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IT and PDGFRA mutations in gastrointestinal stromal
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Mutually exclusive KIT and PDGFRA mutations are central events in GIST pathogenesis, and their
understanding is becoming increasingly important, because specific treatment targeting oncogenic KIT
and PDGFRA activation (especially imatinib mesylate) has become available. KIT mutations in GIST
are clustered in four exons. Most common are exon 11 (juxtamembrane domain) mutations that include
deletions, point mutations (affecting a few codons), and duplications (mostly in the 3= region). The
latter mutations most often occur in gastric GISTs. Among gastric GISTs, tumors with deletions are
more aggressive than those with point mutations; this does not seem to hold true in small intestinal
GISTs. Exon 9 mutations (5-10%) usually are 2-codon 502-503 duplications, and these occur predom-
inantly in intestinal versus gastric GISTs. Lesser imatinib sensitivity of these tumors has been noted.
Kinase domain mutations are very rare; GISTs with such mutations are variably sensitive to imatinib.
PDGFRA mutations usually occur in gastric GISTs, especially in the epithelioid variants; their overall
frequency is approximately 30% to 40% of KIT mutation negative GISTs. Most common is exon
18 mutation leading Asp842Val at the protein level. This mutation causes imatinib resistance. Exon 12
and 14 mutations are rare. Most mutations are somatic (in tumor tissue only), but patients with familial
GIST syndrome have consitutitonal KIT/PDGFRA mutations; �10 families have been reported
worldwide with mutations generally similar to those in sporadic GISTs. GISTs in neurofibromatosis 1
patients, children, and Carney triad seem to lack GIST-specific KIT and PDGFRA mutations and may
have a different disease mechanism. Secondary mutations usually occur in KIT kinase domains in
patients after imatinib treatment resulting in resistance to this drug. Mutation genotyping is a tool in
GIST diagnosis and in assessment of sensitivity to kinase inhibitors.
This is a US government work. There are no restrictions on its use.
h
b
m
5
t
a
F
t

a
(
c
s
m
(

Because KIT and PDGFRA mutations are a driving force
n GIST pathogenesis and specific treatment for oncogenic
IT/PDGFRA activation now exists, understanding of bi-
logy of these mutations is becoming increasingly importat
n GIST management.

KIT maps to chromosome 4q12 and encodes for a
09870 D transmembrane glycoprotein. PDGFRA (platelet-
erived growth factor receptor �) is located adjacent to KIT
nd encodes for a 122676 D transmembrane glycoprotein
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ighly homologous to KIT.1,2 Both KIT and PDGFRA
elong to the type III receptor tyrosine kinase family and
ight have evolved, similar to CSF1R and PDGFRB at

q31-33, from a common ancestral gene by gene duplica-
ion.3,4 Platelet-derived growth factor receptor � (PDGFRB),

colony-stimulating factor-1 receptor (CSF1R), and
MS-related tyrosine kinase 3 (FLT3) are other members of

ype III receptor tyrosine kinase family.5

Members of the type III tyrosine kinase receptor family
re transmembrane proteins with a characteristic structure
Figure 1). The extracellular/ligand-binding (EC) domain
onsists of five Ig-like loops. The cytoplasmic domain con-
ists of juxtamembrane (JM) and tyrosine kinase (TK) do-
ains. The latter is divided into an adenosine triphosphate

ATP) binding region (TK1) and a phosphotransferase

egion (TK2) by a hydrophilic kinase insert (KI). The ex-
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92 Seminars in Diagnostic Pathology, Vol 23, No 2
racellular and cytoplasmic domains are connected by a
ransmembrane region.5

Tyrosine kinase receptors are activated by specific li-
ands. The binding of ligand induces dimerization of the
eceptor polypeptides, activates receptor kinase activity, and
eads to trans-autophosphorylation of the dimer partners.
ubsequently, intracellular adaptor proteins bind to the re-
eptor phosphotyrosine residues and recruit other down-
tream signaling molecules activating networks of signal
ransduction pathways (Figure 2A), ultimately leading to

odulation of nuclear regulatory proteins.5,6

KIT is normally activated by stem cell factor (SCF),
reviously also called Steel factor. Activation of KIT reg-
lates important cell functions, including proliferation,
poptosis, chemotaxis, and adhesion, and is critical for the
evelopment and maintenance of mast cells, hematopoietic
tem cells, melanocytes, gametocytes, and interstitial cells
f Cajal (ICC), pacemaker cells involved in regulation of
he gastrointestinal (GI) tract mobility and autonomous neu-
al transmission.7-14

PDGFRs are normally activated by platelet-derived

TM

J

5 immunoglobulin-like loops

Transmembrane domain

          First tyrosine kinase domain
(adenosine triphosphate binding region)

Second tyrosine kinase domain
   (phosphotransferase region)

Figure 1 Schematic structure of the

B

SCF SCF SCFL SCF

SCF SCF

P P P P

M

igure 2 KIT activated by stem cell factor (SCF); the binding of
igand induces dimerization of the receptor polypeptides and leads to
rans-autophosphorylation of the dimer partners (A). KIT activated by
dain-of-function mutation (M) independently of ligand binding signal.
rowth factors (PDGFs) and expressed on hematopoietic
ells, including erythroid and myeloid bone marrow precur-
or cells, monocytes and megacaryocytes as well as glial
ells, endothelial cells, fibroblasts, and osteoblasts.6

verview of KIT and PDGFRA mutations
n GISTs

he mutation nomenclature used in this review follows
ecommendations of the Human Genome Variation Society
http://www.hgvs.org). Nucleotide numbering is based on
uman KIT (X06182) and PDGFRA (M21574) mRNA se-
uences and dog KIT (AF044249) mRNA from GeneBank (at
ttp://www.ncbi.nlm.nih.gov).

Gain-of-function KIT and PDGFRA mutations are con-
idered to be a major driving force in the pathogenesis of
poradic, nonfamilial GISTs.15,16 Based on location, these
utations can be divided in two classes: mutations of the

egulatory domain including EC and JM, and mutations of
he enzymatic domain including TK1 and TK2.17 Mutations
ffecting the regulatory domain can lead to ligand-indepen-
ent receptor dimerization and subsequent kinase activation
Figure 2B), whereas mutations affecting the enzymatic
omain can lead to kinase activation, perhaps without re-
eptor dimerization.6,18 Mutational alteration of the regula-
ory or enzymatic domains has been shown to dysregulate
yrosine kinase activity and lead to continuous receptor
ctivation independent of ligand binding signal. In vitro
xperiments documented that mutant KIT, when expressed
n a cell line, elicited transforming ability.15,19-21 Families
ith activating germ line KIT or PDGFRA mutations de-
elop multiple GISTs, ICC hyperplasia, and variably hyper-
igmentation and urticaria pigmentosa.22-33 Recently devel-
ped transgenic mice carrying an inherited gain-of-function
IT exon 11 (Val558del) or KIT exon 13 (Lys642Glu)
utations and reproducing human familial GIST syndrome

onfirmed that mutational activation of KIT plays an essen-
ial role in oncogenesis.34,35 However, a study based on
UMARA (human androgen receptor assay) showed that

EC

TK1

TK2

Kinase insert

Juxtamembrane domain

Extracellular (ligand-binding) domain

I tyrosine kinase receptor family gene.
M

KI
iffuse proliferations of interstitial cells of Cajal in a patient

http://www.hgvs.org
http://www.ncbi.nlm.nih.gov
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93Lasota and Miettinen KIT and PDGRFA Mutations in GISTs
ith familial GISTs represented polyclonal nonneoplastic
yperplasia, whereas their GISTs were monoclonal.36 This
uggests that the growth of a GIST might require additional
enetic changes beyond activating KIT or PDGFRA muta-
ions. A recent study showed frequent KT mutations in ICCs
rom normal tissue surrounding gastric GISTs, whereas
ounterpart ICCs in gastric cancer harbored no such muta-
ions.37 This suggests that KIT-mutated ICCs represent pre-
ancerous cells; however, more studies should be done to
onfirm such a hypothesis.

In sporadic GISTs, a great majority of mutations
�90%) have been identified in KIT-JM domain encoded
y exon 11.38 In addition, mutations in KIT-EC (exon 9)
nd -TK1 (exons 13) and -TK2 (exon 17) domains have
een reported in a smaller number of cases.39-41 Subse-
uently, subset of KIT-wild type (WT) GISTs has been
hown to have activating PDGFRA mutations.16 A great
ajority of these mutations were found in PDGFRA-TK2

exon 18) domain; however, in a few cases mutations in
DGFRA-JM (exon 12) and -TK1 (exon 14) domains also
ave been reported.42-44

The following mutation types have been identified in
IT and PDGFRA: deletions (del), deletion–insertion (de-

ins), point mutations (pm), duplications (dup), insertions
ins), and inversion (inv). The latter two types are extremely
are, and only a few GISTs with such mutations have been
eported. Figure 3 summarizes distribution and types of
utations affecting different KIT and PDGFRA domains.
or comparison, data on other human and canine tumors
ith documented KIT mutations are shown in Figure 4.
hese tumors include acute myeloid leukemia (AML),45,46

ast cell leukemia/mastocytosis,47,48 sinonasal NK/T-cell
ymphoma,49 and seminoma.50-52

KIT

dup, complex mut

del/delins, pm, dup,
ins, inv, complex mut

pm

Exon9

Exon11

Exon13

Exon17pm

Figure 3 Distribution and types of KIT and

Mutation typeKIT

del

EC Exon 2
Exon 8

pm AML
delins AML
del AML
dup AML

Exon 9 dup AML
JM Exon 11 dup AML

AML
AML

pm Mastocytos

Mastocytos
KI Exon 16 pm
TK2 Exon 17 pm
Figure 4 Distribution and types of KIT mutations id
KIT and PDGFRA mutations reported in familial GIST
yndrome22-33 are structurally similar to those found in
poradic GISTs (Figure 5). However, members of a recently
escribed family with GIST and mastocytosis carried con-
titutional inherided KIT-EC (exon 8) domain mutation
276_1278delGAC (Asp419del), never reported in sporadic
ISTs.53 Identical Asp419del was previously reported in

he patients with acute myeloid leukemia.44,45

In GISTs, KIT and PDGFRA mutations are believed to
e mutually exclusive, and only one type of either KIT or
DGFRA mutation can be present in primary tumor and its
ecurrent or metastatic lesions.16,54 The presence of two
ifferent KIT or PDGFRA mutations affecting the same or
ifferent exons has been reported in a few cases.42,55-58

ore recently, double KIT exon 11 mutations have been
ound in as many as 9% (7 of 78) of primary tumors in 1
tudy.59 Also, coexistence of missense and silent KIT exon
1 mutations and missense and nonsense KIT exon 11
utations was reported twice in the primary tumors.60,61

lthough similar coexistence of different KIT mutations in
IT-TK2 domain was reported in primary mediastinal sem-

noma,50 these seem to be extremely rare events in GISTs,
ince we have not seen double KIT exon 11 mutations in
00 KIT exon 11-mutant GISTs diagnosed at the Armed
orces Institute of Pathology (AFIP). However, apparent
ucleotide substitutions were seen in a few cases, but were
ot reproducible on the same DNA template. Some of such
ndings may represent PCR artifacts mimicking point mu-

ations, and they have been reported in PCR-based mutation
nalysis of DNA from formalin-fixed paraffin-embaded
FFPE) tissues.62

Although KIT and PDGFRA mutations are believed to
epresent gain-of-function mutations, three human GISTs

PDGFRA

pm, del

pm
pm, del/delins, insExon 12

Exon 14

Exon18

FRA mutations identified in sporadic GISTs.

ell Lyphoma

ell Lyphoma

man

GIST
Mastocytoma
Mastocytoma

GIST MastocytomaSeminoma

Seminoma

Canine
EC

TK1

TK2

JM
is

is

NK/T-c

NK/T-c

Hu
entified in different human and canine tumors.
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ith point mutations causing STOP codon in KIT exon 11
nd KIT exon 13,61,63 and one canine mastocytoma with
IT exon 11 duplication causing a frame shift and STOP

odon have been reported.19 These rare nonsense mutations
ight, in some cases, reflect secondary changes occurring

uring tumor progression.
The majority of KIT and PDGFRA mutations are het-

rozygous. However, in some cases, only mutant allele
ould be identified by direct sequencing of PCR prod-
cts.38,64-66 This may represent true homozygous muta-
ions,38 or hemizygous mutations created by loss of a sec-
nd allele.66,67 Preferential amplification of the allele can
imic homo- or hemi- zygousity as well. Homozygous/

emizygous mutations have been identified in 2 of 13 (15%)
ncidental GISTs smaller than 1 cm64; identical frequency of
hese mutations has been reported in a study of 56 primary
astric GISTs.65 However, little is known about their bio-
ogical potential. Also, shift from KIT/PDGFRA heterozy-
osity to hemizygosity has been reported in progressive
esions during imatinib treatment.66,67 An example of ho-
ozygous/hemizygous KIT exon 11 mutation is shown in
igure 6.

Two alternative splicing sites in KIT, which occur at the
= end of exon 9 (EC) and 5= end of exon 15, have been
eported.68,69 Physiological variants of KIT mRNA should
ot be confused with pathologically altered KIT-mutant

KIT

Asp419del

Val559Ala
Trp559Arg
Val560del
Asp579del

Leu576_ Pro577delins GlnLeu

KIT-EC
Exon 8

KIT-JM
Exon 11

Figure 5 KIT and PDGFRA

igure 6 Example of homozygous/hemizygous (1692_1693de-
insTG) KIT exon 11 mutation. KIT-WT is shown above KIT

utant sequence.
RNA, and the presence of mutation detected at mRNA
evel should be confirmed in genomic DNA. A recently
eported apparent Ser715del in KIT exon 15 encoding KI57

as been shown to represent a physiological KIT splicing
vent.70

IT regulatory domain mutations
exon 9, exon 11)

early all mutations identified in KIT exon 9, a distal part
f the KIT-EC domain, represent short, structurally identi-
al duplications of six nucleotides, 1525_1530dupGCCTAT
eading to the Ala502_Tyr503dup at the protein level.61,71-73

owever, more recently, another duplication 1537_1545
upTTTGCATTT leading to the Phe506_Phe508dup at the
rotein level was reported.72 Two such duplications have
een found among 60 (3.3%) KIT exon 9 mutant GISTs
dentified at AFIP. An Ala502_Phe506dup affecting the
ame region of KIT exon 9 has been found in a patient with
cute myeloid leukemia.46 A point mutation leading to
lu490Gly substitution at the protein level61 and a complex
utation consisting of deletion and inversion of several

ucleotides73 have been recently identified in 2 GISTs as
ell.
The Ala502_Tyr503dup was first reported in 6 of 8

ISTs that lack KIT exon 11 mutations.39 A study based on

Table 1 Location of Ala502_Tyr503dup mutant GISTs

Population
No. of
cases

Location

Gastric Intestinal
Other
non-gastric

Asian 22 7 (31.8%) 13 (59.1%) 2
Western� 106 7 (6.6%) 95 (89.6%) 4
Total 128 14 (10.9%) 108 (84.4%) 6

�Includes 48 GISTs with known location from previously published
European, American, and Australian studies and 58 cases from AFIP

PDGFRA

Asp820Tyr
Asp846Tyr

IT-TK1
xon 13

PDGFRA-TK2
Exon 18

42Glu

20Tyr

IT-TK2
xon 17

ns identified in familial GISTs.
K
E

Lys6

Asp8

K
E

GIST mutation database.
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95Lasota and Miettinen KIT and PDGRFA Mutations in GISTs
00 cases has shown the frequency of this type of KIT
utation to be approximately 5% among GISTs from

ifferent locations. Also, predilection to intestinal tumors
as been suggested.40 Subsequent studies have revealed
trong correlation between intestinal location and presence
f Ala502_Tyr503dup.71,74 However, gastric GISTs with
525_1530dupGCCTAT have been also reported in the
iterature.56,75,76 Based on Western population stud-
es,64,66,74,76-81 such tumors represent only 6.6% of all KIT
xon 9 mutant GISTs. In contrast, combined studies from
sia56,75,82-84 indicated almost 32% frequency of gastric
ISTs among all KIT exon 9 mutants (Table 1). This

ubstantial difference in frequency might be related to eth-
ical differences between Western and Asian populations.

KIT-JM domain encoded by exon 11 is the most com-
on mutational “hot spot” in GISTs.38 This helical domain

unctionally represents an inhibitory element regulating the
IT autophosphorylation in response to growth factor sig-
al by SCF.5,47,48 Mutations in KIT-JM were the first ones
escribed in GISTs15 and have been shown to cause con-
titutive receptor phosphorylation and transforming in mu-
ine lymphoblast cell lines in vitro.15,21 Several types of
IT exon 11 mutations, including deletions, deletion–inser-

ions, point mutations, duplications, insertions, and inver-
ions, have been documented in GISTs.

A great majority of KIT exon 11 mutations are deletion/
eletion–insertions (Table 2) leading to the loss of one to
everal amino acids and occasional insertions of one to
wo amino acids at the protein level. Typically, such muta-
ions cluster in the 5=KIT exon 11 between 1669_1704
Lys550_Glu561), but sometimes extend distally involving
arge portion of exon 11 and eliminating almost two-
hirds of KIT-JM.15,41,54,61,74,81,85 A 1690_1695delTG-
AAG (Trp557_Lys558del) is the most common simple
eletion identified in GISTs. Deletions in the distal part of
xon 11 are seen less frequently. However, their functional
ignificance appears to be similar to the ones seen in 5=KIT
xon 11. For example, Asp579del has been shown to cause
onstitutive phosphorylation of KIT.21

More recently, deletions affecting KIT intron 10–exon
1 splice-acceptor sites have been reported. These different

Table 2 Occurrence of different mutation types among KIT ex

Study

Type of KIT exon 11 mutation

del/delins pm

Lasota et al.54 17 (81%) 4 (19%
Taniguchi et al.55 54 (76.1%) 14 (19.
Rubin et al.41 20 (76.1%) 9 (26.
Wardelman et al.85 12 (63.2%) 4 (21.
Antonescu et al.74 51 (63%) 20 (24.
Martin et al.61� 40 (53.3%) 21 (27.
Andersson et al.81 101 (71.6) 23 (16.
Total 295 (66.9%) 95 (21.

�Three GISTs with double mutations and one with STOP codon mutatio
ize deletions always create a novel intraexonic pre-mRNA G
= splice acceptor site consistently leading to in-frame
ys550_Lys558del at the protein level.86,87 According to
ne study, these mutations were not uncommon and account
or 3.9% of KIT exon 11 mutations.86

Missense mutations represent the second-most common type
f KIT exon 11 mutations in GISTs (Table 2). These mutations
luster in 5= KIT exon 11 and almost exclusively involve
IT codons 557, 559, and 56041,55,60,64,66,74,76,78,81,88,90-93

Figure 7). The Val559Asp, Val560Asp, and Trp557Arg
ollowed by Val559Ala, Val559Gly, and Leu576Pro are the
ost common missense mutations reported in KIT exon 11

Table 3). The latter substitution caused by 1748T �C point
utation maps to 3= KIT exon 11.41,54,85 Identical
eu576Pro has been found in canine GISTs94 and canine
astocytoma20 and more recently in a subset of malignant
elanomas.95,96 This substitution has been shown to cause

igand-independent KIT autophosphorylation.20

Duplications, often called internal tandem duplications
epresent the third-most common type of KIT exon 11
utations in GISTs (Table 2). These mutations cluster

lmost exclusively in 3=KIT exon 11 and only 2 of 70
eported41,61,74,76,77,81,83-85,97-101 affected central and 5=KIT
xon 11.74,84 Size of the duplications varies from 1 to 18
odons and with 1 exception76 never involved KIT intron 11
nd KIT exon 12.74,61,81,101 Similar KIT exon 11 duplica-
ions occasionally involving 3= KIT exon 11–intron 11–
xon 12 have been described in adult patients with acute
yeloid leukemia,45,46 canine mastocytoma,19 and more

ecently in pediatric patients with acute myeloid leuke-
ia.102 Duplications in KIT are associated with constitutive

eceptor phosphorylation, ligand-independent growth, apo-
tosis resistance, and altered downstream signaling path-
ays.19,20,102 Structurally similar duplications have been

ound in the juxtamembrane domain of Flt-3, another mem-
er of type III receptor tyrosine kinase family in adult and
ediatric patients with acute myeloid leukemia.103,104

Insertions and inversions are extremely rare KIT exon 11
utations. A 1694_1695ins TCC leading to Lys558delins-
snPro at the protein level has been reported in a few

ases.41,55,57,74,85

Inversions have not been reported in KIT exon 11 in

mutant GISTs

dup Other Total

0 0 21
0 3 (4.2%) 71
3 (8.8%) 2 (5.9%) 34
2 (10.5%) 1 (5.3%) 19
8 (8.9%) 2 (2.5%) 81
9 (14.3%) 4 (4%) 74

17 (12.1) 0 141
39 (8.8%) 12 (2.7%) 441

ncluded in the “other” category.
on 11

)
7%)
5%)
1%)
7%)
3%)
3%)
5%)
ISTs; however, such mutations, sometimes coexisting
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ith deletions (Figure 8), were identified by us in 5=KIT
xon 11 (J.L., unpublished observation).

Although KIT exon 11 mutations have been reported in
ISTs from different locations from esophagus to anus,105-112

uplications showed strong predilection to gastric location; 59
f 67 (88%) reported GISTs with KIT exon 11 duplications
riginated from stomach.61,74,76,77,83,84,97,101,113

IT enzymatic domain mutations
exon 13, exon 14, exon 17)

1945A�G point mutation resulting in Lys642Glu substi-
ution at the protein level was initially reported in two
ISTs negative for KIT-JM mutation.39 This mutation af-

ects exon 13 encoding proximal part of the KIT-TK1
ATP-binding domain) and has been found to lead to con-
titutive KIT tyrosine phosphorylation.39 A subsequent
tudy of a relatively large number of GISTs from different
ocations estimated the frequency of this mutation to be no
igher than 2.5%.40,56

Recent studies on GISTs, based on Asian population,
ave reported three tumors with unique missense mutations
Leu641Pro, Val643Ala, and Leu647Pro) affecting KIT
xon 13 in the vicinity of Lys642. The biological potential

43%

25%

19%

8%

<1%

KIT

Me

No. of Cases 1 1 1 1 58 3 129

Arg Ile
Met Thr Gly
Gly Asn Asp

Val Asn Asp Gln Cys Glu Ala

Met Tyr Glu Leu Trp Lys Val
552 553 554 556 557 558 559

igure 7 Distribution of 305 KIT exon 11 missense mutations
IT-mutants are in red.
1 1 1 1 1 1 13 374 24

Ile
Gly
Glu
Asp Lys Lys Arg Cys

Asp
Ala Tyr Phe

Pro
Ser Ser Asn

Val ValGlu Glu Gly Gly Asp Leu Ser Phe Ser
560 561 562 565 568 569 572 576 577 584 590

identified in sporadic GISTs. KIT-WT and codon numbers are in black.
f these mutations is uknown.114,115
Table 3 The most common missense mutations reported in
KIT exon 11 in GISTs

KIT-mutants
No. of
cases

% of mutants
in specific
KIT codons

% of all KIT
exon 11 point
mutations

Trp557 mutants
Trp557Arg 39 67% 13%
Trp557Gly 16 28% 5%
Trp557Cys 2 4% �1%
Trp557Met 1 2% �1%
Total: 58

Val559-mutants
Val559Asp 82 64% 27%
Val559Ala 23 18% 8%
Val559Gly 23 18% 8%
Val559Ile 1 �1% �1%
Total: 129

Val560-mutants
Val560Asp 58 77% 19%
Val560Gly 10 13% 3%
Val560Glu 5 7% 2%
Val560Ile 1 1% �1%
Total: 74

Leu576-mutants
Leu576Pro 23 96% 8%
Leu576Phe 1 4% �1%
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97Lasota and Miettinen KIT and PDGRFA Mutations in GISTs
A 2131_2136delAAGAAT leading to Lys704_Asn705del
n exon 14 at the protein level, encoding a distal part of the
IT-TK1 (ATP-binding domain), was reported in a GIST
ith KIT exon 11 deletion.57 However, no such mutation
as found in a subsequent study of 31 tumors negative for
utations in other KIT “hot spots,” suggesting that this
utation must be rare.70

An Asp816Val mutation affecting KIT TK2 domain
exon 17) was the first to be identified in KIT-associated
astocytosis and urticaria pigmentosa and shown to cause

igand-independent autophosphorylation of KIT.47,48 Al-
hough this mutation has never been found in GISTs, a
487T�A and 2485A�C leading to Asn822Lys and
sn822His at the protein level, respectively, were reported

n a few cases.41,72,77,78,81 Similar missense KIT exon 17
utations were found in human gonadal germ cell tumors of

eminoma/dysgerminoma type, mediastinal seminomas, and
inonasal natural killer/T-cell lymphomas.49-52 The latter
lso showed missense mutations affecting KIT juxtamem-
rane domain.49

DGFRA regulatory domain mutations
exon 12)

utations in PDGFRA-JM domain are relatively rare and
epresent approximately 6% to 9% of all PDGFRA mu-
ations reported in GISTs.42,43 These mutations consist of
oint mutations, deletions, deletion–insertions, and inser-
ions.16,42,43 The most common is 1821T�A leading to
al561Asp substitution at the protein level followed in

requency by deletion/deletion insertions and insertions.
n general, these mutations affect the vicinity of codon
61 or a region located immediately 3= to this codon.

DGFRA enzymatic domain mutation
exon 14, exon 18)

n Asn659Lys in PDGFRA exon 14 was first reported in
IT-negative gastric GIST.116 Subsequently, 2 more cases
ith such missense mutations were reported,43 and a study
ased on 200 GISTs negative for KIT exon 9, 11, 13, and 17
nd PDGFRA exon 12 and 18 mutations identified 11
DGFRA exon 14 mutations.42 A majority of these 11
utations represented 2125C�A and 2125C�G leading to

KIT-WT T A T G A A G T A C A G

T
KIT-MT T A T G A A G T A A C

553 554 555

553 554 555

556
Y E V Q

igure 8 A complex KIT exon 11 mutation consisting of del
ucleotides (KIT-WT) are deleted and inverted complementary se
sn659Lys at the protein level. However, in 3 cases, variant K
oint mutations, 2123A�T leading to Asn659Tyr, were
ound instead. PDGFRA exon 14 mutations were linked to
astric location, epithelioid morphology, and low malignant
otential/favorable course of disease.42

Exon 18 encoding part of TK2 domain harbors almost
0% of PDGFRA mutations and is the most common
DGFRA mutational “hot spot” in GISTs.42,43 A great
ajority (70%) of mutations identified in this exon repre-

ent missense mutation 2664A�T leading to Asp842Val at
he protein level. However, in the vicinity of codon 842,
eletion/deletion–insertions have been identified as well.
ISTs with PDGFRA exon18 mutations have shown

trong predilection to gastric location and epithelioid
orphology.42,76,78 A substitution of tyrosine for the highly

onserved aspartic acid at codon 846 (Asp846Tyr) has been
eported in both sporadic and familial GISTs. An
sp846Tyr mutation is homologous to KIT exon 17
sp820Tyr mutation also reported in familial GISTs.42

In vitro studies revealed that PDGFRA mutations simi-
arly to KIT mutations cause constitutive receptor phosphor-
lation and activation of downstream MAPK (mitogen-
ctivated protein kinase) and STAT (signal transducers and
ctivators of transcription) signaling pathways.16,43,117

IT and PDGFRA mutational status in NF1
nd pediatric and Carney triad GISTs

everal studies evaluated KIT and PDGFRA mutation sta-
us in GISTs from neurofibromatosis type 1 (NF1) pa-
ients.118-124 In general, no mutations in GIST-specific KIT
r PDGFRA mutational “hot spots” have been found in
ultiple tumors from NF1 patients. However, one study

dentified two KIT (Pro627Leu and Ile653Thr) and two
DGFRA (Pro589Lys and Arg822Ser) missense mutations

n two separate lesions from two patients.120 These muta-
ions might be random genetic events related to the tumor
rogression. In another study, an identical 1697T�A mu-
ation leading at the protein level to Val559Asp substitution
as been identified in three tumors from one patient.121

lthough the patient and first-degree relatives revealed phe-
otypic features typical for NF1, presence of identical mu-
ations in separated tumors raises the possibility of KIT
ermline mutation. Unfortunately, the authors were not able
o genotype normal tissue and exclude such possibility.

Similarly, studies on pediatric GISTs failed to identify
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etion a
IT or PDGFRA GIST-specific mutations in a substantial
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umber of cases.125-127 However, two separate studies re-
orted KIT exon 9 (Pro456Ser) missense mutation and
DGFRA exon 18 nonsense mutation, respectively.128,129

hese mutations do not correspond to the GIST-specific
IT and PDGFRA mutations and both may represent ran-
om molecular events related to ongoing molecular changes
n progressing cancer.

Also, no KIT or PDGFRA mutations were identified in
ISTs from two cases of Carney triad122,130 and in a case of

are variant of Carney triad, paraganglioma-gastric stromal
arcoma syndrome.131

requency of KIT and PDGFRA mutations

requency of the KIT and PDGFRA mutations differs be-
ween the studies. Several factors contribute to these differ-
nces. First, KIT and PDGFRA mutations are unequally
istributed among GISTs. For example, studies with a large
umber of intestinal GISTs will show a higher frequency of
IT exon 9 mutants, whereas studies with a higher number
f gastric epithelioid tumors will show a lower number of
IT-mutants and a higher number of PDGFRA-mutants.
oreover, studies based on material from cancer centers

nd treatment trials might include more KIT-mutants linked
o malignant, clinically aggressive GISTs, and fewer PDG-
RA-mutants linked to GISTs with indolent course. Thus,

he overall frequency of KIT and PDGFRA mutations can
e only established based on population studies free on
election bias. However, such studies based on archival
aterial might face technical problems related to the detec-

ion of KIT and PDGFRA mutations in FFPE tissues. A
utation detection rate tends to decrease with increasing

ge of paraffin blocks as reported independently by two
ifferent groups.81,111 Also, large duplications may not be
mplifiable from partially degraded DNA.

In our recent population study on GISTs diagnosed in
orthern Norway during a 30-year period from 1974 to
003, frequency of KIT and PDGFRA mutations were 75%
nd 10%, respectively (J.L., unpublished observation).

Ethnic differences between study populations cannot be
ompletely excluded. For example, none of 172 GISTs,
ncluding 122 gastric cases studied in Japan,55,60 revealed
uplications in 3=KIT exon 11. In contrast, the frequency of
his type of KIT mutation in Western population varies from
% to 10% for GISTs from different locations.74,81,101

echnical problems limiting detection of duplications in
FPE tissues may contribute to this discrepancy, since other
tudies from Korea and China have been reported KIT exon
1 duplications in GISTs.83,84,99,100

rognostic value of KIT and PDGFRA
utations

he prognostic value of KIT and PDGFRA mutations in

rimary tumors is controversial. Some of the early studies A
eported that KIT exon 11 mutations are more common in
arge and malignant GISTs,54,55 and adverse prognostic
ignificance of such mutations was suggested.54,55,90 How-
ver, others have also shown these mutations in diminutive,
linically indolent incidental tumors.64

More recent studies, based on larger numbers of cases
nd evaluating both KIT and PDGFRA mutational status,
ndicated that the type of KIT mutation may correlate with
linical outcome in gastric GISTs. A study based on 421
ases with mutation analysis showed that gastric tumors
ith KIT exon 11 deletions follow a more malignant course

hen ones with point mutations.111 Two other studies
ointed that KIT Tyr557_Lys558del represents a statisti-
ally significant adverse factor.61,132 Also, recent studies
uggested that PDGFRA-mutant tumors tend to have a low
itotic rate and favorable prognosis.42,111

The Ala502_Tyr503dup has been previously associated
ith clinically malignant tumors and poor outcome.71,74

owever, a recent study based on 145 small intestinal
ISTs did not show significant differences in tumor behav-

or between GISTs with this mutation and tumors with KIT
xon 11 mutations. Thus, the previously reported associa-
ion between Ala502_Tyr503dup and malignancy is most
ikely a consequence of the high mortality of patients with
mall intestinal GISTs, as opposed to gastric ones.112

A study of 200 GISTs identified two malignant GISTs
ith 1945A�G (Lys642Glu) and suggested that this muta-

ion might be associated with malignant behavior.40 Al-
hough subsequently two more malignant GISTs with
ys642Glu have been reported,61,133 other study identified

our low- and intermediate-risk tumors with such muta-
ions.134 Prognostic value of rare KIT exon 13 and KIT
xon 17 mutations requires further studies.

rimary KIT and PDGFRA mutations
nd imatinib-based treatment

matinib mesylate, STI571, commercially known as
leevec/GlivecTM (http://www.novartis.com) that inhibits
IT, PDGFRA, and ABL tyrosine kinases has been used in

he treatment of clinically advanced, unresectable, and met-
static GISTs.135,136 More recently, sunitinib malate, also
nown as SU11248 (http://www.pfizer.com), that inhibits
IT and some other tyrosine kinases has also been approved
n the same indication.137,138

A great majority of patients benefit from imatinib mesy-
ate-based treatment. However, resistance often devel-
ps.139 Type of KIT or PDGFRA mutation may have an
mpact on imatinib sensitivity.17 KIT exon 11 mutant GISTs
howed better response to imatinib treatment than KIT exon
mutant tumors and ones with KIT-WT.140 A recent study

uggested use of higher dose of Gleevec for treatment of
IT exon 9 mutant GISTs.141 In vitro experiments and
reliminary clinical data suggest that GISTs with PDGFRA

sp842Val substitution causes primary resistance to

http://www.novartis.com
http://www.pfizer.com
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leevec.72 This mutation corresponds to imatinib-resistant
IT Asp816Val mutation in human mastocytosis.72

However, an in vitro study showed that other PDGFRA
utants decrease phosphorylation in the presence of ima-

inib, suggesting that they are imatinib-sensitive.43

These findings indicate that KIT and PDGFRA muta-
ional status could be a useful parameter in planning ima-
inib-based therapy in patients with advanced GISTs.

econdary KIT and PDGFRA mutations
cquired during imanitib-based treatment

n acquired resistance has been reported during imatinib-
ased treatment and linked to secondary KIT or PDGFRA
utations.66,142 Initial studies showed that secondary KIT
utations occur in the allele that harbors primary gain-of-

unction KIT mutation and in a great majority of cases
epresents missense point mutation affecting the first or
econd tyrosine kinase domain (Figure 9).66,89,143-145 Sub-
equently, polyclonal evolution of multiple secondary KIT
utations has also been reported.146,147 Clinical signifi-

ance of monoclonal versus polyclonal evolution is un-
nown. However, involvement of the first versus second
yrosine kinase domain by secondary KIT mutations may
ndicate predisposition to more aggressive behavior with
arlier metastasis and shorter progression-free survival.147

omprehensive, prospective studies are necessary to clarify the
ignificance of KIT and PDGFRA secondary mutations in
etastatic lesions and their impact on therapeutic strategies.
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