AMERICAN

OURNAL
ﬁ;(srmnl (}J!. PHYS]CS
 ———— e T

Fluctuation and dissipation in Brownian motion
Daniel T. Gillespie

Citation: American Journal of Physics 61, 1077 (1993); doi: 10.1119/1.17354

View online: http://dx.doi.org/10.1119/1.17354

View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/61/12?ver=pdfcov
Published by the American Association of Physics Teachers

Articles you may be interested in
Brownian motion in Robertson—Walker spacetimes from electromagnetic vacuum fluctuations
J. Math. Phys. 50, 062501 (2009); 10.1063/1.3133946

Nonequilibrium fluctuation-dissipation theorem of Brownian dynamics
J. Chem. Phys. 129, 144113 (2008); 10.1063/1.2992153

Resonance fluctuations of a whispering gallery mode biosensor by particles undergoing Brownian motion
Appl. Phys. Lett. 91, 103902 (2007); 10.1063/1.2778351

Stationary collective fluctuation in Brownian motions of particles within the limited field of vision
AIP Conf. Proc. 742, 295 (2004); 10.1063/1.1846489

Stress fluctuations and Brownian motion in incompressible viscoelastic fluids
J. Chem. Phys. 59, 1283 (1973); 10.1063/1.1680180

PHYSICS EDUCATION
'WINTER MEETING ~ SAN DIEGO, CA



http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/1967379597/x01/AIP/2015WinterMeeting_AAPTCovAd_1640Banner_09_2014/2015WinterMeeting_sandiego_1640x440.jpg/4f6b43656e314e392f6534414369774f?x
http://scitation.aip.org/search?value1=Daniel+T.+Gillespie&option1=author
http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://dx.doi.org/10.1119/1.17354
http://scitation.aip.org/content/aapt/journal/ajp/61/12?ver=pdfcov
http://scitation.aip.org/content/aapt?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/50/6/10.1063/1.3133946?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/129/14/10.1063/1.2992153?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/91/10/10.1063/1.2778351?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1846489?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/59/3/10.1063/1.1680180?ver=pdfcov

surable properties; to “be responsive under one’s finger,”
“have a beautiful sound which carries,” “speak clearly and
easily,” and other such expressions which are no doubt
meaningful but have not been translated into physical
properties, cannot be considered to answer the question I
am posing.

VI. CONCLUDING MEDITATION

Many years ago, just after I finished presenting a collo-
quium on piano physics at Michigan State University, an
anonymous student handed me a sketch he had made while
listening to me. It was entitled “Great Moments in Physics
#42: Galileo Begins the Study of Musical Instruments,”
and showed the great man himself dropping a piano and a
saxophone side by side from the top of the Leaning Tower
of Pisa.

At moments of discouragement, 1 have been known to
look at that picture and wonder just how far we have come
from such an apocryphal beginning. Yet the truth is that
we have come an enormous distance. The trouble is that
the nature of research is forever to be doing something that
we do not know how to do and, as soon as we have learned
how to do it, to stop doing it and look for a new problem;
this means that a researcher’s mind is forever fixed on what
has not been achieved—which, by the standards of the

world, means being condemned to a life of perpetual dis-
couragement. That this is not the way that we researchers
perceive it is one of the great miracles of human creativity,
and the primary reason that we love our work as much as
we do.
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An analysis of Brownian motion based upon a “Langevin equation” form of Newton’s second
law provides a physically motivated introduction to the theory of continuous Markov processes,
which in turn illuminates the subtle mathematical underpinnings of the Langevin equation. But
the Langevin approach to Brownian motion requires one to assume that the collisional forces of
the bath molecules on the Brownian particle artfully resolve themselves into a “dissipative drag”
component and a “zero-mean fluctuating” component. A physically more plausible approach is
provided by a simple discrete-state jump Markov process that models in a highly idealized way
the immediate effects of individual molecular collisions on the velocity of the Brownian particle.
The predictions of this jump Markov process model in the continuum limit are found to
precisely duplicate the predictions of the Langevin equation, thereby validating the critical

two-force assumption of the Langevin approach.

I. INTRODUCTION

Brownian motion is the motion of a macroscopically
small but microscopically large particle that is subject only
to the collisional forces exerted by the molecules of a sur-
rounding fluid. If M denotes the particle’s mass and V()
its instantaneous velocity, then the traditional way of ana-
lyzing Brownian motion' is to begin with the Newton’s
second law equation
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dav(e)
ar =—yV(6)+ fT(2). | (1

Here ¥ is a positive constant called the drag coefficient,
I'(#) is an entity called the Gaussian white noise process
(which will be discussed more fully later), and f is-a con-
stant whose value remains to be specified. The physical
interpretation of Eq. (1) is that the particle is subject to
two kinds of forces: a steady dissipative drag force
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—yV¥ (1), and a zero-mean temporally uncorrelated fluctu-
ating force fT'(t). A detailed analysis of Eq. (1) ulti-
mately reveals that, in order to satisfy the thermodynamic
equipartition of energy condition

IM(V*()) =3kpT, (2)

where kp is Boltzmann’s constant, T is the absolute tem-
perature of the bath, and the angular brackets denote an
averaging operation, the constant f must be assigned the
value

f=(2vkgT)"2 (3)

This monotonic relation between the fluctuating force co-
efficient f and the dissipative drag coefficient ¥ is an ex-
pression of the fluctuation-dissipation theorem. It implies
that fluctuation and dissipation are intimately related, and
that one cannot be present without the other.

The fact that the two force terms on the right side of Eq.
(1) are not independent of each other, as one might have
at first supposed, points up a disconcerting feature of the
foregoing approach to the Brownian motion problem: Be-
cause Eq. (1) assumes that the forces of the fluid molecules
on the particle neatly resolve themselves into a dissipative
drag component and a zero-mean fluctuating component,
it can offer no insight on how that resolution comes about.
To gain such insight, one should instead begin with a plau-
sible model of thermally moving molecules impinging on
the particle and then infer the existence of the alleged
forces. The main purpose of this paper is to demonstrate a
fairly simple way of accomplishing this task.

In Sec. II we shall place Eq. (1) in the more general
context of continuous Markov process theory, which will
allow a much deeper understanding of its mathematical
structure, and we shall then describe a novel way of de-
ducing its solution ¥ (¢). For the sake of completeness, we
shall go on to show how this solution ¥ (¢) leads to the
fluctuation-dissipation relation (3), as well as the experi-
mentally important result of Einstein for the Brownian
particle’s  asymptotic = mean-square  displacement
(X*(t> 0)). In Sec. III we shall present an altogether
different approach to the Brownian motion problem. There
we shall cast V(¢) as a jump Markov process which mod-
els, in a highly simplified way, the expected effects of indi-
vidual molecular impingements on the particle. We shall
show that the solution ¥(¢) to our jump Markov model in
the continuum limit exactly reproduces the solution V(¢)
obtained in Sec. II, yielding specific formulas for the Eq.
(1) parameters y and f in terms of the parameters of our
jump model. This agreement can then be taken as a vindi-
cation of the critical two-force assumption of Eq. (1). As
this program of analysis suggests, the model presented in
Sec. III is not intended to replace Eq. (1), but rather to
justify it.

II. THE LANGEVIN EQUATION AND
CONTINUOUS MARKOV PROCESSES

Equation (1) is an example of a “Langevin equation.”
In order to properly interpret and solve such an equation,
it is necessary to know a few basic facts about the Gaussian
or normal random variable.
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We say that Y is a “normal random variable with mean
m and variance ¢?,” and write Y=N(m,02), if and only if
the probability that a sampling of ¥ will yield a value in the
infinitesimal interval [y,y,+dy) is given by

1 y—m)’
Prob{Ye [y,y+dY)}=—;Tl72(21T ) exp(._—y—z-;;i—)dy.
(4)

Two important properties of the normal random variable
are the following: First, if 8 is any constant, then

BN(m,o*) =N(Bm,B’d?). (5)

And second, if the two random variables N(ml,a%) and
N(m,,03) are statistically independent of each other,
meaning that knowing the value of orie does not help us to
predict the value of the other, then

N(my,03) +N(my,05) =N(m+m,0}+03).  (6)

Proofs of these two properties may be found in most any
textbook on statistics.’

The Gaussian white noise process I'(¢) appearing in Eq.
(1) is formally defined by

I'(#)= lim N(0,1/dt). )]
dt-0t

This definition, which we shall see later is not as whimsi-
cally arbitrary as it might at first appear, implies that the
mean of I'(¢) is zero, that the variance of I'(z) diverges
like 1/dt as dt—07%, and that T'(¢)) and I'(¢,) are statisti-
cally independent if #,5~t,. All of these properties are im-
plicit in the often quoted pair of formulas

(TF'(6))=0 and (T(#,)T(8,))=68(t,—1),

but it is the more complete definition (7) that will be re-
quired for our analysis here.

The ill-behaved nature of I'(¢#) implicit in the definition
(7) means that d¥V(¢)/dt in Eq. (1) will likewise be ill
behaved. The way to get around this difficulty is to back off
from the limit d¢=0 and write Eq. (1) in the differential
form

V(t+dt)—V(t)=—j—Y{ V(t)dt+A—j;1‘(t)dt. (8)

Here, dt is to be regarded as a real variable on the interval
[0,€], where the positive number € is arbitrarily close to
zero but otherwise unimportant. Using the definition (7)
of I'(¢) and the normal property (5), we can write the
factor I'(#)dt in the last term of the above equation as

[(£)dt=N(0,1/dr)dt=(1/dt)V*N(0,1)dt,

T (£)dt=N(0,1) (dt)'/%. 9

Substituting this into Eq. (8) and transposing the V(¢)
term, we obtain

V(t+dt)=V(r) -—% V(t)dt—l-ﬂé N(0,1)(dr) /2.
(10)

With the understanding that d¢ is a “positive infinitesi-
mal,” Eq. (10) is fully equivalent to Eq. (1). In a moment
we shall show how to solve Eq. (10) for V'(¢). But first, let

" us place our considerations here in the more general con-

text of continuous Markov process theory.
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A Markov process is basically any function of time whose
value at time #+dt can be probabilistically predicted from
its value at time ¢, but in a way that cannot be sharpened by
taking cognizance of its values at times earlier than . A
Markov process V() is said to be of the continuous type if
the difference V(¢4-dt)—V(t) behaves as much like a
“smooth infinitesimal” as is possible. It turns out* that this
seemingly vague condition implies a surprisingly specific
formula relating V(z+dt) to V(t), namely

V(t4+-dt)=V(t) +A(V(t),))dt
+ DVYV(1),)N(0,1) (dt) /2 (11)

In this equation, which is called the Langevin equation of
the continuous Markov process V(¢), A(v,t) and D(v,t)
are any two differentiable functions of their arguments,
with D being non-negative. One thus has considerable lat-
itude in choosing forms for the two functions 4 and D. But
any attempt to alter the structure of Eq. (11)—for in-
stance, by replacing the normal random variable N(0,1)
with a zero-mean uniform random variable or by changing
the respective exponents of d¢ in either of the last two
terms on the right—will invariably result in a formula that
cannot consistently be applied for a/l sufficiently small dt
>0.

The Langevin equation (11) is essentially a recipe for
computing the value of V(#+dt) from the value of ¥(¢):
one merely substitutes for N(0,1) a sample value of that
random variable and then carries out the indicated arith-
metic operations. The increment V(¢+dt)—V(t) is seen
to be composed of two terms, one being ?roportional to dt
and the other being proportional to (d¢)'/2. It is not legit-
imate to discard the dt term relative to the (df)"/? term
simply because the former is of higher order in df than the
latter. The reason is that the factor N(0,1) that multiplies
(dr)'/? is about as often negative as positive, with the result
that the cumulative effect of the third term over a succes-
sion of dt increments is diminished to a level comparable to
that of the second term. In the imagery of a well known
fable, the dt term in Eq. (11) might be called the fortoise
term, because it’s slow but steady, while the N(0,1) (dt)'/?
term might be called the hare term, because it’s fast but
erratic. More conventionally, the second term on the right
side of Eq. (11) is called the drift term, and 4(v,) the drift
Sfunction, while the third term on the right side of Eq. (11)
is called the diffusion term, and D(v,t) the diffusion func-
tion. Continuous Markov processes differ from one another
only to the extent that their drift and diffusion functions
differ. For the Brownian motion Langevin Eq. (10), we
evidently have 4(v,t) = — (y/M)v and D(v,t) = (f/M)>

That the process defined by the general Langevin Eq.
(11) satisfies the fundamental continuity condition,
V(t+dt)-V(t) as dt—0, is quite clear from that equa-
tion. But differentiability is another matter, as can be seen
by algebraically rearranging Eq. (11) to read

V(t+dt)—V(1) DYV (1),5)N(0,1)
dt (dn)'?

=A(V(2),0)+
(12)

Clearly, the limit of this equation as dt—0" does not exist
in any conventional mathematical sense if the diffusion
function D is not identically zero. Of course, if D=0 then
the limit gives the ordinary differential equation d¥V(z)/dt
=A(V(t),t); in that case the “randomness,” which enters
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exclusively through the random variable N(0,1), never ap-
pears, and V(¢) will be a purely deterministic process, the
stuff of ordinary differential calculus. But a truly stochastic
continuous Markov process, namely one for which the dif-
fusion function D is positive, is an example of a function
that is everywhere continuous but nowhere differentiable.

Most physicists, however, are loath to abjure the famil-
iar notation of differential calculus. So they, in effect, in-
voke theorem (5) to write (df)~"?N(0,1)=N(0,1/dt),
and then take the limit df—07 in Eq. (12) with the help of
the definition (7) to obtain

dv(e)
dt

=A(V(1),0)+ DAV (1)L (). (13)

This equation too is called the Langevin equation, and is
actually more commonly encountered than the form (11).
But, being a relation between two mathematically ill-
defined entities, namely d¥(¢)/dt and I'(#), Eq. (13) is
probably best regarded as a mnemonic for the form
(11)—in the same way that Eq. (1) is a mnemonic for Eq.
(10). In any case, it should now be clear that the:curious
definition (7) of the white noise process I'(¢) is a conse-
quence of ensuring that Eq. (13) be compatible with Eq.
(11), which in turn is the only consistent update formula
for a process ¥ () that is both past-forgetting (Markov-
ian) and continuous.

The Brownian motion Langevin equation (10), because
of its relatively simple form, can actually be solved for
V(t) by merely invoking the two normal theorems (5) and
(6). Thus, if ¥ (¢) has the sure value ¥ at time =0, then
since V3=N(¥,,0) Eq. (10) gives for t=0

ydt S
M M

A2

vdt\ [ f\?
_N(Vo(l——ﬁ),(ﬁ) dt),
where the second step has invoked rule (5) and the last
step has invoked rule (6). Noting that

A i 2ydt
(32) =5 |1~ (1-737 )}
we thus have

M| T 2yM
d 2 2yd
V(dt)=N(Vo(1—%t),E£—A—l 1—(1——;{—!)]). . (15)

A straightforward induction argument, which is detailed in
the Appendix, expands this result to
(16)

vank f |

M) " 2yM ‘(
for K any positive integer. Now, for any finite >0, let us
choose K=t/dt, so that Kdt=¢ and dt=t/K. Since dt is
infinitesimally small, then K will be infinitely large, so

K X
(1_7’;"‘) B (1_(7’/M)t) _ o

V(dt)=(1— )N(VO,O)+( )N(o,l)(alt)‘/2

(14)

V(Kdt) =N( Vo( 1—

2vdi\ ¥
_M)

M) K
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and

K
l_27/dt (1 2D aim
M K '

Equation (16) therefore becomes, for K=1t/dt,
f2
= —(y/Myt L (1__ o2/ M)t
V(t)—N(Voe  3yM (1—e )). 17
This is the solution of Eq. (10), and hence also of Eq. (1).
In Sec. III we shall show how a formula for V(¢) of the
form (17) can be derived without making the overt as-
sumption that the forces of the bath molecules on the
Brownian particle conveniently resolve themselves into the
two components appearing on the right side of Eq. (1).
But before doing that, let us quickly review the major phys-
ical implications of Eq. (17). First of all, the long-time
limit of Eq. (17) evidently gives

f2
2yM )

f2

V(w)= N( (18)

This implies that

(F(w))=

So the thermodynamlc requirement (2) will be satisfied if
and only if
fr kgT

M M

Solving Eq. (19) for f yields the anticipated fluctuation-
dissipation relation (3), which connects the two Langevin
parameters ¥ and f. The implication of Egs. (18) and
(19), that the equilibrium velocity ¥ ( ) of the Brownian
particle is a normal random variable with mean zero and
variance kgT /M, can be seen from the normal density
formula (4) to be the same as saying that the asymptotic
velocity of the Brownian particle is distributed in a
Maxwell-Boltzmann fashion.

Although a continuous Markov process will not gener-
ally have a proper derivative, it will have a proper integral ®
In the case of our process V'(¢), that integral is of course
the physically important position X(t) of the Brownian
particle. With V(¢) defined by the Langevin Eq. (10), we
may conveniently define the integral process X (¢) by the
companion equation

X(t+dt)y=X(t)+V(t)dt. (20)

By using Eqs. (10) and (20) in tandem, it is possible to
analytically calculate all the moments of both ¥ (z) and
X (). Since experimental investigations of Brownian mo-
thIl traditionally focus on the long-time behavior of
(X2(1)), let us see how (X*(1— o)) can be most expedi-
tiously deduced.

Squaring Eq. (20) and dropping terms of order >1 in
dt, we get

X (t+de) =X () +2X () V(¢)dt.

Averaging, and then transposing the first term on the right,
dividing through by dt, and letting dr—0%, we get

(19)

d
P (X)) =2X () V(D). (21)
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To calculate the right side of Eq. (21), we first multiply
Egs. (10) and (20) together, dropping terms of order > 1
in dr. This gives

X(@+d)V(e4+dt)=X()V(¢) —A—y{X(t) V(t)dt

+A—f{X(t)N(0,l) (d)2+V2(1)dt.

Averaging this equation, noting as we do that N(0,1) is
statistically independent of X(#) and satisfies
(N(0,1)) =0, we obtain after the usual algebraic rear-
rangement and df—0% limit

d Y 5
7 XV (@) =— X@OV @) +(V(D).  (22)
Since we know ( V2(¢)) [because Eq. (17) tells us the mean
and variance of ¥ (¢)], we could now proceed to first solve
Eq. (22) for (X (t) V(2)), and then use that result to solve
Eq. ( 21) for (X*(r)). But as we are presently interested
only in the t— o limit, we may proceed more directly by

simply observing from condition (2) that

(Vz(tﬁoo)>=—1‘—[-
Using this result, we may immediately deduce from the
differential Eq. (22) that its solution (X(¢)¥(¢)) must
approach a constant value (X (o) V(o0 )) which satisfies

kgT
0=~ (X)W () + o
thus,

kT
(X(0)V(0)y=—""

It therefore follows from Eq. (21) that (X 2(t)) ultimately
increases Jinearly with t according to

kgT

(Xz(t—>oo))=2(—;—)t. (23)

Expenmental studies of Brownian motion find that
(X*(t- )) is indeed dlrectly proportional to ¢, and the
constant of proportionality is operationally defined to be
twice the diffusion coefficient of the Brownian particle. The
result in Eq. (23), which predicts the diffusion coefficient
to be kzT /v, is the famous result obtained by Einstein in
1905, and also by Smoluchowski in 1906 and Langevm in
1908.” Our present derivation of this result is closest in
spirit to the derivation of Langevin.

III. A MOLECULAR IMPINGEMENT MODEL OF
BROWNIAN MOTION

In Sec. II we began by assuming the validity of the
Langevin Eq. (1), with its explicit dissipative drag force
—yV(t) and zero-mean fluctuating force fT'(¢), and we
then derived the result (17) for ¥V (¢). Now we want to
present a way of calculating V() that proceeds, not from
Eq. (1), but rather from an idealized model of the direct
effects of molecular impingements on the particle’s veloc-
ity. An exact way of doing this when the surrounding fluid
is an ideal “one-dimensional gas™ has been described else-

Daniel T. Gillespie 1080



v_y

Y T T YT Y A O Y Y 0 A B S A OO TP

T T — v
v_n=-—A vo=0 A UN=A
Fig. 1. Illustrating the permissible states (24) of our proposed

continuous-time random walk model for the velocity ¥(#) of a particle
undergoing Brownian motion.

where.® Here, however, we shall focus on a mathematically
simpler approximate model that manages to capture the
essential features of an exact analysis.

We propose to model V() as a jump Markov process
(sometimes also called a *“‘continuous-time random walk’’)
over the 2N+ 1 discrete states

v,=(4/N)n (n=0,+1,...,+N), (24)

where A is some positive number. As illustrated in Fig. 1,
these states {v,} cover the velocity range from —A4 to 4 in
discrete steps of size

A=A/N. (25)

We shall eventually let N— o in such a way that 4—
and A -0, so that the allowable values of V() will become
virtually unrestricted.

The motion of ¥ (¢) over its allowed states {v,} consists
of random steps of size +A, these steps being taken at
random times and in a past-forgetting (Markovian) man-
ner. Such behavior can be characterized by two “‘stepping
functions” W (v) and W _(v), which are defined so that

W, (v,)dt=the probability, given ¥ (t) = v,,
that V(¢ + dt) will equal v,,,. (26)

Our first task will be to find forms for these two functions
that characterize in a plausible way the effect on the par-
ticle’s velocity of the naturally occurring molecular im-
pingements. Since symmetry considerations dictate that

W_(—v)=W_(v), (27

then we may focus our efforts on finding a form for the
function W (v).

Suppose first that the particle is at rest. Then in the next
infinitesimal time interval dt, there will be a certain prob-
ability that some molecule will strike the particle’s back-
side sufficiently hard to increase the particle’s velocity from
zero to v;=A. Let us assume that this probability can be
written in the form Bdt, where B is some positive constant:

Bdt=the probability that the particle, at rest at
time ¢, will acquire velocity v;=A in the next
infinitesimal time interval [z, 4+ dt). (28)

We may reasonably expect B to be an increasing function
of the average kinetic energy of the bath molecules, and a
decreasing function of the particle’s mass M and the veloc-
ity step size A; however, we shall be content here to let B
be phenomenologically defined by the statement (28).
Comparison with the definition (26) shows that

W, (0)=B. (29)

Since our model assumes that the velocity of the particle
can never exceed the value 4, then we must have

W, (4)=0. (30)

1081 Am. J. Phys., Vol. 61, No. 12, D@oember 1993

W)
2B -

e W_(v) = Bl + v/A)

o W, ) = Bl - vA)

I N |

Lt
> ™ v

v_N= -A vo=0 a UN=A

Fig. 2. Graphs of the stepping functions W _(v) in Egs. (31).

And it is clear on physical grounds that, for any v<4,
W (v) must be a steadily decreasing function of v; be-
cause, if the particle’s forward speed is increased, then the
likelihood that the particle will be struck from behind by a
gas molecule hard enough to further augment its forward
speed by A should surely decrease. To keep our model
simple, let us assume that W (v) is a linearly decreasing
function of v. This linearity assumption and the conditions
(29) and (30) suffice to determine W (v) completely

W, (v)=B(1—v/4) (—A<v<4). (31a)
The symmetry relation (27) then gives for W_(v)
W_(v)=B(14v/4) (—A<v<A). (31b)

Plots of these two functions are shown in Fig. 2.

We now have a fully defined jump Markov process
model for the particle’s velocity ¥ (¢). Our model contains
two parameters A and B, and we shall later have to decide
how these two parameters should depend upon the param-
eter N that controls the total number of velocity states. For
now, though, let us deduce the consequences of this model.

Our analysis will focus on the function

P(v,,t) =the probability that V(¢)=uv,, given
that V(0) = ¥,. (32)

To derive a time-evolution equation for this function, we
begin by using the definitions (32) and (26), along with
the multiplication and addition laws of probability, to infer
the following expression for the probability that V(¢-+dt)
will equal v,,:

P(vmt+dt) =P(Un—l’t) X W+(vn—l)dt
+P(vn+lst) W—(vn+l)dt

+ P {1~ [W, (v,)dt+W_(v,)dt]}.
(33)

The first term on the right is the probability that V(z)
=v,_; and then an up-going step occurs in the next dt; the
second term is the probability that ¥ (¢) =v, ., and then a
down-going step occurs in the next d¢; and the third term
is the probability that V' (¢) =v, and then no step occurs in
the next dt. All other routes to V(z+dt) =v, from time ¢
involve more than one velocity jump in time [t,£4-dt), and
consequently will be of order > 1 in dt. Upon transposing
the term P(v,,t), dividing through by df and then passing
to the limit df—0%, we obtain
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d
3¢ P nst) =P(0py (, W _(0514) = P(0n )W, ()

+P(Un_1,t) W+(Un__1) "‘P(Un’t) W—(vn)-
(34)

Substitution of the formulas (31) for the functions
W . (v), followed by some simple algebraic rearrangement,
then gives

a
E;P(Un’t)=(-B/A)[vn+1P(vn+l’t)—Un——lp(vn—l’t)]

+ B{P(v,_1,t) —2P(v,,1) + P(v,11,0)]
(—=N<n<N). (35)

In preparation for taking the limit N— «, we use the
fact that A=A/N to write Eq. (35) as

3 2B n P n 1 P n— yt
P(v,,,t) (v +1PWn gy )2Avn 1P(op_y ))

2 1 P(0y_ 1) —2P(0y 1) +P(Up4 1,1)
+W2' A?

(—N<ngN). (36)

Now, as mentioned earlier, we intend to arrange things so
that A—0 and 4— » when N— 0. Assuming that those
conditions are fulfilled, then the limit N— « brings Eq.
(36) into the form of the partial differential equation

aP C 9 P C aZP
5 P = 15[v (@0)]+C, 55 P(v1)
(-0 ™), (37)
where we have put
Ci=1li 25 (38
1=N_I,I:° N » a)
A2
C,=lim —-. (38b)
Now N

As may be verified by direct differentiation, the solution
to Eq. (37) that satisfies the requlred initial condition
P(v,0)=86(v—V)) is

P(v,1)=[2m(Cy/Cy) (1—e 217172

(U —C12)2
2(C2/C1)(1-€—2C1'))'

Comparing the form of this solution to Eq. (4), we imme-
diately deduce that

V(t) =N(Voe~ V', (Co/Cy) (1 —e™261%)). (40)

We now observe that this solution will be physically sensi-
ble only if C; and C, are both finite, positive numbers. But
according to Eq. (38a), Cl can be finite and positive only
if B N as N— «. And given that, Eq (38b) tells us that
C, can be finite and positive only if 42« N as N— co. Thus
we conclude that our two model parameters 4 and B must
scale with N according to

A=aN"?
N—-»oo: B=bN ’

Xexp(— (39)

(41a)
(41b)
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where the positive constants @ and b are now our nrew
model parameters.

Before proceeding, let us verify that these scaling formu-
las are satisfactory. First, Eq. (41a) implies that A does
indeed satisfy the required condition 4 - « as N— . Sec-
ond, Egs. (41a) and (25) together give, for N— «,

A=aN~'7, (42)
which in turn implies that A satisfies the required condition
A—0 as N- . And finally, the implication of Eq. (41b)
that B increases with N is entirely plausible; because, in-
creasing N decreases the step size A, and that in turn
should increase the probability (28).

Substituting Eqs. (41) into Egs. (38), we find that

Cl =2b, C2=b02. (43)
Therefore, our formula (40) for V() becomes
V() =N(Voe ,(a%/2) (1—e~*"). (44)

This is the solution of our jump Markov process model of
Brownian motion in the continuum limit of A—0 and
A- .

When we compare our model solution (44) with the
solution (17) of the Langevin Eq. (1), we observe that the
two solutions will be identical provided that

. y . aZ f2
M 2 yM’

Solving these two relations simultaneously for ¥ and f, we
conclude that our jump Markov process model, in the con-
tinuum limit, predicts the existence of a dissipative drag
force —y¥(¢) and a zero-mean fluctuating force fT'(¢),
where y and f are given in terms of our model parameters
a and b by

y=2Mb, (45a)

f=Ma(2b)"2 (45b)

To this point, we have not invoked the thermodynamic
requirement (2). To do so, we first note that the -
limit of Eq. (44) gives

V(w)=N(0,a*/2).

So satisfaction of requirement (2) demands that a2
=kzT/M, or

a= 2k T/M)V, (46)
With this result, our formulas (45) for y and f become

y=2Mb, (47a)

f=(4MbkpT)". (47b)

Now only the single model parameter b (= B/N) remains.
The fact that ¥ and f both increase with b, and vanish only
when 5=0, is an expression of the fluctuation-dissipation
theorem: the dissipative drag force and the zero-mean fluc-
tuating force are concomitants.
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IV. CONCLUDING REMARKS

The jump Markov process model of Brownian motion
presented in Sec. III is based on the premise that the par-
ticle’s velocity evolves with time according to the probabi-
listic rules set forth in Eqgs. (26) and (31). Although those
rules are obviously somewhat contrived, they nevertheless
describe reasonably well the sort of behavior that we
should expect from the hypothesis that a fluid consists of
“molecules in random motion.” By solving this discrete-
state random walk model for ¥ (¢) in the continuum-state
limit, and then comparing the solution with the solution to
the traditional Langevin Eq. (1), we were able to demon-
strate the mathematical equivalence of these two ap-
proaches to Brownian motion. This equivalence can be re-
garded as providing a microphysical rationale for the key

—1

(K +1)dt)=V(Kdt+dt)

assumption of the Langevin Eq. (1), namely, that the net
effect of the surrounding fluid on the particle can be de-
scribed as a simple superposition of a steady dissipative
drag force and a zero-mean temporally uncorrelated fluc-
tuating force. Once this assumption has been justified, the
Langevin Eq. (1), viewed in its natural setting of contin-
uous Markov process theory, provides a truly exquisite
mathematical description of the Brownian motion phe-
nomenon.

APPENDIX: INDUCTION PROOF OF EQ. (16)

Equation (15) shows that Eq. (16) is valid for K=1, so
it remains only to show that Eq. (16) implies validity when
K is replaced by K+ 1. We have

ydt f 172
=(1——M—) V(Kdt)+(A—{)N(0,1)(dt) [by Eq. (10)]

=(1_%dt) V(Kdt)+N(0,(§)2dt) [by Eq. (5)]

y dt ydn\k 72
- (N5 e

[by Eqgs. (16) and (14)]
V[(K+l)dt]—N(Vo(

[by Eqgs. (5) and (6)].

Now since dt is an infinitesimal, then

So the variance argument in last expression is equal to

[X(l )+ (1-x)]= A% —xk+h),

2yM
Therefore,

ydt K+1

f2 . | 2‘}’dl' K+1
2YM _( “—M_)

)
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yd\K+1 f2 | ydt2l . 2ydt\ X
&) ame|(-%) [-(-37)

2ydt)K

f2
M )+N(°’ M

(=57 )
(=50l

Since this expression is precisely Eq. (16) with K replaced
by K+ 1, then our induction proof of that equation is com-
pleted.
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