(Y < 0). The upward force of the bonds eventually causes the trajectory of the
membrane to turn upwards. Once again the equilibrium separation is overshot
causing the bonds to stretch, and so forth. At each cycle the amplitude of under-
shoot or overshoot diminishes exponentially until the final equilibrium separation
is attained. Unfortunately, in figure 5a—c, only the first cycle is of sufficient
amplitude to be visible; nevertheless, the principle is clear.

If Vpl is very close to zero, then, according to (22) and (24), the spatial
dependence of the tension and bond density are simply related to the variations
of Y. Equations (24) and (26) hold exactly for the computation in figure 5b.
Unfortunately, the comparison with the results shown in figure 54, ¢ demonstrates
that the expansion of the bond density in powers of the velocity (21) is very slowly
converging. Thus, although one can obtain an approximate expression for the
peeling velocity by neglecting all but a few terms of the power series, the result is
not very useful in itself. Nevertheless, the result does serve as a point of departure
for the empirical analysis of numerical computations (see (34)).

During the process of peeling the spatial variations of the bond density are
translated into temporal variations of the peeling rate by the effects of virtual
convection. This connection explains the complex kinetics seen in figures 2 and 4,
and is really quite trivial once it is pointed out.

The spatial variations of 4,, ¥ and 7' for the case of catch-bonds reveal the
essence of why such bonds act the way they do. As shown by the insert in
figure 6, there is a secondary accumulation of bonds with maximum density at §
approximately equal to 10. There are not very many bonds at this location ; in fact
the whole phenomenon is not even directly visible on the scale of the main plot.
Nevertheless, these few bonds are important because they are under extremely
high strain (¥ = 28-29 at § = 10). The tangential traction they exerted is respon-
sible for the sudden decline in the tension between §= 10 and § = 30. This
traction counteracts the brunt of the applied tension, bringing the effective tension
acting on the remainder of the membrane down to the level of the critical tension.
Obviously, the situation shown in figure 6 is not in thermal equilibrium ; however,
we emphasize that the system is in mechanical equilibrium. In fact, if we take the
lifetime of an unstrained bond to be about 1 ns, then it can readily be estimated
from (19) that the lifetime of one of the highly stretched catch-bonds at § = 10
exceeds the current age of the universe by a comfortable margin.

We now turn to the main object of our study : the steady-state peeling velocity.
We have already seen that this object is trivial in the case of catch-bonds when the
tension exceeds or equals the critical tension; to wit, Vpl = 0 regardless of other
parameters. In the remaining situations we are unable to provide an exact
expression for the peeling velocity. Fortunately, this is not a significant drawback
because we have been able to discover an extremely accurate and general
asymptotic formula only involving simple analytic combinations of the
fundamental non-dimensional parameters.

To write the expression for the peeling velocity we first define the three
quantities:

Qu = 2n[{—b+[c+ ], (31)
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_[BU+K) In(1+K )T, ]

where P = {1 15K o) (15 <08 (6,0)]
and ¢ =[0.58K,1/[(1+2K,)];
Qo = 1+ T3 + (Koo /(1+ Ko )) T2, (32)
where d=[(1+K) In(1+K)]/Keq;
and Q, = L +2dF T, + O[(F.T,.)%]. (33)

In terms of these quantities, the approximate expression for the steady-state
peeling velocity is simply . .
Vpl = Q@3 In (1},)/Q,. (34)

To assess the accuracy of (34), we ran a program of approximately 600 com-
putations designed to cover broadly the combinatorial choices of non-dimensional
parameters falling within the physically reasonable range. 6;, was between 0 and
in, Ti, was between 0.5 and 8, # was between 107 and 2 x 1072, K eq Was between
107® and 10*3, and F, was between 0 and 0.05. In this series of tests the average
percentage difference between the prediction of (34) and the numerical result was
10.7%. There were 15 computations in which the error exceeded 20 % and no cases
in which the error exceeded 30%. Of the 15 cases in which the error exceeded
20 %, all involved computations in which K., was greater than 10; otherwise no
systematic factor associated with high error could be determined.

It would be good if we were able to give some rigorous mathematical explanation
for the extraordinary accuracy and generality of (34). Unfortunately, such an
explanation is unknown, at least to us. The derivation of (34) was accomplished by
an ad hoc combination of guesswork, knowledge of limiting cases, some facility
with jigsaw puzzles, scaling arguments, and careful study of a very large number
of numerical calculations. Those who are uncomfortable with such an essentially
experimental approach to applied mathematics are sincerely encouraged to
attempt a more systematic derivation.

Figure 7 illustrates the dependence of I7p] on T, and K eq for the case when f is
very small, F, is zero and 0;, = in. Symbols are used to represent the numerical
results; whereas the smooth curves give the predictions of (34).

Under the circumstances of the computations shown in figure 7, ¢, = 1 and the
coefficient ¢, approaches a constant independent of tension (see (31)). Quali-
tatively, Vpl has a strong singularity as 7}, —~0 because of the influence of the
coefficient @,. As the value of K., gets large, the exponent of this singularity
approaches infinity because of the term 75,8 (see (32)). For non-dimensional ten-
sions greater than one, @, rapidly approaches one, and thereafter I7p1 increases
logarithmically with the tension. When K, is large, there is a small systematic
difference between the numerical computation of V,, and the values computed by
using (34). This sort of phenomenon accounts for almost all the discrepancy
between (34) and the numerical results. The example shown is the worst case of
such discrepancy. Of the 15 instances in which the error of (34) exceeds 20 %, eight
can be found in figure 7.
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Ficure 7. Dependence of I;'pl on T, for various values of K. Fixed-parameter values are:
p=168x10"° 6, =ir and F =0. (a) Results from numerical calculations for
K., = 0.001 (squares), K., = 0.01 (circles), K., = 0.1 (triangles) and K, = 1.0 (plus signs).
(b) Results for K, = 1.0 and numerical results for K, = 10 (crosses), K, = 100 (diamonds)
and K, = 1000 (inverted triangles). The smooth curves are drawn by using (34).
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Freure 8. Dependence of Vpl on T, for various values of K eq- Fixed-parameter values are:
B=1.68x10"2% 6, =in and F,=0. The numerical results (indicated by symbols) and
the comparison to (34) (smooth curves) are organized according to the same format as in
figure 7.
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Figure 8 shows a series of computations in which F, is still equal to zero, but in
which the other parameters have been changed so as to magnify the nonlinear
tension dependence of ,. As before, agreement between the computations and
(34) is excellent.

Figure 9 illustrates the results obtained if ¥, > 0. The main consequence of
taking ¥, > 0 is that 'I7pl now increases at a faster than linear rate when the tension
is large.

Thus (34) is useful because it expresses the predictions of our model in a compact
and accessible form.

(@)

non-dimensional velocity

non-dimensional tension

Ficure 9. Dependence of Vpl on T, for various values of K,,. Fixed-parameter values are:
f=168x10", 6 =i, and F, = 0.05. The numerical results (indicated by symbols) and
the comparison with (34) (smooth curves) are organized according to the same format as
in figure 7.

ANALYSIS OF EXPERIMENT

As an application of (34) we will reanalyse some results of a well-known study
of the motion and adhesion of granulocytes in the postcapillary venules of mouse
mesentery and hamster cheek pouch (Atherton & Born 1972, 1973). In that study
it was shown that granulocytes adhere to the vascular endothelium while rolling
due to the shear force of the flowing blood. Thus new adhesive bonds must form
at the front of the cell, and membrane is peeled from the surface at the trailing
edge of the cell.

To apply our model to the Atherton-Born study, we must make a mapping
between the problem of a cell that rolls because hydrodynamic shear acts on its
upper surface, and the problem of a tape that peels because tension is applied to
its free extremity. Implicit in such a mapping is the assumption that the dominant
factor resisting forward motion of the rolling cell is the breaking of adhesive bonds.
Thus we propose that the important dissipation of energy in a rolling cell occurs
in a very localized region at the trailing edge.
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Because the surface of the granulocyte has many small folds, or is ‘wrinkled’,
the localized region of peeling should probably be thought of as corresponding to
a single such ‘wrinkle’. With this in mind, we shall take advantage of the fact that
on a molecular-distance scale (i.e. from the point of view of the bonds) the
distinction between rolling and peeling becomes rather academic. Thus we can
loosely think of the bonds under the main body of the cell as mechanically
equivalent to the clamp, and the fluid flowing over the free surface of the cell as
generating an applied tension.

It is known that the blood undergoes Poiseuille flow through the venules. If we
assume that the membrane is slack in the absence of blood flow, then one can
estimate without too much difficulty that

fo =~ SDgran Vblood ”blood/Dvenule’ (35)

where V.04 18 the mean flow velocity of the blood, 7y,,.q is the viscosity of the
blood, D, e,e is the diameter of the venule, and D, is the diameter of the
granulocyte.

We can also assume that the value of § for the granulocyte is much less than one
(see section on information structure for justification). In this case the value of
0 need not be accurately estimated because it has a negligible effect on the peeling
velocity.

The main point of (35) is that the effective tension at the free extremity in the
equivalent peeling problem is proportional to the mean velocity of the blood. In
addition, the constant of proportionality is a simple function of various known
quantities. This means that one can quantitatively observe the effects of varying
the tension because blood velocity varies naturally from venule to venule over a
large range. V;,,,q and hence T, , can also be controlled by constricting an arterole
serving the venule being observed.

Figure 10 shows the correlation between the velocity of rolling granulocytes and
the velocity of the blood according to Atherton & Born. Each data point represents
the average over many granulocytes passing a fixed observation point in a single
vessel of the mouse mesentary preparation. Thus the scatter of the data points is
due to random differences in the properties of the vessels, not to errors of
measurement.

It is apparent from figure 10 that the granulocyte velocity intersects the hori-
zontal axis as the blood velocity approaches a certain critical value. The existence
of such a critical velocity is certainly a necessary prediction of our model.

Because T}, is proportional to V;,,,q4, Wwe can express the non-dimensional tension
in terms of the blood velocity. If we cast out those terms that are negligible at
small £ and at large 7}, then (34) predicts that the dependence of the granulocyte
velocity on the mean blood velocity will be of the form

gran

Veran = P1(1+ D0/ Viiooa) (1 + P2 Viiooa/Po) 10 (Vi100a/Po)s (36)
where Po = Terst Dyenure/ (8 Morooa Deran)>
Py = K, (A) (B,/K)H/[2140.50K oo/ (1+ 2K oq) ]
and P =2F(1+K ) In(1+K)/Ke,y.
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Fiaure 10. Comparison between the model and the data of Atherton & Born (1973). Data
points represent the average velocity of granulocyte rolling and average velocity of blood
flow in 36 individual venules of the mouse mesentery. The smooth curve represents the least

squares fit of the expression for V, .. (i.e. (36)). The parameter values determined by the

nonlinear least squares procedure are discussed in the text.

The smooth curve in figure 10 shows the best fit of (36) to the data of Atherton
& Born. The maximum likelihood values of the parameters together with esti-
mated 90 % confidence intervals are:

Po =295 pum s~ (232 to 323)
py=18ums™ (11 to 18)
Py =0 (0 to 4.6 x 102)

Because the fit shown in figure 10 is excellent, we conclude that our model is at
least consistent with the highly nonlinear correlation between V., and V.4
discovered by Atherton & Born. This is not a trivial result. For example, because
they study a Newtonian adhesive, McEwan & Taylor obtain a linear relation
between tension and peeling velocity at large velocities. At the other extreme, if
one proposes that bonds experience elastic deformation until a critical failure
stress is reached (see, for example, Evans 1985a), then the peeling velocity is
infinite (or at least undefined) except at the critical tension. It seems that to obtain
a realistic tension—velocity relation it is necessary to propose some ability of the
adhesion molecules to store elastic potential energy, but failure of the bonds
cannot be viewed as a deterministic event.

From the value of p,, we calculate that the critical tension for adhesion between .
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a granulocyte and the vascular endothelium is about 2 x 107® dyn em™%. This is
a perfectly reasonable value for the critical tension of a biological adhesion ; similar
critical tensions (5x 107° to 5x 107®) were obtained by Mohandas et al. (1974)
in the case of red-cell adhesion to various surfaces. Evans & Buxbaum (1981)
obtained values of between 7 x 107* and 7 x 1072 dyn cm™ in the case of dextran-
mediated adhesion of red cells to particles.

Examination of the expression for the lumped parameter p, shows that this
quantity must be at least two times larger than the value of .. Thus the fact that
the data can only be explained if p, is close to zero means that we can reject any
proposal in which F, is significantly greater than 2 %. This is certainly consistent
with the physical interpretation of F,.

The parameter p, is a complex function of all the physical constants of the
model, and its value though interesting in itself does not yield a strong test of
physical consistency.

Let us next consider the experimental evidence for the existence of the peculiar
theoretical constructs that we call catch-bonds. Fortunately, the existence of
catch-bonds should be fairly easy to recognize. If adhesion is mediated by catch-
bonds, then, no matter how much tension is applied, it is impossible to achieve
significant separation of the surface and the membrane short of doing irreversible
damage. This is not because catch-bonds are necessarily ‘strong’ or energetically
favourable in some sense. For example, catch-bonds could have very low critical
tension and very low value of the forward rate constant. Thus one can have the
paradox of two surfaces which have little or no spontaneous tendency to adhere
but which are impossible to separate if forced into contact.

Findings that have an uncanny resemblance to what one expects for catch-
bonds have been reported (Evans & Leung 1984) in a study of red-cell adhesion
mediated by wheatgerm agglutinin. These authors found that, despite a low
critical tension for spontaneous adhesion, it required very great tension to separate
the cells. Also, when separation did occur, reattachment was not possible. The
irreversibility of separation was shown to be due to lateral pulling of the adhesion
molecules through the plane of the membrane.

Evans (1985b) has reanalysed these data and has quite forcefully pointed out
the paradoxical nature of the evidence when analysed by conventional models. In
this reanalysis, Evans attributes the seeming paradoxes to a discrete or discon-
tinuous distribution of adhesion molecules. It seems that both this approach and
the approach based on catch-bonds are consistent with the available data and that
further experiments would be useful.

We find it impossible to resist some speculative remarks concerning the physio-
logical significance of these putative catch-bonds. It is well known that the
specialized adductor muscle of molluscs is able to lock when contracted and then
maintain tension without any more consumption of metabolic energy. The tension
can be maintained for a very long time: until a release signal is received. This
behaviour certainly supports the general idea of catch-bonds. It would also suggest
that the actin-myosin crossbridges of the adductor muscle can convert from

t 1dyn=10"N.
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catch-bonds to slip-bonds in response to some regulatory factor. Is it possible that
such regulation could also occur in the context of cell adhesion? Could such a
regulatory effect be responsible for what is frequently described as the ‘slow
energy-dependent strengthening’ of adhesion ?

Recently, the structure of neural cell adhesion molecules (NcaM) has been
elucidated at low resolution (Hall & Rutishauser 1987). It was shown that the
molecule has a distinct ‘hinge’ region. This is interesting for our understanding of
catch-bonds and slip-bonds. We would predict that if NcaM form catch-bonds then
this hinge will be stiff before bonding and will undergo a conformational relaxation
during bond formation. If Ncam form slip-bonds, then the hinge will be most
flexible in the non-bonded state and will stiffen during binding.

Experiments in non-biological systems have long shown that for many adhesives
the process of tape peeling does not always attain a steady state. Particularly if
the tensions are very large, the asymptotic behaviour corresponds to sustained
yield-stick oscillations of very large magnitude and highly nonlinear wave form
(these experiments are reviewed by Krenceski ef al. (1986)). When these oscillations
are of high frequency, they are responsible for the ‘tearing’ sound that one
sometimes hears when pulling adhesive tape from a roll.

Given these remarkable experimental facts, it was natural for us to make an
exhaustive numerical search for the existence of stable oscillatory solutions of our
model. Despite this search, we were unable to discover stable oscillations, although
damped oscillations were observed (see Results). It is still possible that sustained
oscillations exist in some narrow or inaccessible region of parameter space, but this
is very doubtful. The essential conclusion we draw is that our model cannot explain
the existence of oscillatory peeling modes.

Sung et al. (19854, b) have reported some interesting measurements of the
critical tension of erythrocyte aggregation induced by two different N-acetyl-
galactosamine reactive lectins. These are Helix pomatia agglutinin (HPA) and
Dolichos biflorus agglutinin (DBA). By using the flow-channel technique developed
by Chien, it was found that the shear stress at 50 % separation of doublets of RBCs
was proportional to the surface density of lectin. This is in accord with the
prediction of (26).

For both lectins, the ratio of surface energy to surface density was found to be
between 0.25 and 0.30 x 107* ergs per moleculet. Because the contact angle in the
channel flow technique is close to zero, we conclude from (24) that for both HPA
and DBA, the value of K, is approximately equal to 0.1. This must be regarded
as a lower bound on K., because we have implicitly assumed that all lectin
molecules bound to the surface are available to form crossbridges, and we have
also neglected the non-specific repulsive potential.

An additional caveat in interpreting the studies of Sung et al. (1985a, b) comes
from the fact that the reversibility of the peeling process was not studied. Thus it
is possible that irreversible damage was being done to the cells in a fashion
analogous to the situation found with wheatgerm agglutinin (see above).

To see if the value of K., = 0.1 is a reasonable lower bound, one can examine

t lerg=107"J.
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independent data on the adsorption of these lectins to the cell surface directly
from the solution. Unfortunately, a measurement of the adsorption constant is not
available for HPA. In the case of DBA the value of the adsorption constant to the
red-cell surface was found to be

K, 4s0rp = (equilibrium surface density)/(equilibrium concentration in solution)
=0.9x10"* cm.

To convert between K ,,,, and K, one must divide the former quantity by the
characteristic amplitude of the thermal vibrations of the position of a lectin
molecule bound to a cell-surface carbohydrate. This amplitude should certainly be
more than 1 At and less than 100 A. Therefore we conclude that on the basis of
the measured adsorption constant the value of K, should be about 1000 instead
of 0.1.

A discrepancy of a factor of 10* can hardly be called satisfactory agreement.
Nevertheless, the size of the discrepancy is somewhat exaggerated because K,
appears in the logarithm. Thus the discrepancy could be resolved if one were to
assume that only 1% of bound lectin was available for crossbridging. These
considerations serve mainly to illustrate the frustrations of testing quantitative
theories in this area.

CONCLUSION

The model we have discussed makes three major assumptions that are rather
tenuous and that ultimately limit its utility. These are: (a) that the bonding
stresses are the only distributed stresses acting on the membrane; (b) that the
bonds are fixed in the plane of the membrane; and (¢) that the chemical reaction
of bond formation and breakage is reversible. Lest the gullible be too easily taken
in by the seeming rationality of our presentation, we shall dwell somewhat on the
seriousness of the problems raised by these assumptions.

In addition to bonding stresses, real biological membranes experience stresses
due to the force fields exerted by surrounding objects, due to gradients of hydro-
static pressure across the membrane, due to contractile filaments inside the cell,
due to elastic skeletal elements inside the cell, and also due to hydrodynamic
pressures and viscous shears caused by motion of the membrane relative to the
surrounding fluid.

Major leverage in the theoretical treatment of these complex forces comes from
the fact that in some cases they operate on a distance scale that is very different
from the scale involved in bonding. This allows separation of the problem into
‘inner’ and ‘outer’ regions in the fashion of boundary-layer theory. In a simplified
and non-rigorous way this is what we have done in our treatment of the
Atherton—Born study (see preceding section). This approach cannot be successful
in the case of short-range forces between the membrane and the surface. Much
work remains to be done on the treatment of the latter.

It is known that adhesion molecules are frequently able to diffuse laterally in
the plane on the membrane. If this is the case, then the process of adhesion and

t 1A=10"m=10"nm.
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detachment cannot be dominated solely by events in a localized contact zone.
Global redistribution and recruitment of adhesion molecules into the contact
region becomes important. Such processes can lead to large effects at thermal
equilibrium (see Bell et al. 1984), and it is to be expected that they will also have
large effects on the kinetics of adhesion. In any event if diffusion of adhesion
molecules is important, then the model we have presented is not applicable.

An additional problem related to lateral mobility of adhesion molecules is raised
by the data of Evans & Leung (1984) concerning separation of red cells held
together by wheatgerm agglutinin (see preceding section). It is apparent from
these studies that even if lateral redistribution of adhesion molecules is normally
negligible, this need not remain the case once tension is applied to the membrane.
Our computations show that the adhesion molecules at the edge of the contact
zone experience very large shear stresses, especially in the catch state. Thus it is
not surprising that they can be torn loose from their moorings and accumulated
into the contact region.

The final caveat concerns the implications of our assumption of reversible bind-
ing. This assumption implies that there is only one chemical pathway by which
bonds can break when tension is applied and also that the result of bond breakage
is always to regenerate a functional adhesion molecule. Obviously this is a very
idealized and dangerous proposition.

From the above catalogue of woes it would seem that there is a long way to go
in developing a quantitative understanding of biological adhesion. We hope that
the results we have presented will stimulate interest in the use of peel analysis as
a tool for furthering such understanding.

APPENDIX 1

The results discussed in the main body of the text relate to a particular form of
the constitutive law connecting bond strain to reaction rate. This form arises from
the assumption that the difference between the transition-state spring and the
final bound-state spring occurs only in the spring constant and not in the rest
length (see discussion leading to (16)). This assumption is plausible and leads to
simple results, but it is not in any sense a necessary truth.

Suppose that we now make the opposite assumption; i.e. suppose that the
spring constant of the transition state is the same as in the bound state but that
the rest lengths of the two forms of the adhesion molecule are slightly different. If
this is the case, then instead of (18) and (19) we obtain the following constitutive
laws:

Ki(Y) = K(A) exp{—0.5c((Y —2)*)/ B,} exp{r(As—A) (Y —A)/B,} (A1)

and K (Y) = K.(A) exp{«(As—A) (Y =A)/B,}, (A 2)

where A, is the rest length of the transition state.

It can be seen from (A 2) that if the transition state is shorter than the bound
state then K (Y)—>0 as Y —>+400. Thus, just as in the case of the standard
constitutive law, one obtains a natural distinction between catch-bonds and slip-
bonds. This is not simply a matter of formal mathematical definition; direct

4 Vol. 234. B
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computations show that the qualitative consequences of the catch-bond and slip-
bond distinction are also insensitive to the detailed constitutive assumption.

The effects of a change in constitutive law is most readily gauged by the
quantitative impact on the steady-state peeling velocity of slip-bonds. If one uses
the expressions (A 1) and (A 2) instead of (18) and (19), we find that the basic form
of (34) and the expressions for the coefficients ¢, and @, are unchanged. The
expression for ¢, becomes:

Qy = 14+2F, +2(F3(2d — 1) Tyy), (A3)
where d is the same as in (32) and
Fy= A=) (&/B,)} (A4

is a new non-dimensional parameter that takes the role previously played by F..
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APPENDIX 2
Glossary of symbols

value of A, at contact point

total, free and bound surface densities of adhesion molecules
value of 4, at thermal equilibrium

product of Boltzmann’s constant and absolute temperature
curvature

equilibrium constant for formation of unstressed bonds
forward and reverse rate functions

M, modulus of bending of membrane

% arc length at contact point in laboratory frame

8 arc length in laboratory frame

§ arc length in contact point frame

¢ time

T tension

Tori critical tension

T tension at free extremity

X, Y Cartesian coordinates

Oy angle between membrane and surface at free extremity

K, Kig spring constants of adhesion molecules in bonded state and tran-
sition state

A, Agg rest length of adhesion molecules in bonded state and transition
state

O tans T nor normal and tangential components of bonding stress

Various non-dimensional quantities (4,, 4,,¢, 8, B, F,

€., ete.) are defined in (28),

s Lk

(29) and (30). Three other useful non-dimensional quantities, b, ¢ and d, are defined

in (31) and (3

2).
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