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monotonically increasing function of its initial altitude. It is
also found that if the initial altitude of the object is greater
than a critical value, the object always strikes the ground
with a speed that is higher than its terminal speed by a finite
value, which increases asymptotically with the initial alti-
tude. This is in contrast to the case of a falling object in a
uniform atmosphere. The asymptotic ratio of the impact
speed to the terminal speed increases with the terminal speed
of the object.

Numerical solution of the equations of motion® for posi-
tion and velocity as a function of time of an object falling
through a nonuniform atmosphere is a trivial task and, there-
fore, we did not present them here.
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A novel derivation of the Langevin equation that was recently presented in this journal for a
univariate continuous Markov process is generalized here to the more widely applicable multivariate
case. The companion multivariate forward and backward Fokker—Planck equations are also derived.
The derivations require just a few modest assumptions, and are driven by a self-consistency
condition and some established theorems of random variable theory and ordinary calculus. The
constructive nature of the derivations shows why a multivariate continuous Markov process must
evolve according to equations of the canonical Langevin and Fokker—Planck forms, and also sheds
new light on some uniqueness issues. The need for self-consistency in the time-evolution equations
of both Markovian and non-Markovian stochastic processes is emphasized, and it is pointed out that
for a great many non-Markovian processes self-consistency can be ensured most easily through the
multivariate Markov theory. © 1996 American Association of Physics Teachers.

L INTRODUCTION

A recent article in this journal' presented a derivation of
the Langevin equation for a univariate (scalar) continuous
Markov process. Here we generalize that derivation to the
multivariate case in which the process has M=1 compo-
nents, and we also derive the companion forward and back-
ward Fokker—Planck equations. We shall presume here an
acquaintance with certain parts of Ref. 1, specifically its
Secs. I A-II C, so that we may avail ourselves of several
important definitions and theorems introduced there; also, a
familiarity with the comparatively simple derivation of the
univariate Langevin equation given in the Appendix of Ref.
1 will afford a helpful perspective on our analysis here of the
more complicated multivariate case.

We begin with a quick review of the univariate results
obtained in Ref. 1. If a function X of time ¢ is continuous,
memoryless, and stochastic—i.e., if X is a continuous Mar-
kov process—then its time evolution will be governed by an
equation of the form

X(t+dt)=X(t)+AX(2),0)dt

+DY2(X(1),)N(¢)(dt) 2. (1.1
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This is the (univariate) standard form Langevin equation. In
it, dt is to be regarded as a real variable that is confined to
the interval [0,€], where € is an arbitrarily small positive
number; A and D can be any two smooth functions, with D
being non-negative; and N(¢) is a normal random variable
that has a mean 0 and variance 1, with N(¢) and N(¢') sta-
tistically independent if t#¢'.

Equation (1.1) is essentially an ‘‘updating formula’’: Once
the functions A and D have been specified, Eq. (1.1) tells us
how to compute, from the value of the process at time ¢, its
value at any infinitesimally later time ¢+dt. As was shown
in Ref. 1, the functional form of this updating formula is a
consequence of requiring X to be not only continuous, in the
sense that X(¢+dt)— X(¢) as dt—0, and memoryless, in the
sense that the right side does not depend on the value of X at
any time before ¢, but also self-consistent: It should make no
difference (statistically and to first order in dt) whether we
compute the increment from ¢ to ¢+dt by a single applica-
tion of the updating formula, or by successive applications
thereof to successive subintervals of [¢,¢+dt]. The Langevin
equation can be used to derive time-evolution equations for
the moments of X, and it can also be used to construct nu-
merical simulations of X.

The appearance of the factor (d HY?

in the random term of
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Eq. (1.1), which will seem quite bizarre if viewed from the
restricted perspective of ordinary deterministic calculus,’ re-
flects the fact that when D is not zero, the continuous func-
tion X is not differentiable. For heuristic reasons, though, it
is often convenient to pretend that dX/dt exists. As was
shown in Ref. 1, Eq. (1.1) can then formally be brought into
the form

dX(t)
dt

=A(X(1),t) +DY2(X(1),0 (2). (1.2)

Here, with N(m,a'z) denotionzg the normal random variable
with mean m and variance ¢,

T(¢)= lim N(0,1/ds)
dr—0

(1.3)

is called ‘‘Gaussian white noise.”” Equation (1.2) is the
(univariate) white-noise form Langevin equation. A careful
examination of its derivation suggests, however, that it may
be little more than a mnemonic for the standard form Lange-
vin equation (1.1).

If P(x,t|xy,tp)dx gives the probability of finding X(¢)
between x and x+dx, given that X(¢y)=x,, for any #y<t¢,
then as was stated (but not proved) in Ref. 1, the function P
satisfies the partial differential equation

a d
;97 P(x,tle ’t0)= - a [A(x’t)P(x’t‘xO,tO)]
2

t552 [D(x,t)P(x,t|xq,t0)]. (1.4)
This is called the (univariate) forward Fokker—Planck equa-
tion. It can be used to derive time-evolution equations for the
moments of X, although the Langevin equation (1.1) is usu-
ally handier for that task. It can also be used to compute the
stationary or ‘‘equilibrium’’ probability density function
P(x,t—®|xg,t,), which for some functions A and D exists
independently of ¢, x4, and ¢,.

Not mentioned in Ref. 1 was the fact that the function P
also satisfies the partial differential equation

J a
- bt_OP(x,ﬂxo’to):A(xo,to) gop(x’tleJO)

1 2
+ ED(xo,to) 5)‘% P(x,t|x9,t0).

(1.5)

This equation, which is not a simple corollary of Eq. (1.4), is
called the (univariate) backward Fokker—Planck equation. It
turns out to be crucial for calculating the statistics of the time
it takes the process to first exit a given interval [a,b] that
contains the initial point x.

Our goal in this article will be to derive the forms of the
Langevin and Fokker—Planck equations when the process X
has any finite number M of components. Of course, those
multivariate equations are “‘well known,”’** having been de-
duced, in a slightly restricted form, at least as early as 1945
by Wang and Uhlenbeck.® But physics students often find the
derivations of those equations to be intimidating and uncon-
vincing, and there is even a tendency to suppose that those
equations simply have to be ‘‘accepted’” in the same way
that we have to accept, say, the Schrodinger equation. We
shali endeavor here to derive the multivariate Langevin and
Fokker—Planck equations in a very careful way from just a
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few modest assumptions, and thereby show why those equa-
tions have the forms that they do. In the course of our deri-
vation, we shall illuminate the little-known fact that the cor-
respondence between the Langevin and Fokker—Planck
equations is not quite one-to-one.

Our work here will of course be quite mathematical, and a
busy physicist may rightfully ask what is the payoff. It turns
out that a component of a multivariate continuous Markov
processes is often not by itself Markovian; hence, the multi-
variate generalization greatly enriches the theory by intro-
ducing processes that ‘“have memory.”” From a slightly dif-
ferent perspective, it is fair to say that an M -variate Langevin
equation is the stochastic generalization of an Mth order or-
dinary differential equation. Since most dynamical systems
in physics find their deterministic descriptions in terms of
ordinary differential equations of order greater than 1, a
physicist simply cannot be content with the restriction to first
order that is imposed by the univariate Langevin equation.

There is also an aesthetic payoff for going through all the
mathematics: Once we have set down in clear terms what we
should reasonably expect of a process that is ‘‘multivariate,
continuous, and memoryless,”’ it is somehow very satisfying
to watch how sheer mathematical necessity shapes the forms
that the fundamental time-evolution equations must take.

The plan of this article is as follows. In Sec. II we define a
multivariate continuous Markov process and derive the mul-
tivariate Langevin equation. That derivation is easily and
quickly accomplished by invoking a certain theorem. The
proof of that theorem, however, is not so easy and quick, and
will occupy us in Sec. IIL In Sec. IV we derive the compan-
ion forward and backward Fokker—Planck equations. In Sec.
V we give examples of two simple bivariate continuous Mar-
kov processes. Finally, we conclude in Sec. VI by summa-
rizing our results and pointing out some interesting implica-
tions for non-Markovian stochastic processes.

I1. THE MULTIVARIATE LANGEVIN EQUATION

For a general M-variate stochastic process
X(0)=[X1(0),....Xp(0)], 2.1)

whether Markovian or not, each process component X; is
presumed to be a real random variable that depends on time
t, a real sure variable. The fact that the independent variable
t represents time, and not something else, is important. Time
is something we perceive as being divided into a past and a
present, which we can in principle know, and a future, which
we can only speculate about. The overarching goal of sto-
chastic process theory is to predict, as accurately as possible,
future values of the process X from a knowledge of its
present and past values.

The defining feature of a Markov process is that any
knowledge of past values of X, beyond what is already im-
plied by its present value, is of absolutely no help in predict-
ing future values of X. With that in mind, we now define an
M -variate continuous Markov process to be any M -variate
process X that satisfies the following four conditions:

(i) The conditional increment in each component X; from
time ¢ to any infinitesimally later time #+d¢, namely, the
random variable

B(dt;x,t)=X,(t+dt)—Xt) given that X(f)=x
(i=1,...M), (22)
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Xy and ¢.

(i) The dependence of each random variable =; on its
arguments dt, X, and ¢ is ‘‘smooth.”

(iii) For all x and ¢,

depends only on the values of dt, x=(x,,..

E(dt;x,t)—0 as dt—0. (2.3)

(iv) Each random variable Z; has a well-defined (finite)
mean and variance.

Notice that condition (i) is what makes X memoryless or
Markovian, since it ensures that future values of X depend
on its past values only through its present value. And condi-
tion (iii) is what makes X continuous, since it ensures,
through definition (2.2), that X,(¢t+dt)—X(t) as dt—0.
The other two conditions (ii) and (iv) are essentially *‘tech-
nical”’ requirements that force the random variables Z; to be
well behaved. The smoothness condition (ii) basically re-
quires that all probability density functions for &;, in which
dt, x, and ¢ will naturally appear as independent parameters,
shall be continuously differentiable with respect to those pa-
rameters. Condition (iv) is arguably unnecessary on the
grounds that the infinitesimal nature of dt¢ should ensure,
through condition (iii), that sample values of = ;(d¢;x,) will
be so close to O that the first and second moments of
B (dt;x,t) will inevitably be finite; however, to guard
against any surprises on that point, we call out condition (iv)
explicitly.

With the foregoing definition of a multivariate continuous
Markov process, we can derive the multivariate Langevin
equation almost trivially by appealing to a certain theorem.
But the proof of that theorem is not trivial, which is to say
that this way of deriving the multivariate Langevin equation
merely relegates all the detailed reasoning, all the hard work,
to proving the theorem. We shall undertake that proof in Sec.
II1. For now, we simply want to state the theorem, clarify its
assertions, and examine its implications. [The simpler
univariate version of this theorem is given in Ref. 1 at Eq.
(2.13).]

Theorem: The defining conditions (i)—(iv) of an M -variate
continuous Markov process X imply that the conditional in-
crements 5; defined in Eqgs. (2.2) must have the analytical
forms

M
EAdtx,0)=Ax0)dt+ Y, by(x,0)N(t)(d)"?
j=1

(i=1,.,M). (24)

Here, the M functions A; and the M? functions b;; are all
smooth in the variables x and ¢, and N(),...,Ny(t) are M
statistically independent, temporally uncorrelated, unit nor-
mal random variables. Furthermore, any two different sets of
the M? functions b;; that yield the same IM(M+1) func-

tions

Di(x,t)= 2 bi(x,t) (i=1,.,M), (2.52)
M

C,-j(x,t)EkZl ba(xDby(x,8)  (i<j=1,.,M), (2.5b)

will yield, through Egs. (2.4), identical conditional incre-
ments 5,(dt;x,t).

In the theorem, the assertion that N ;(¢) is a ‘‘unit normal”’
random variable means that N ,(¢) is normal with mean O and
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variance 1: N (¢)=N(0,1). The assertion that N(1),...,
Ny (t) are “‘statistically independent’” means that our ability
to predict the value of any one of those random variables will
not be altered by our learning the value of any of the others.
And the assertion that N (t) is ‘‘temporally uncorrelated’’
means that N;(¢) and N; (t ) are likewise statistically inde-
pendent Whenever t#t, These stipulated statistical mdepen-
dencies imply that the (ensemble) average (N;(H)N(t"))
vanishes if either j#k or t#t'. Of course, <N (ON;(1))
=(N}(t))=1, since N(¢) has mean 0 and variance 1.

We shall comment on the assertions of the theorem re-
garding Egs. (2.5) in a moment. But now let us take the final
short step from the theorem to the multivariate Langevin
equation: We substitute into the left side of Eq. (2.4) the
definition (2.2) of 5, replace x everywhere by X() as re-
quired by that definition, and so obtain

Xi(t+dt)y=X;(t)+ A (X(2),t)dt
M

+§‘,1 by (X(1),ON,(1)(d)'?  (i=1,...,.M).
b=
(2.6)

This is the standard form multivariate Langevin equation,
the M -variate generalization of Eq. (1.1).

Equation (2.6) is evidently an ‘‘updating’” formula for the
process X: Given specific forms for the M functions A; and
the M? functions b;;, Eq. (2.6) allows us to compute, from
the values of all the components of the process at time t, the
component values at any infinitesimally later time ¢+d¢. It is
obvious from the form of Eq. (2.6) that the prescribed updat-
ing procedure is memoryless, since no reference is made to
values of the process at times earlier than ¢; and also con-
tinuous, since X,(t+dt) clearly approaches X (t) as dt—0;
and also stochastic, since we can never predict with certainty
what the values of the M unit normal random variables N ()
will be. What is nor obvious from Eq. (2.6) is why, as is
clearly implied by the theorem, every continuous Markov
process must evolve according to an updating formula with
this specific structure—i.e., with dt entering in precisely the
termwise manner indicated, and the N ;(¢) all statistically in-
dependent, temporally uncorrelated unit normals. The an-
swer to that question can only be inferred from the detailed
proof of the theorem, which is given in Sec. III.

The M -variate Langevin equation (2.6) points up a subtle
ambiguity in the univariate Langevin equation (1.1): Since
the functions b;; are not subject to any sign restrictions, we
could have chosen the negative square root of the function D
in Eq. (1.1), i.e., for M=1, b;;=D"? can be negative. This
minor ambiguity for M =1 is really inconsequential; how-
ever, it is a hint of a much more substantial ambiguity that
occurs for M >1, and which is dlrectly addressed by the last
part of the theorem: Changes in the M? b ; functions that
leave the M (M +1) functions D; and C;; defined in Egs.
(2 5) unchanged have no effect on the conditional increments
E,. That such changes in the b;; functions are possible is
due in part to the fact that there are ;M (M —1) more b;;
functions than D; and C;; functions. Since such changes will
not change the updating formula (2.6), then they will not
change the continuous Markov process X that is defined by
that updating formula. Put another way, although an
M -variate continuous Markov process is completely speci-
ﬁed by the forms of the M functions A; and the M? functions

b;;, that specification will be nonunique in that all sets of b;;
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functions that yield the same D; and C;; functions through
Egs. (2.5) will describe the same continuous Markov process
X

On the other hand, whereas every set of smooth functions
A; and b;; will yield a legitimate Markov process, not every
set of smooth functions A;, D;, and C;; will be acceptable. It
turns out that we can have for D; and C,; only those smooth

ij
functions that satisfy the M (M + 1) conditions

D(x,t)=0 (i=1,...,.M), (2.7a)

CH(xSD{(x,0)Dj(x,t) (i<j=1,..,M). (2.7b)

That the inequality (2.7a) must hold follows immediately
from the definition (2.5a). That the inequality (2.7b) must
hold follows the fact that
Di(x’t)Dj(Xat) - Cizj(xat)
Mo
= 2 [bu(x0bu(x0)=bu(x)bu(x.0],
k<)

(2.8)

a relation that can be deduced through straightforward alge-
bra from the definitions (2.5).

As with the univariate Langevin equation, the reason why
the M (dt)"*-terms in Eq. (2.6) do not render the usually
much smaller dt-term there ‘‘negligible’” is that each of the
(dt)"*-terms is multiplied by a random variable N(0,1),
which, being about as often negative as positive, greatly di-
minishes the effect of those (df)*-terms over a succession
of many dt increments. The cumulative, long-range contri-
butions of the weak-but-steady dt¢-term and the strong-but-
erratic (dt)"-terms on the right side of Eq. (2.6) turn out to
be comparable if the functions A; and b;; are of comparable
magnitudes.

Another way of writing the Langevin equation (2.6),
which is frequently encountered in the literature, can be ob-
tained by appealing to the well-known® result in random
variable theory that, for any two numbers « and B,

a+ BN(m,o?)=N(a+ Bm,B*d?). 2.9

The implication of this result that (d)*N(0,1)=N(0,dt) al-
lows us to write Eq. (2.6) as

M
X,-(t+dt)=X,-(t)+A,»(X(t),t)dt+21 by (X(2),0)dW;(1)
=

(i=1...,M), (2.10)

where the M normal random variables

dw;(£)=N(0d¢t) (j=1,...,M) (2.11)

are stipulated to be statistically independent and temporally
uncorrelated. These stipulations imply that the (ensemble)
average (dW(1)dW,(t")) vanishes if either j#k or t#1¢'.
Of course, (de(t)de(t))=(de(t))=dt, since dW(t)
has mean 0 and variance d¢. Equations (2.10) and (2.6) are
entirely equivalent to each other. Either can be used to derive
time-evolution equations for the moments of the components
of X(t), and either provides a basis for numerically simulat-
ing X(¢). Equation (2.6) is arguably more convenient for
those tasks, since it renders the d¢ dependence explicitly.

A third way of writing the multivariate Langevin equation
is obtained by first algebraically rearranging Eq. (2.6) to read

1249 Am. J. Phys., Vol. 64, No. 10, October 1996

XKD i

M
+ _21 by (X(2), N (£)(dr) ™V

(i=1,...,M). (212)

Then, noting from the result (2.9) that (df)™Y2N(0,1)
=N(0,1/dt), we can formally take the limit dr—0 of Eq.
(2.12) to obtain

M
dX;(t
—d?(l=A,-(X(t),t)+ 2 by(X(),0T (1)
j=
(i=1,...,M), (2.13)
where the M random variables
[';(¢)=lim N(0,1/dt) (j=1,..,.M) (2.14)

dt—0

are stipulated to be statistically independent and. temporally
uncorrelated. I';(¢) is of course the Gaussian white noise
process mentioned in Eq. (1.3). And Eq. (2.13) is the white
noise form multivariate Langevin equation, the M -variate
generalization of Eq. (1.2). The statistically independent,
temporally uncorrelated nature of the I';(¢)’s implies that the
(ensemble) average (I" ;(#)T"x(¢')) vanishes if either j#k or
t#t'. But note that (I' ()[ (£))=(T}(1))= 8(0), where &
is the Dirac delta function; because, 1';(¢) has a mean of 0
and variance of 1/dt in the limit dt—0, and in that limit we
can write from the definition of the Dirac delta function
8(0)dt=1, or 1/dt= 5(0).

Some people with strict mathematical sensibilities will
maintain that Egs. (2.13) and (2.14) are nonsense, and that
the proper inference to be drawn from Eq. (2.12) is that X(¢)
simply has no derivative unless b;; vanishes. for all j=1 to
M. But it would be wrong to criticize continuous Markov
process theory on the grounds that Eq. (2.13) is of dubious
mathematical legitimacy, because the theory can be fully de-
veloped using either of the Langevin equations (2.6) or
(2.10), without ever invoking the mathematically question-
able notion of ‘‘white noise.”” We shall adopt here a middle
ground position, viewing the white noise Langevin equation
as a sometimes convenient way of expressing the standard
form Langevin equation.

If all the b;; functions vanish identically, then it is clear
from Eq. (2.13) that the M-variate continuous Markov pro-
cess [Xq,...,Xy] would be the solution of a set of M
coupled first-order ordinary differential equations. Since any
Mth-order ordinary differential equation can be written as a
set of M coupled first-order ordinary differential equations,
then it follows that multivariate continuous Markov process
theory encompasses, as the special case b;;=0, all of ordi-
nary differential equation theory.

Finally, we note that a component X; of the M-variate
continuous Markov process X will itself be Markovian only
in the very special circumstance that none of the M + 1 func-
tions A;, b;y,...,b; depends on any of the other components
of X. To prove this, we need not only the random variable
result (2.9), but also another well-known™® result: If two nor-
mal random variables N(m,,0?) and N(m,,o3) are statisti-
cally independent, then

N(m;,03)+N(my,00) =N(m;+my,02+02). (2.15)

D. T. Gillespie 1249



Using these two random variable results, we may write the
summation in Eq. (2.6) as
3;b,N;=3b;;N(0,1) =3 N(0,b7)=N(0,3, ;b7
=(3;b7)"2N(0,1)=D"N,

where D=3, jb,-z- and N is a unit normal random variable.
Therefore, if the M +1 functions A;, b;y,...,b;, all depend
only on the component X;, then Eq. (2.6) will take the form
of the univariate Langevin equation (1.1), implying that X; is
itself Markovian.

1. PROOF OF THE THEOREM

To prove the theorem at Egs. (2.4) and (2.5), the theorem
that made our derivation of the M -variate Langevin equation
so easy, we begin exactly as in the univariate proof in Ref. 1:
We divide the interval [f,t+d¢] into n=2 subintervals of
equal lengths dt/n by means of the points t,=¢+k(dt/n),
(k=0 to n). We then have, for each i from 1 to M,

X (t+dt)—-X,()=X(t,) —X,(ty)

=k§=jl [Xi(£0) =X (8- )],

X(t+d0)=X(0)= 2 [Xi(tp-y+dt/m) =X,(tp1))-

(3.1)

This relation shows that the conditional increment E; de-
fined in Eq. (2.2) must satisfy

Ei(dt;x(t),t)=k§=‘,1 Bdt/n;X(t;-1),t-1)

(i=1,..M). (3.2)

Equation (3.2) expresses the self-consistency condition, that
the conditional increment of the process over any infinitesi-
mal time interval must be equal to the sum of the conditional
increments over any set of successive subdivisions of that
interval. The Markovian or ‘‘past-forgetting’’ nature of the
process is embodied here in the fact that each increment
depends only on the value of the process at the beginning of
the associated interval, and not on any earlier process values.

Condition (ii) in our definition of a continuous Markov
process tells us that =; is a smooth function of its arguments
x and ¢, and condition (iii) tells us that X is continuous in ¢.
So, since dt can be made so small that all the ¢,’s are arbi-
trarily close to ¢, then we can replace in Eq. (3.2)

X(tg-1)—X(t)=x, (3.3)

and thereby introduce only inconsequential errors of order
>1 in dt. Thus, at least to lowest order in dt, and for all
n=2,

tk-1—>t’

n

Ei(dt;x,t)=k21 E(dt/nix,t)  (i=1,...M). (3.4

The terms E;,,...,E;, in Eq. (3.4) are n copies of the
random variable = ;(dt/n;x,t). These copies are statistically
independent of each other, since, as was mentioned earlier,
the process increment over any interval depends only on the
process value at the beginning of that interval. And condition
(iv) assures us that these n statistically independent random
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variables have well defined means and variances. Now, the
central limit theorem tells us"® that the sum of statistically
independent, identically distributed random variables with fi-
nite means and variances becomes normal in the limit n— .
So, since n here can be taken arbitrarily large, then it must be
the case that

B (dt;x,t) is normal

(i=1,...,M). (3.5)

Next we turn to a consideration of the means, variances,
and covariances of the M normal random variables =,. A
well known result in random variable theory is that the mean
and variance of the sum of any set of statistically indepen-
dent random variables are equal to the sums of the respective
means and variances. It thus follows from Eq. (3.4) that

mean{E;(dt;x,1)} =k2 mean{ £ ;,(dt/n;x,t)}
=

=n mean{ Z;(dt/n;x,t)}, (3.6a)
var{E,»(dt;x,t)}*——kZ1 var{ B (dt/n;x,t)}
=n var{E;(dt/n;x,t)}. (3.6b)

We now assert that the covariances of E; and Z; for i<j
satisfy a like relation, namely,

cov{E (dt;x,1), B [(dt;x,1)}

=k2_:1 cov{E (dt/n;x,1),E jy(dt/n;x,6)}

=n cov{E,(dt/n;x,t),E (dt/n;x,1)}. (3.6¢)

The justification for asserting the first line of Eq. (3.6¢) is a
result in probability theory that, if

n n
X=X, Y=27Y,, (3.7a)
£=1 =1
where X, and Y, are statistically independent when k#/,
then

cov{X,Y}= kzl cov{X;,Y,.}. (3.7b)

This result is easily proved by first noting that
coviX, Y} =((2 X )(ZY))) — (X )(2,Y )
=322 [(XY ) — (X )(Y )]
=33, covi{X,,Y}},

and then observing that cov{X,,Y,}=0 when k+1[ because
of the hypothesized statistical independence of X; and Y,
when k+1. In applying this result to deduce Eq. (3.6¢c), we
have used the fact that =, (d¢/n;x,t) and & ;(dt/n;x,t) are
indeed statistically independent of each other whenever k#1,
since the two component increments then occur in different
dt/n subintervals. But of course, statistical independence is
not assumed when k=1, and the two component increments
occur in the same dt/n subinterval.

To extract the important implications of Egs. (3.6), we
next invoke the following result from ordinary calculus:
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Lemma 1. If h(z) is any smooth function of z that satisfies
h(z)=nh(z/n) for all positive integers n, then it must be
true that h(z) =Cz, where C is independent of z.

A proof of this lemma is given in the Appendix. Applying
it to Egs. (3.6), with dt playing the role of z, which is justi-
fied because condition (ii) requires Z;(dt;x,t) to be smooth
in dt, we conclude that the means, variances, and covari-
ances of the E,’s must all be directly proportional to dt:

mean{E;(dt;x,t)}=A(x,0)dt (i=1,...,.M), (3.8a)

var{B;(dt;x,t)}=D(x,t)dt (i=1,....M), (3.8b)

cov{E (dt;x,t),E (dt;x,1)} = C,;(x,t)dt
(i<j=1,..,M). (3.8¢)

Here, the ‘“‘coefficients’ A;, D;, and C;; may depend
(smoothly by hypothesis) on x and ¢, but not on dt. The fact
that the variance of any random variable is never negative,
and the fact that the squared covariance of any two random
variables is always bounded by the product of their vari-
ances, evidently dictate that the functions D; and C;; must
satisfy the auxiliary relations

D(x,t)=0

(i=1,...,M), (3.9a)

CHLXND<D(x,)Dj(x,t) (i<j=1,..,M). (3.9b)

We have thus far established that the defining conditions
(i)-(iv) of an M -variate continuous Markov process X imply
that the conditioned increments E,(dt;x,f) must be normal
random variables whose means, variances, and covariances
have the analytical forms indicated in Eqs. (3.8), wherein 4,
D;, and C;; may be any smooth functions of x,...,x,,, and
t that satisfy Egs. (3.9). Now we shall show that formulas
(2.4) endow the conditioned increments Z(d¢;x,t) with pre-
cisely these properties whenever the b,; functions are chosen
to satisfy Eqgs. (2.5). For this, we appeal to the following
result of random variable theory:

Lemma 2. If the M random variables Y,,...,Y;, are de-
fined by the relations
M
Yi=ai+ Y, BN, (i=1,.,M), (3.10)
j=t

where N,,...,N,, are M statistically independent unit nor-
mals, then Y{,...,Y,, are all normal random variables with

mean{Y;}=«a; (i=1,....M), (3.11a)
M

var{Y,.}=21 B2 (i=1,...M), (3.11b)
P

cov{Y,.,Yj}=k§1 BuBu (i<j=1..,M).  (3.11c)

The proof of this lemma is straightforward, and is given in
the Appendix. Since formula (2.4) for E,(dt;x,t) is of the
form (3.10), with a;=A;(x,t)dt and B;;=b,(x,))(d1)"?,
then we conclude from the lemma that the random variables
Ei(de;x,t) glven in Egs. (2.4), with the functions D; and Ci;

as defined in Egs. (2.5), are indeed normal random Varlables
with
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mean{E,;(dt;x,t)} =A,;(x,t)dt,
' M
var{E,(dt;x,0)}= 2 bl(x,1)dt=D(x,t)dL,
j=1

M
cov{'E,A(dt;x,t),Ej(dt;x,t)}=k21 bydx,1)b i (x,t)dt

ECij(x,t)dt,

precisely as required by Egs. (3.5) and (3.8).

The required smoothness of the functions D;(x,t) and

C,;(x,t) is ensured through the definitions (2.5) by the hy-
pothes1zed smoothness of the functions b;;(x,). Also, the
earlier noted consequences (2.7) of definitions (2.5) are seen
to be precisely the required auxiliary relations (3.9). Finally,
we note that the hypothesis that the statistically independent
unit normals N;(¢) be temporally uncorrelated guarantees
that the conditioned increments in X; over successive infini-
tesimal time intervals will be statistically independent, as is
required by the past-forgetting condition (i). The theorem at
Egs. (2.4) and (2.5) is thus proved.

We can briefly summarize the thrust of the foregoing
proof as follows: In order for the conditional increments
E,(dt;x,t) in Eq. (2.2) to have the Markov property (i) and
the continuity property (iii), given the ‘‘reasonable behav-

r”’ stipulations (ii) and (iv), logical necessity requires—
mainly by way of the self-consistency condition (3.2), the
central limit theorem, and our lemma 1—that the M random
vatiables 5 ;(dt;x,t) be normal, with means, variances, and
covariances that are all directly proportional to dt. But it
follows from our lemma 2 that any such set of M random
variables can be written as a linear combination of M statis-
tically independent unit normals N () in the manner of Eqs.
(2.4).

IV. THE MULTIVARIATE FOKKER-PLANCK
EQUATIONS

The M-variate generalizations of the univariate forward
and backward Fokker—Planck equations (1.4) and (1.5) gov-
ern the behavior of the singly conditioned density function
P(x,t|xg,t0) of the random variable X(¢). By definition,

P(x,t]x,t0)d™
EP(XI,...,xM,tlel,...,xOM ,to)dxl,...,

gives the probability that X,(f) will lic between x; and
x;+dx; simultancously for all i=1 to M, given that
X(to) xg; for all i=1 to M, and for any fy<t. But it is
1mportant to recognize that thls function P is merely the first
in an infinite sequence of condmoned ]omt probablhty den-
sity functions, P=P) PP, where P is defined by

PU(x,t|%,,,1,5...;

dxM

xlatl)d X
=Prob{X,(¢) e[x;,x;+dx;) for i=1 to M,

given that X(¢;)=x; for j=1 to n,

(n=1,2,...). 4.1)

Everything knowable about the process X can in principle be
calculated from this infinite set of conditioned density func-
tions. For example, if X(7,)=X,, then the joint probability
that X(¢;) will be within d X of x;, and then at a later time
t, X(t,) will be within dx, of x,, can be calculated, ac-

with ¢t <...<t,<¢}
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cording to the multiplication law of probability theory, as the
following product of the two functions P! and P?):

[PY(x, J]X0,20)dMx,] [P(z)(xz,t2|x1 Jt13X0,t0)dMx;].

A stochastic process X, whether it is Markovian or not, can-
not be regarded as being known unless all of the functions
P™ are specified. But we are not free to specify these P
functions arbitrarily: The general result in probability theory
that Pz(z)=[ Pgy(z|y)Py(y)dy requires that the set of
functions {P™} must satisfy

P(n)(xn+2atn+2|xn »bn ;"';Xl’tl)

— +1 . ..
_fP(n )(Xn+2,tn+2|X,,+1,tn+1,Xn,tn,...,Xl,tl)

. M
><P(n)(xn+1’tn+1|xn ’tn yeen Xg ,tl)d X,+1

(thstzs"'gtn.{.z and Vﬂ=1,2,...), (42)
where it is understood that the integrations are carried out
over all possible values of the M real variables
Xn+1,100 3 %n+ 1M+

The daunting prospect of having to specify an infinite
number of conditioned density functions that satisfy an infi-
nite number of coupled integral equations simplifies enor-
mously if X is stipulated to be Markovian. The memoryless
property of a Markov process implies that only the most re-
cent conditioning matters; therefore, for a Markov process
each function P will coincide with PV'=P according to

PO(x,1|X,,t,5..3%1,81) =PV (x,1|x,, ,1,) = P(X,t|X, ,2,)

(t,=t;m=23,...). (4.3)
In that case, it is easy to show that every one of the required
relations (4.2) reduces to the form

P(X3,t5]xq,t1) = f P(X3,13]%,t2) P(Xa, 15| %1 ,£1)dMx,

(VY <t,<t3), (44
a relation that is known as the (M-variate) Chapman—
Kolmogorov equation. So, for a Markov process, we can
specify all of the functions P"™_ and be assured that they
satisfy all of the conditions (4.2), simply by specifying a
single function P that satisfies the single condition (4.4).
Henceforth, we restrict our discussion to the Markovian case.

The Fokker—Planck equations are derived by making Tay-
lor series expansions of carefully selected (x;,¢;)-versions of
the Chapman—Kolmogorov equation (4.4). Specificaily, the
forward Fokker—Planck equation, which deals with the “‘z-
part’”’ of P(x,t[x,t,), is derived by making a Taylor series
expansion of Eq. (4.4) written in the form

P(x,t+dt|x0,t0)=fP(x,t+dt|x—§,t)
X P(x— &t|xg,to)dME  (£>1g).
(4.5)
And the backward Fokker-Planck equation, which deals

with the ““zg-part’” of P(X,t[Xq,t,), is derived by making a
Taylor series expansion of Eq. (4.4) written in the form
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P(x,t|xg,t0) = J P(x,t|xy+ &ty +dty)

X P(Xg+ & tg+dtolxg,to)d™ME  (t>1g).
(4.6)

The derivation of the multivariate forward Fokker—Planck
equation begins by defining

f(X)=P(x+ £ t+dt|x, ) P(%,t[x0, 1), @.7)

so that the integrand in Eq. (4.5) is f(x—&). We expand
f(x—§) in a Taylor series as

e n 1
f(x-§)=f(X)+"ZI ZkMO AT
[ky+- +kpy=n]
an
X (=6 () el (ag)
0x1-~-¢9xM

Substituting this expansion into Eq. (4.5), regrouping factors,
and then inserting the explicit formula (4.7) for f(x), we get

P(x,t+dt|xg,tg) = f dM € P(x+ &t +dt|x,t) P(x,t|Xq,t0)

n

= 1
+ —-1) _—
DI VD S R pe
[ky+--+kp=n]
x [avg ghon i
1 M&xllch--é?x}éu

X[P(x+ &t+dt|x,t) P(x,t|xg,20) ]

Since [ dMx,P(x,,t,]%;,t,)=1, then the first term on the
right integrates to give P(x.f|xy,fy). Subtracting that term
from both sides and then dividing through by dt, we get

P(x,t+dt|xg,t0) — P(X,t|Xq, o)

dt
o n an
=2 1 2 P T IV
n=1 kyoky=0  OX Tt 0X ),

Lky+ o +hpg=n]

deggfl...gﬁa

1
X{Ekls---kM!

. 4.9)

X P(x+ §,t+dt|x,t)lP(x,t|x0,t0)

Now we observe that the function P(x+ £+ dt|x,t) inside
the square brackets of Eq. (4.9), considered as a function of
&=(&,,....&); is just the joint density function of the M ran-
dom variables E,(dt;xt), ..., By(dt;x,t); because,
P(x+&r+dt|x,t)dME  being the  probability  that
X (t+dt)e[x;+ & x;+ E+d¢;) for all i from 1 to M given
that X(¢#)=X, is therefore, by virtue of the definition 2.2),
the probability that = ,(dt;x,t) € [£;,§,+d¢E;) for all i from 1
to M. Accordingly, we have

f am¢ §'{‘-~-§§}”P(x+ £t+dt|x,t)

=(E*(dn;x,t) - EM(dEx, 1) (4.10)
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Substituting this into Eq. (4.9) and then passing to the limit
dt—0, we obtain the so-called forward Kramers—Moyal
equation,

o n

AP(x, t|x0 to) b
—_— 2 -2 ™ T
n=1 k. oky= Ox ' 0X,yf
[kt +kp=n]
X{B{ i (ROP(X.t]%,t0)}, (4.11)
wherein
B(n) (x,8)=li 1 1
x6)=lim — ———
ey e Ky hy!
X (EN(dt;x,0)- - EM(dr;x,1))
M
k=0 Vi=1to M, and D k=n|. (412
=1

The final step in our derivation of the forward multivariate
Fokker—Planck equation is to evaluate the B-functions. This
task is made relatlvely easy by our theorem in Sec. II. To
compute the BW functions, we simply take the average of
Eq. (2.4); since (N,(¢))=0, we get

(BEi(dt;x,)y=A(x,t)dt (i=1,....M). (4.13)
So the definition (4.12) gives

3010 o(X,t)=A2(X,t), etc.

To compute the B® functions, we use Eq. (2.4) to form
the product E;(dt;x t)w i(dt;x,t), and then we take the av-
erage of that product; since (N (t)N(?))= &;;, we get

M

<Ei(dt;x,t)a,~<dt;x,t)>=k21 bi(X,1)b (X, 1)dt

to(dt) (i,j=1...,M),

where o(dt) denotes terms that go to zero with dt faster than
dt. For the two cases i=j and i<j, this gives, by virtue of
the definitions (2.5),

(EX(d;x,0))=D(x,t)dt+o(dt) (i=1,...,M),

(4.15a)
(Bi(dt;x,0) B (dt;x,8))=C;j(x,t)dt+o(dr)
(i<j=1,..,M). (4.15b)
Consequently, Egs. (4.12) give
B, o(x0)=3D1(x,1), )
31()22)0 o= D,(x,1), etc.,
@ (4.16)
Biio,. o%8)=Cy(x,1),
B(120)1 AxD)=Cs(x,1), etc. J

To compute the B> functions, we start by using Eq. (2.4)
to form the product = ,(dt;x,t)E j(dt;x t),_,,(dt x,¢). But a
glance at formula (2.4) reveals that every term in that prod-
uct will be proportionat to d¢ raised to at least the power 3/2.
Clearly, all of those terms will give zero when substituted
into the B-formula (4.12). Similar reasoning applied to the
B™ functions for n>3 forces us to conclude that
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by (x,6)=0 for all n=3. 4.17)

.....

Substituting the foregoing results for the B-functions into
the forward Kramers—Moyal equation (4.11) and then re-
grouping terms, we obtain

M
dP(x,t]xg,t0) J
— = _,-21 5 [A(X,8)P(X,|X5,£0)]

1 &
EZ 2 [Dix)P(xt]%y,t0)]

2
[Cl](x t)P(X tle tO)]

M
+ 2,

i,j=1
[i<j]

(4.18)

This is the multivariate forward Fokker—Planck equation,
the M-variate generalization of Eq. (1.4).

Our derivation of the multivariate backward Fokker—
Planck equation proceeds from Eq. (4.6), and begins by de-
fining

h(XO)EP(x,t|XO,t0+dt0), (419)

so that the first factor in the integrand of Eq. (4.6) can be
written as h(x,+ §). By expanding /(xy+£) in a Taylor series
about X in the manner of Eq. (4.8), we bring Eq. (4.6) into
the form

P(X,tle,tO)

=fdMgP(x,t|x0,t0+dt0)P(x0+§,t0+dt0|x0,t0)

1
M
cr | eed
[ky+-+ky=n]
(9”P(X thO to"]"dto)

ky
c?x &xo A

P(X0+ g,t0+dt0|X0,t0).

Since | d¥x,P(x,,t,[x;,¢1)=1, the first term on the right in-
tegrates to give P(X,t|X,,f;+ dt,). Subtracting that term from
both sides and then dividing through by dt,, we get

P(x,t|xq,0+dtg) — P(X,[Xo,tg)

" 1 1
- - Mg o1, cku
2 [dt0k1!~--kM! f‘i EE" 4

F'P(x,t|xy,t0+dtg)

I3 3
8x1 0xM

XP(XO+§7tO+dt0|XO’tO)]

Finally, making use of Egs. (4.10) and (4.12)—(4.17), we
pass to the limit d¢,—0 and obtain
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AP (x,t|xg,tg)

(9t0
—2 Ail%o,10) 7= [P(xt]x0,t0)]
1Y 2
+3 & DilXouto) g [P(xtla.to)]
2
+”2 Cij(xg,t0) 0x—(9- [P(x,t|xg,20)].  (4.21)

fi<jl

This is the multivariate backward Fokker—Planck equation,
the M-variate generalization of Eq. (1.5).

V. TWO SIMPLE EXAMPLES

We now consider briefly two simple examples of the bi-
variate Langevin and Fokker—Planck equations. The first is a
mathematics application, and the second a physics applica-
tion.

A. A univariate continuous Markov process and its
integral

A general univariate continuous Markov process X is gov-
erned by the Langevin equation (1.1). The time integral Y of
that process X (or indeed of any process X) can be defined by
the updating formula

Y(t+dt)=Y()+X(¢)d:s. (5.1)

By putting X=X, and Y=X, in Egs. (1.1) and (5.1), we find
that those two equations take the form of the muitivariate
Langevin equation (2.6) with M =2 and

Al(xat) =A(x1’t) =A(xat)7

Az(x,t) =x1 =X,
(5.2)
by (x,8)=DY(x,,t)=D"(x,1),

bia(x,8) =boy(X,t) =by(x,1)=0.

It therefore follows that X and Y together comprise a bivari-
ate continuous Markov process.

The companion forward Fokker—Planck equation to the
Langevin equations (1.1) and (5.1) is found by substituting
Egs. (5.2) into Eq. (4.18), utilizing the definitions (2.5). In
that way we find that the joint density function P
=P(x,y,t|x9,y0,to) for X(¢) and Y(¢) is the solution of

oP 9 PP aP+1 9 PP (53)
= AEDPI-x o+ 525 [DEOP] 6.
for the initial condition P(x,y,tp|xg.Y05t0) = 8(x—x¢)
X 8(y —yo). The corresponding backward Fokker—Planck

equation is similarly obtained from Eq. (4.21).

By integrating Eq. (5.3) over all y and using the fact that
the normalization of P requires that P vanish at y= %, we
find that the marginal density function for X(¢),

f P(X,y,tlxo,)’0,to)dyEPX(lexo,)’o:to)
“_‘PX(x,tle,t()), (5.43)
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satisfies the univariate forward Fokker—Planck equation
(1.4), just as we should expect. However, no analogous
closed equation seems obtainable for the marginal density
function for Y(¢),

jva(xay’tlxo ’yO’tO)dePY(y’t'xO’yOatO)’ (54b)

which depends on x as well as y,. To find Py, we appar-
ently must first solve Eq. (5.3) for P and then integrate out x.
This points up the fact that Y by itself is not a Markov
process: Since the Y-updating formula (5.1) involves a pro-
cess other than Y, it is not of the canonical univariate Lange-
vin form. The nonmemoryless nature of Y is reflected in the
fact that the value X(¢) on the right side of Eq. (5.1) tells us
more about the past of Y than we can infer from Y’s current
value Y(¢) alone, e.g., if X(¢)<<0, then we may infer that just
before ¢ Y had a value greater than Y(¢). The non-Markovian
nature of Y also manifests itself in the fact that ¥ has a
‘“‘proper’’ time derivative, which is something that a genu-
inely stochastic Markov process does not have.

B. The Kramers equation and the Smoluchowski
equation

As was discussed in Ref. 1,” the velocity V of a Brownian
particle of mass m immersed in a fluid at absolute tempera-
ture T and subject to no external forces obeys the equation

dV(t) )

m— === YV(t)+ (2kTy) VT (1).
Here, I'(¢) is Gaussian white noise, k£ is Boltzmann’s con-
stant, and 7y is the drag coefficient, which is related to the
diffusion constant D through the Einstein relation,

y=kT/D. (5.6)

Equation (5.5) is of course Newton’s second law for the
particle under the assumption that the aggregate force of the
fluid on the particle can be resolved into a linear drag com-
ponent and a zero-mean randomly fluctuating component.
The coefficient of the fluctuating force component, which
arises from the requirement that V(¢— ) have an appropri-
ate Maxwell-Boltzmann distribution, shows that the drag
and fluctuating forces are intimately connected through their
joint dependence on 7.

Suppose we impose on the Brownian particle a conserva-
tive external force field

Feulx)=-U"(x), (5.7)

where the prime denotes differentiation with respect to the
position variable x. Then it is reasonable to assume that we
need merely to add this force to the right side of Eq. (5.5).
Letting X(¢) denote the position of the particle at time ¢, we
therefore have

(5.5)

vty y 1 (2kTy)"?
T == V)-—U (X(t))+~—m——F(t),
(5.8a)
dX(1)
= = V(1) (5.8b)

These equations will be seen to be of the canonical Langevin
form (2.13) with M =2; hence, V and X together constitute a
bivariate continuous Markov process. If we make the A; and
b;; associations required to write Egs. (2.13) as Egs. (5.8)
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and then compute the corresponding functions D; and C;;
from Egs. (2.5), we find that the canonical forward Fokker—
Planck equation (4.18) gives the following time-evolution
equation for the joint density function P=P(v,x,t|vg,xg,tg)
of V(¢) and X(¢):

P 9
ot v

P kTy &P
- —+—

y+U'(x) P
ax m? dv w

o (5.9)

This equation (slightly rescaled) has been dubbed the Kram-
ers equation by Gardiner.!® The corresponding backward
Fokker—Planck equation follows similarly from Eq. (4.21).

Since Eq. (5.8b) is not of the canonical univariate Lange-
vin form, then X is not by itself a Markov process. And
unless the external force —U’(x) is independent of x, as it
would be though in the case of the uniform gravitational field
U(x)=mgx, Eq. (5.8a) is also not of the canonical univari-
ate Langevin form. So for a general external potential U(x),
neither V nor X is individually Markovian; yet the pair
(V.X) is.

One can show by straightforward substitution and differ-
entiation that a time-independent or stationary solution of
the Kramers equation (5.9) is

%mv2+U(x))

P*(v,x)=K exp( - T

(5.10)

where K is a normalizing constant. This is an especially sat-
isfying result, being precisely what is required by equilib-
rium statistical mechanics. We may expect that the Kramers
equation (5.9) will govern the precise way in which P ap-
proaches P* as t—,

An interesting simplifying approximation can be made to
the Kramers equation if the motion of the particle is viewed
on a spatio-temporal scale in which V(¢) appears to be con-
stant. In such a case, Eq. (5.8a) can be approximated by
setting dV/dt=~0. If we solve the thus approximated equa-
tion (5.8a) algebraically for V(¢) and then substitute the re-
sult into Eq. (5.8b), we obtain, remembering Eq. (5.6),

dX(t)
dt

1
~=7 U'(X(1))+(2D)VT(¢). (5.11)

This equation has (approximately) the canonical form (1.2)
of a  univariate langevin equation for X, with
A(x,t)=—U'(x)/y and D(x,t)=2D. The corresponding
forward Fokker—Planck equation (1.4) for the density func-
tion Py(x,t) of X(¢) therefore reads

IPx(x,t) 1 8

P
o~ 3% WU (@Px(x0]+D —’-‘Ex’—’).

x?
(5.12)

This equation is called the Smoluchowski equation,'' al-
though its approximate nature is not always emphasized.'?
To find Py(x,t) exactly, one could first solve the Kramers
equation (5.9) for P and then integrate out v.
It is not hard to show that a stationary solution of the
Smoluchowski equation (5.12) is
P¥(x)=K' exp[ —U(x)/kT], (5.13)

which is the exact result predicted by the stationary solution
(5.10) of the Kramers equation.
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VI. DISCUSSION

The key elements of our derivation of the M -variate
Langevin equation in Sec. II were (a) the definition of a
continuous Markov process in terms of the conditional incre-
ments E;(dt;x,t) in Eq. (2.2), and (b) the theorem at Egs.
(2.4) and (2.5). Our proof of the theorem, which was given in
Sec. III, showed that the mathematical form (2.4) of
E(dt;x,t) is a consequence of the self-consistency relation
(3.2) and several theorems of random variable theory and
ordinary calculus (namely the central limit theorem, some
elementary theorems on the additive properties of moments,
and our lemmas 1 and 2). Our analysis thus showed that
many seemingly arbitrary features of the Langevin equation
(2.6), such as the special way in which the element of sto-
chasticity enters through the last M terms, with each term
being proportional to the square root of dt and a statistically
independent, temporally uncorrelated, zero-mean, normal
random variable, are really not arbitrary. All of those fea-
tures emerge as inevitable consequences of the requirement
that the process X be continuous, memoryless, and self-
consistent. The arguments in our derivation of the Langevin
equation make room for, but are not logically contingent
upon, the mathematically tenuous notion of white noise.

In Sec. IV we derived the associated M -variate forward
and backward Fokker—Planck equations. Our derivation of
the forward Fokker—Planck equation (4.18) proceeded from
the Chapman—-Kolmogorov equation (4.5) to the forward
Kramers—Moyal equation (4.11) in the standard Taylor ex-
pansion way, but thereafter it was simplified by the fact that
our theorem allows an easy calculation of the B-functions;
e.g., our theorem makes it immediately clear why all deriva-
tive terms in the Kramers—Moyal equation of order =3 drop
out for a continuous Markov process.'®

Our analysis also revealed that two different Langevin
equations can sometimes describe the same continuous Mar-
kov process, whereas two different Fokker—Planck equations
always describe different continuous Markov processes. The
underlying reason is that Eqs. (2.5) allow more than one set
of b;; functions to give the same D; and C;; functions. On
the other hand, whereas any set of smooth b;; functions will
give rise to a legitimate Langevin equation, only those sets of
smooth D; and C;; functions that satisfy conditions (2.7) will
give rise to a legltlmate Fokker—Planck equation.

Once the functions A; and b;; have been determined from
the physics underlying the process X, it may, of course, be
very difficult to find even approximate analytical solutions to
the resulting Langevin and Fokker—Planck equations. But
the Langevin equation itself affords a generally straightfor-
ward way of making approximate numerical simulations of
the process: If the values of the M components of X are
known at any time ¢, then the Langevin equation (2.6) im-
plies that the component values at the slightly later time
t+ At can be estimated as

M
Xi(t+A)=X,(1)+A,(X(¢),)At + 21 b (X(1),0(A)2n,
=

(i=1,..,M). (6.1)

Here, ny,...,ny, are M sample values of the random variable
N(0,1), Wthh values can easily be generated on a digital
computer.'* The dot over the equal sign reminds us that this
is usually a good approximation only if Az is ‘‘suitably
small.”” In practice, the requirement is that the values of the
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functions A; and b;; should not change ‘‘appreciably’” over
the interval ¢ to 1+ A¢; indeed, Eq. (6.1) will be exact if the
functions A; and b;; are all constants. Equation (6.1) is es-
sentially the stochastic generalization of the well-known Eu-
ler integration formula, the innovation evidently being the
use of M unit normal random numbers at each time step.'®

The view taken here of the Langevin equation as an up-
dating recipe which is continuous, memoryless, and self-
consistent has some important implications for those who
would attempt a ‘‘non-Markovian generalization”’ of the
Langevin equation. The fact that the updating recipe for a
non-Markovian process is not memoryless does not absolve
the recipe of the requirement that it be self-consistent; rather,
it makes the self-consistency condition much more compli-
cated: For a non-Markovian stochastic process, the updating
recipe must be such that using it to compute the process
increment from any given value x at time ¢ to its value at
time ¢+ dt always gives a statistically identical result, at least
to lowest order i in dt, as first usmg the recipe to compute the
process value x at time ¢+ 3dt given the value x at time ¢,
and then using the recipe to compute the process value at
time ¢+dt given the two values x at ¢ and x' at 7+ 3dt.
Analogous consistency conditions arise with respect to sub-
divisions of the interval [¢,¢+dt] into three parts, four parts,
etc. In the language of the density functions P in Egs.
4.1), we are simply saying here that although the density
function P for a non-Markovian stochastic process does
not have to satisfy the Chapman—Kolmogorov equation
(4.4), it does have to satisfy Eq. (4.2) for n=1, and that, in
turn, requires the specification of an entire set of functions
{P(")} that satisfies Egs. (4.2) for all n=1.

So we see that the generalization of the Langevin equation
to non-Markovian stochastic processes is not a task to be
undertaken lightly; indeed, even the preliminary task of for-
mally writing down all the consistency conditions that a non-
Markovian update formula should satisfy is rather daunting.
There is, however, one class of non-Markovian stochastic
processes—and it is a very large and important class—for
which self-consistency is apparently not a problem. This is
the class of non-Markovian processes that are components,
or functions of one or more components, of multivariate
Markov processes.

Perhaps the simplest example of a component of a multi-
variate Markov process that is not itself Markovian is the
integral Y of a univariate continuous Markov process X,
which was discussed in Sec. V A. But since the updating
formula (5.1) for that process Y is part of a bivariate Lange-
vin equation, then there is no questioning the self-
consistency of the resulting updating procedure. And while it
might well be possible to construct a ‘‘generalized Langevin
equation’’ for Y, i.e., a single updating formula that uses
present and past values of Y but no values of X, it seems
unlikely that such a formula would be more tractable or use-
ful than the pair of updating formulas (1.1) and (5.1).

Also, functions of continuous Markov processes will
sometimes be non-Markovian. For example, the sine of the
deterministic continuous Markov process X(¢) =+ (Langevin
equation dX/dt=1), although deterministic and continuous,
is not Markovian. This is because the derivative of

U(t)=sin X(¢)=sin ¢ is cos t==+[1-sin’ ¢]'?, whence
dU(t
di ) *[1-UX0)]"?

and this cannot be regarded as a legitimate Langevin equa-
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tion since the sign of the right side changes with time in a
way that cannot be determined from the value U(¢) alone.
But the procedure of updating U by first updating X through
its Langevin equation and then taking U=sin X should cer-
tainly result in a self-consistent process U; indeed, that self-
consistency can be seen quite explicitly in this case by noting
that U satisfies an unambiguous second-order ordinary dif-
ferential equation, namely, d?U/dt>*=~U, and therefore
U(t)=sint and its derivative U'(¢#)=cos t together form a
bivariate continuous deterministic Markov process.

So, for a non-Markovian process that is either a compo-
nent of a multivariate continuous Markov process or a func-
tion of one or more such components, self-consistency will
be guaranteed by the self-consistency of the underlying con-
tinuous Markov process. But if one proposes to define a non-
Markovian process by simply writing down a generalized
Langevin equation, then it is incumbent upon one to demon-
strate explicitly the self-consistency of that updating for-
mula. The remarks above suggest that such a demonstration
will not be easy.
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APPENDIX: PROOFS OF THE TWO LEMMAS

Here, we prove the two lemmas used in Sec. III in our
proof of the theorem at Eqs. (2.4) and (2.5). Lemma 1 al-
lowed us to deduce the critical results (3.8) from Egs. (3.6).
The converse of Lemma 1 is trivial to prove, but the proof of
the direct lemma is a little more involved.

Proof of Lemma 1. Differentiate h(z)=nh(z/n) with re-
spect to z to obtain h'(2)=nh'(z/n)(1/n)=h'(z/n). Ob-
serve that the only way that this can be true for all positive
integers n, given that &’ is a continuous function, is to have
h'(z)=h'(z/°)=h'(0)=C, where C is independent of z.
Also note that, since h(z/n)=h(z)/n, then by taking n arbi-
trarily large we may deduce that #(0)=0. Finally recognize
that the only smooth function h satisfying both h'(z)=C
and #(0)=0 is the function A(z)=Cz. QED

Lemma 2, at Egs. (3.10) and (3.11), showed that the as-
serted formula (2.4) for the conditional increment =; endows
B, with precisely the properties demanded by Egs. (3.5) and
(3.8).

Proof of Lemma 2. We have

M

Yi=a+ 2 ByN(O1)  [by Eq(3.10)],
=
M
=a+ 2 N(0.85)  [by Eq(29)]),
=

=a1+N

M
0.2 /3?,-> [by Eq.(2.15)],
P

i:

M
a,,_Zl /3,.2].) [by Eq.(2.9)].
p=

This establishes that the Y;’s are indeed normal, and that
they have the means and variances asserted by Eqgs. (3.11a)
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and (3.11b). To establish the asserted covariance formula
(3.11c), we write

cov{Y,, Y} =((Y;—(Y))(Y;—(Y}))) [by definition],
=((Y;—a;)(Y;—a;)) [by Eq.(3.11a)],
=((ZkBuNi)(Z8;N))) [by Eq.(3.10)],
cov{Y;, Y} =32 1BuBi NN ).

But since the N;’s are statistically independent random vari-
ables with means 0 and variances 1, then (N, N,)= &,;, and
the last equation reduces to Eq. (3.11c).
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When two quasiparallel identical beams, originating from the same laser, are superposed, the
crossing volume becomes the seat of a system of interference fringes. The spatial coherence of the
radiation filling this region may be evaluated by observing the interference pattern generated on a
far screen. When the beams originate from two identical but different lasers, the fringe system in the
crossing region will be washed out by mutual phase fluctuations: the radiation field, however,
retains its ability to produce an interference pattern when it goes through a double slit. This remark
may be the starting point for a simpler and intuitive approach to the van Cittert—Zernike theorem.,

Simple laboratory experiments are described which illustrate these results.

Association of Physics Teachers.

L INTRODUCTION

This work describes an optical experiment devised to il-
lustrate, in a simple way, the concepts of spatial coherence
and field correlation for a quasimonochromatic radiation that
was, therefore, not perfectly coherent in time; when required,
the field correlation was measured through the phenomenon
of interference from a double slit arrangement, whose pur-
pose was to sample a pair of different portions of the radia-
tion field we wanted to correlate.
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We will consider two examples of light fields that can be
simply described analytically and are also easy to implement
experimentally, namely, the superposition of two plane
waves of equal frequencies; the cases of coherent and inco-
herent superposition are considered separately.

For completeness, we recall that the expression for a po-
larized plane wave is

E(r,t) =Eye'kr-ot=¢) 1)
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