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We present a Chebyshev pseudospectral method for directly solving a generic Bolza optimal control problem
with state and control constraints. This method employs Nth-degree Lagrange polynomialapproximationsfor the
state and control variables with the values of these variables at the Chebyshev–Gauss–Lobatto (CGL) points as
the expansion coef� cients. This process yields a nonlinear programmingproblem (NLP) with the state and control
values at the CGL points as unknown NLP parameters. Numerical examples demonstrate that this method yields
more accurate results than those obtained from the traditional collocation methods.

I. Introduction

I N recent years, direct solution methods have been used exten-
sively in a variety of trajectory optimization problems.1;2 Their

advantage over indirect methods, which rely on solving the nec-
essary conditions derived from the Pontryagin et al. minimum
principle,3 is that direct method algorithmshave better convergence
properties.In addition,becausethe necessaryconditionsdonothave
to be derived, the directmethodscan be quicklyused to solvea num-
ber of practical trajectory optimization problems.

Direct methods are based on discretizing the control time his-
tory and/or state variable time history at the nodes of discretization,
transforming the optimal control problem to a nonlinear program-
ming problem (NLP), and then solving the resulting NLP. In direct
collocation schemes, which discretize both the control and state
variables, the unknownsare the values of the controls and the states
at these nodes. The cost function and the state equations can be ex-
pressed in terms of these values. An interpolation scheme is used
to obtain the time histories of both the control and the state vari-
ables. In the traditional collocation schemes, piecewise-continuous
polynomials such as linear or cubic splines are used as the inter-
polating polynomials over each time segment.4;5 Satisfaction of the
state differential equations is achieved by using some form of inte-
gration scheme over each subinterval, which results in formulation
of defects. One of the popular schemes is the Hermite–Simpson
rule, which amounts to Simpson’s quadrature rule over the subin-
tervals (see Ref. 4). Recently, Gauss–Lobatto quadrature rules such
as trapezoidal, Simpson’s, or higher-order rules with Jacobi poly-
nomials as the interpolant have also been used for collocation (see
Refs. 6 and 7).

In literature,the choiceof polynomialspace for expansionof state
and controlvariables is not limited to piecewise-continuouspolyno-
mials and in fact globallyorthogonalpolynomialssuch as Legendre
and Chebyshevpolynomialsor Lagrange interpolatingpolynomials
have been used for approximating the control and state variables in
nonlinear optimal control problems.8¡11 In general, there are two
ways to construct a polynomial approximation to the solution y.t/:
One is to use an interpolatingpolynomialbetween the values y.t j / at
some points t j : The other is to use a series expansionin terms of or-
thogonalpolynomials. In Refs. 10 and 11, the latter idea is pursued,
and both the states and the controlvariablesare expandedin termsof
Chebyshev polynomials with unknown generalized Fourier coef� -
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cients. When the propertiesof the Chebyshevpolynomialsare used,
the state equations,performanceindex, and the boundaryconditions
are converted to algebraic or transcendental equations in terms of
these unknown coef� cients. In this manner, conversion of the orig-
inal optimal control problem to an NLP is achieved.

Recently, Elnagar et al.8 and Fahroo and Ross9;12;13 have used
the idea of expansion of the state and control variables in terms
of Lagrange polynomials at suitably chosen points, the Legendre–

Gauss–Lobatto (LGL) nodes. This idea is the basis for pseudospec-
tral methods, which are used extensivelyfor solving � uid dynamics
problems.14;15 In approximatingoptimal controlproblems,with this
choice of node points and properties of the Lagrange polynomials,
the state equations and the possible state and control constraints are
readily transformed to algebraic equations in terms of values of the
state and control variables at the nodes. Differential constraints are
imposed only at the LGL points by way of a differentiation opera-
tor (matrix). In this sense, the pseudospectralmethods are different
from other collocation schemes,1;2;4 where higher-order numerical
integration techniquesare used to approximate the differential con-
straints not only at the nodes but at points in between (midpoints,
for example, as in Hermite–Simpson).

In this paper, we present a Chebyshev pseudospectral method
and consider differential constraints given in terms of controlled
differential inclusions,differential algebraic equations (DAEs), and
ordinarydifferentialequations(ODEs). Our methodapplieswithout
change to all of these types of constraints and, thus, encompasses a
wider range of problems than the usual collocation methods. Note
that, while revising this paper, the parallel work of Elnagar and
Razzaghi16 came to our attention. We pay homage to their work
and cite some key differences.The authors of Ref. 16 also propose
a Chebyshev pseuodospectral method for solving a variety of op-
timal control problems. One major difference between their work
and ours is the way the integral cost function is approximated.They
employ a cell-averaging technique, whereas we use the Clenshaw–

Curtis quadrature scheme (see Refs. 17 and 18) for discretizing the
cost function. The focus of their paper is mostly on handling the
discontinuousfunctions,which indeed establishesand validates the
power and range of applicability of pseudospectralmethods to op-
timal control problems with discontinuouscontrols. In our effort to
show the power of pseudospectral methods, we apply it to a more
general class of problems including DAEs and differential inclu-
sions. Thus, in this sense, our paper is complementary to that of
Ref. 16. It should be noted that an earlier version of this present
paper appeared in Ref. 19.

One notable advantage of using Chebyshev pseudospectral
method over other direct collocation methods is the high degree of
accuracythat pseudospectralapproximationsoffer.17 One reasonfor
this is the choice of node points as the Chebyshev–Gauss–Lobatto
(CGL) points that result in interpolatingpolynomialsthat are closest
to the optimal polynomial in the max-norm approximation of any
function. Also the derivatives of these interpolating polynomials
can be calculated exactly at these nodes by a differentiationmatrix.
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FAHROO AND ROSS 161

Aside from their popularity in engineeringapplications,Chebyshev
polynomials have the added computational advantage in that their
corresponding CGL points can be evaluated in closed form. Thus,
the Chebyshevpseudospectralmethod offers the possibilityof rapid
trajectory optimization because it does not require the use of ad-
vanced numerical linear algebra techniques that are necessary for
the calculation of LGL points and weights.20 In the three numeri-
cal examples presented in this paper, the results clearly show that
Chebyshev polynomials are very effective in direct optimization
techniques and offer superior results to those of the existing collo-
cation methods.

II. Problem Formulation
Consider the following optimal control problem. Determine the

control functionu.¢/ and the correspondingstate trajectoryx.¢/ that
minimize the Bolza cost function:

J [x.¢/; u.¢/; ¿ f ] D M[x.¿ f /; ¿ f ] C
Z

¿ f

¿0

L[x.¿ /; u.¿ /; ¿ ] d¿ (1)

where ¿ 2 R, x 2 Rn , u 2 Rm , M : Rn £ R ! R, and L : Rn £ Rm £
R ! R. We assume the dynamic constraints to be given by the
following system of controlled differential inclusions:

fl · f [Px.¿/; x.¿ /; u.¿ /; ¿ ] · fu ; ¿ 2 [¿0; ¿ f ] (2)

where f : Rn £ Rn £ Rm £ R ! Rn: This formulation generalizes
and uni� es much of the previous apparently distinct formula-
tions.7;21 For example, if we set the lower and upper bounds equal
to zero, we get a controlled DAE,

f [Px.¿ /; x.¿ /; u.¿ /; ¿ ] D 0; ¿ 2 [¿0; ¿ f ] (3)

If, in addition, we assume that the Jacobian @f=@ Px is nonsingular,
then Eq. (3) may be reduced to a controlled ODE,

Px.¿/ D f [x.¿ /; u.¿/; ¿ ]; ¿ 2 [¿0; ¿ f ] (4)

Furthermore, for u 2 U , the following hodograph transformation
may be used to transform the controlledODE to an ordinary differ-
ential inclusion:

Px.¿ / 2 fy.¿ / j y.¿ / D f[x.¿ /; u.¿ /; ¿ ]; u 2 Ug; ¿ 2 [¿0; ¿ f ]

(5)

We elaborateon these formulationsfurther in the numericalsection.
In addition, we assume the boundary conditions to be given by the
relations

Ãl · Ã[x.¿0/; x.¿ f /; .¿ f ¡ ¿0/] · Ãu (6)

whereÃ : Rn £ Rn £ R ! R p and Ãl andÃu 2 R p are constantvec-
tors representing the lower and upper bounds of these inequalities.
Possible state and control constraints are formulated as mixed con-
straints,

gl · g[x.¿/; u.¿ /; ¿ ] · gu ; g : Rn £ Rm £ R ! Rr (7)

where gl and gu 2 Rr denote the lower and upper bounds of g.
Clearly, an equality constraint may be obtained by simply setting
the lower and upperbounds to be equal.Thus, this formulationis not
only more general, but is also more elegant than the one that sepa-
rately identi� es equality and inequalityconstraintson the states and
control variables.

In the numerical approximation of the optimal control problem,
because the node points (CGL) lie in the computational interval
[¡1; 1]; the problem is transformed to this interval by the linear
transformation for t 2 [t0; tN ] D [¡1; 1]:

¿ D [.¿ f ¡ ¿0/t C .¿ f C ¿0/]=2 (8)

resulting in the followingreformulationof Eqs. (1), (2), (6), and (7):

J [x.¢/; u.¢/; ¿ f ] D M[x.1/; ¿ f ]

C
³

¿ f ¡ ¿0

2

´ Z 1

¡1

L[x.t/; u.t/; ¿ .t/] dt (9)

fl · f

µ
2

¿ f ¡ ¿0
Px.t/; x.t/; u.t/; ¿ .t/

¶
· fu (10)

Ãl · Ã[x.¡1/; x.1/; ¿ f ¡ ¿0] · Ãu (11)

gl · g[u.t/; x.t/; ¿ .t/] · gu (12)

To re� ect transformation of the time domain, one must use differ-
ent symbols. However, for the purpose of brevity we retain these
symbols. Thus, in this context, one must view x.t/; for example, as

x[¿ .t/] D xf[.¿ f ¡ ¿0/t C .¿ f C ¿0/]=2g

III. Chebyshev Pseudospectral Method
The Chebyshev pseudospectral method is one special case of a

more general class of spectral methods.15 The basic formulation
of these methods involves two essential steps: One is to choose a
� nite-dimensional space (usually a polynomial space) from which
an approximationto the solutionof the differentialequationis made.
The other step is to choose a projectionoperator,which imposes the
differential equation in the � nite-dimensional space. One impor-
tant feature of spectral methods, which distinguishes them from
� nite element or � nite difference methods, is that the underlying
polynomial space is spanned by orthogonal polynomials that are
in� nitely differentiableglobal functions.Among examples of these
orthogonalpolynomials are Legendre and Chebyshev polynomials,
which are orthogonalon the interval [¡1; 1]; with respect to an ap-
propriate weight function [w.t/ D 1 for Legendre polynomials,and
w.t/ D 1=

p
.1 ¡ t 2/ for Chebyshev polynomials of the � rst kind].

In pseudospectralmethods, the functions are expanded in terms of
interpolatingpolynomials so that the expansion coef� cients are the
valuesof the functionat the nodepoints.Becausean arbitrarychoice
of node points can give very poor results in interpolation,different
Gauss quadrature points are chosen to give the best accuracy in
interpolation of a function. The derivatives of these interpolating
polynomials at these node points are given exactly by a differenti-
ation matrix. These two important aspects (choice of interpolating
polynomials as the trial functions and Gauss quadrature points) of
pseudospectral methods separate them from the other collocation
methods. In the Chebyshev pseudospectral method, the interpola-
tion points are given in closed form,

tk D cos.¼k=N /; k D 0; : : : ; N (13)

These points lie in the interval [¡1; 1] and are the extrema of the
N th-order Chebyshev polynomial TN .t/. The j th-order Chebyshev
polynomial is expressed by

T j .t/ D cos. j cos¡1 t/; j D 0; : : : ; N (14)

which yields

T j .tk / D cos.¼k j=N /

Thus, T0.t/ D 1; T1.t/ D t; T2.t/ D 2t 2 ¡ 1; T3.t/ D 4t 3 ¡ 3t , and
so on. These node points have the distribution property that they
cluster around the endpoints of the interval. This clustering results
in avoidanceof the Runge phenomenon,which is the divergenceat
the endpointsof interpolationon equispacedinterpolationpoints. In
fact, it has been shown that interpolationat the CGL nodes gives the
closest result to the optimal polynomial approximation to a given
function.This slight error from optimality is given by the Lebesgue
constant, which is the smallest for the CGL nodes distribution (see
Ref. 17).

For approximatingthe continuousequations,we seek polynomial
approximationsof the form

xN .t/ D
NX

j D 0

x j Á j .t/ (15)

uN .t/ D
NX

j D 0

u j Á j .t/ (16)

D
ow

nl
oa

de
d 

by
 B

IB
L

IO
T

H
E

K
 D

E
R

 T
U

 M
U

E
N

C
H

E
N

 o
n 

Se
pt

em
be

r 
30

, 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/2
.4

86
2 



162 FAHROO AND ROSS

where, for j D 0; 1; : : : ; N ,

Á j .t/ D .¡1/ j C 1

N 2c j

.1 ¡ t 2/ PTN .t/

t ¡ t j

are the Lagrange interpolatingpolynomials of order N (see the Ap-
pendix for a derivation), with

c j D
»

2; j D 0; N

1; 1 · j · N ¡ 1

From its interpolating property, the Lagrange polynomials satisfy
the condition

Á j .tk / D ± jk D
»

1; if j D k

0; if j 6D k

Hence, it follows that

xN .tk / D xk ; uN .tk / D uk (17)

In other words, the node points are the interpolating points. To
express the derivative PxN .t/ in terms of xN .t/ at the node points tk;
we differentiateEq. (15), which results in a matrix multiplicationof
the following form14;15:

dk D PxN .tk / D
NX

j D 0

x j
PÁ j .tk / D

NX

j D 0

Dk j x j (18)

where Dk j are entries of the .N C 1/ £ .N C 1/ differentiationma-
trix D

D :D [Dk j ] :D

8
>>><

>>>:

.ck=c j /
£
.¡1/ j C k

¯
.tk ¡ t j /

¤
; j 6D k

¡tk

¯
2
¡
1 ¡ t 2

k

¢
; 1 · j D k · N ¡ 1

.2N 2 C 1/=6; j D k D 0

¡.2N 2 C 1/=6; j D k D N

(19)

Multiplication by this matrix, transforms a vector of the state vari-
ables at the CGL points to the vector of approximate derivatives at
these points.

A. Modi� cation of the Chebyshev Differentiation Matrix
The de� nitions of the CGL points and the given differentiation

matrixare the standardones in the literatureon spectralmethods.15;17

However, in our implementationof this method for discretizingop-
timal control problems, it is more convenient to modify these def-
initions. The CGL points as de� ned by Eq. (13) are from 1 to ¡1,
that is, the initial point is 1 and the � nal point is ¡1. For trajec-
tory optimization problems, it is more convenient to take the ini-
tial point at ¡1 and the � nal point at 1. This sorting modi� es the
de� nition of the differentiation matrix in the following sense: Us-
ing the de� nition of Eq. (19), we will show that the new matrix with
the sorted points, QD is of the opposite sign of the matrix with the
unsorted points, D. To see this, note that in the de� nition of ma-
trix D, the points t0 D 1; t1; : : : ; tN ¡ 1; tN D ¡1 are used, and for
matrix QD, the sorted points Qt0 D ¡1; : : : ; QtN D 1; are used, that is,
tN ¡ k D Qtk ; k D 0; : : : ; N . For the CGL points,we have the following
symmetry relationship:

tk D ¡tN ¡ k D ¡Qtk (20)

which yields

tk ¡ t j D ¡.tN ¡ k ¡ tN ¡ j / D ¡.Qtk ¡ Qt j /

For the elements D00 and DNN ; it can be easily shown that

QD00 D DNN D ¡D00; QDNN D D00 D ¡DNN

For the other diagonal elements, Dkk D ¡tk=2.1 ¡ t 2
k /, from

Eq. (20) we have

Dkk D
tN ¡ k

2
¡
1 ¡ t 2

N ¡ k

¢ D
Qtk

2
¡
1 ¡ Qt 2

k

¢ D ¡ QDkk (21)

For the off-diagonal elements, from Eq. (20) we can easily see that

Dk j D
ck

c j

.¡1/ j C k

tk ¡ t j
D

³
ck

c j

´
.¡1/ j C k

.¡tN ¡ k / ¡ .¡tN ¡ j /

D
³

ck

c j

´
.¡1/ j C k

¡.Qtk ¡ Qt j /
D ¡ QDk j (22)

Therefore, we have

QDk j D ¡Dk j (23)

Additionally, the originalmatrix D has another symmetry property,
which can be easily shown by the preceding relationships22:

Dk j D ¡DN ¡ k;N ¡ j (24)

Using Eqs. (23) and (24) and denoting the valuesof the approximate
states at the sorted CGL points by

xN ¡ k D xN .tN ¡ k/ D QxN .Qtk / D Qxk

we have

PxN .tk/ D
NX

j D 0

Dk j xN .t j / D
NX

j D 0

QDN ¡ k;N ¡ j QxN .QtN ¡ j / D PQxN
.QtN ¡ k/

(25)
or more succinctly,we have

dk D PxN .tk / D PQxN
.QtN ¡ k/ (26)

This result shows that the sorting of the CGL points does not affect
the underlying de� nitions and formulation of the pseudospectral
method. One can now proceed with the formulation of the NLP
with the sorted CGL points. In the formulation to come, we drop
the tilde notation with the understanding that the sorted points are
used as the node points in the differentiationmatrix and elsewhere.

B. NLP Formulation
The stateequationsand the initialand terminalstateconditionsare

discretized by � rst substitutingEqs. (15), (16), and (18) in Eq. (10)
and collocating at the CGL nodes tk , The state equations are trans-
formed into the following algebraic inequalities:

fl · f [2=.¿ f ¡ ¿0/ dk ; xk ; uk ; ¿k] · fu ; k D 0; : : : ; N

where dk is as de� ned in Eq. (26). The initial and terminal state
conditions are given by

Ãl · Ã[x0; xN ; .¿ f ¡ ¿0/] · Ãu

The control inequality constraints are approximated by

gl · g.xk ; uk ; ¿k/ · gu

Next, the cost function in Eq. (9) is discretized: We use the
Clenshaw–Curtis quadrature scheme (see Ref. 17, chapter 12) to
discretize the integral part of the cost function to a � nite sum. The
idea is based on � nding optimal weights wk for a given set of CGL
points tk such that the approximation

Z 1

¡1

p.t/ dt D
NX

k D 0

p.tk /wk ; p.t/ 2 PN

for PN ; the space of polynomials of degree ·N , is exact. For N
even, the weights are17;18

w0 D wN D
1

N 2 ¡ 1
(27)

ws D wN ¡ s D 4
N

N=2X

j D 0

00
1

1 ¡ 4 j 2
cos

2¼ j s

N
; s D 1; : : : ;

N

2

(28)
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FAHROO AND ROSS 163

For N odd, the weights are given by17

w0 D wN D
1

N 2
(29)

ws D wN ¡ s D
4
N

.N ¡ 1/=2X

j D 0

00
1

1 ¡ 4 j 2
cos

2¼ j s

N

s D 1; : : : ;
N ¡ 1

2
(30)

In the preceding summations, the double prime means that the � rst
and the last elements have to be halved.

Therefore, the cost function in terms of the coef� cients

X D .x0; x1; : : : ; xN /; U D .u0; u1; : : : ; uN /

can be discretized as

J .X; U; ¿ f / ¼ M.xN ; ¿ f / C
¿ f ¡ ¿0

2

NX

k D 0

L.xk; uk; ¿k /wk (31)

Thus, the optimal controlproblemin Eqs. (9–12) is approximated
by the following nonlinear optimizationproblem: Find coef� cients

X D .x0; x1; : : : ; xN /; U D .u0; u1; : : : ; uN /

and possibly the � nal time ¿ f to minimize

J N .X; U; ¿ f / D M.xN ; ¿ f / C
¿ f ¡ ¿0

2

NX

k D 0

L.xk; uk; ¿k /wk

(32)

subject to

fl · f[2=.¿ f ¡ ¿0/dk; xk; uk; ¿k ] · fu; k D 0; : : : ; N (33)

gl · g.xk ; uk ; ¿k / · gu; k D 0; : : : ; N (34)

Ãl · Ã[x0; xN ; .¿ f ¡ ¿0/] · Ãu (35)

From the preceding equations, one can see the simplicity of the
method, which retains much of the structure of the continuous
problem.

IV. Numerical Examples
In this section, we present three numerical examples that are in-

tended to illustrate separate points. In the � rst example, we choose
the benchmark brachistochrone problem discussed in Ref. 7 and
demonstrate the accuracy of our technique. In the second example,
we reformulate the brachistochrone problem as a DAE and show
how our method remains unchanged.In the third and � nal problem,
we solve the moon-landing problem23 formulated as a differential
inclusion by a hodograph transformation.

A. Example 1: Brachistochrone as an ODE
In this well-known problem, the control problem is formulated

as � nding the shape of a wire so that a bead sliding on the wire
will reach a given horizontal displacement in minimum time. No
frictional forces are considered, and the gravity force is uniform.
The problem is then to minimize ¿ f subject to the equations

Px D
p

2gy cos µ (36)

Py D
p

2gy sinµ (37)

with boundary conditions

x.0/ D y.0/ D 0; x.¿ f / D 0:5 (38)

The control, angle µ; is the slope of the wire as a function of time.

Table 1 Comparison of cost functions for various methods
and formulations for ÃN = 11

Method Ji jJi ¡ Janaj Np

Analytic solution 1.253314
Collocation (Simpson) 1.253005 0.000309 34
Collocation (� fth-degree GL) 1.253183 0.000131 84
Pseudospectral (CGL) 1.253309 0.000005 34
Pseudospectral (DAE) 1.253366 0.000052 23

Let X , Y , and 2 representthe solutionvectorto this problemat the
CGL nodes. Then the NLP for this problem is simply to minimize
¿ f subject to the equality constraints

.2=¿ f /D ¤ X ¡
p

2gY cos 2 D 0 (39)

.2=¿ f /D ¤ Y ¡
p

2gY sin 2 D 0 (40)

and

X .0/ D Y .0/ D 0; X .N / ¡ 0:5 D 0

All operations in the preceding equations are array operations, that
is, term-by-term,whereastheasteriskis used to denotematrix multi-
plication.With this notation, the striking resemblanceof the NLP to
the originalproblemis immediatelyapparent.The analyticsolutions
to this problem are the equations of a cycloid,

x.¿ / D .g¿ f =¼/f¿ ¡ .¿ f =¼/ sin[¼.1 ¡ ¿=¿ f /]g (41)

y.¿ / D
¡
2g¿ 2

f

¯
¼ 2

¢
cos2[.¼=2/.1 ¡ ¿=¿ f /] (42)

The optimal control (angle) is given by the following expression:

µ.¿ / D .¼=2/.1 ¡ ¿=¿ f / (43)

From x.¿ f / D 0:5; Eq. (41), and g D 1, theminimumtime calculated
to six decimal places is ¿ f D

p
.0:5¼/ D 1:253314:

The Chebyshev pseudospectralmethod was used for discretiza-
tionof theproblemandNPSOL24 was utilizedas theNLP solver.The
implementation was performed in MATLAB® via the use of MEX
� les. In Table 1, we compare the minimum cost function obtained
from our method to the ones from the Simpson collocationmethod
and a � fth-degree Gauss–Lobatto method reported in Ref. 7. All
reported results are for ON D 11 nodes, where ON D N C 1: The vari-
able Np in the last column of Table 1 stands for the total number
of NLP variables, which includes the free � nal time as well. Note
that for the � fth-degree Gauss–Lobatto (GL) collocation method
(done the traditionalway), the number of NLP variables are signif-
icantly higher than the pseudospectralmethod for the same number
of nodes. In any case, it is evident that even for a low numberdegree
of discretization (and number of NLP variables), the Chebyshev
pseudospectralmethod gives results superior to either of the other
collocation methods.

In Figs. 1 and 2, we show the time historiesof the state and control
variables against the analytic solutions for ON D 11. The solid lines
representtheanalyticsolutionsand¤ is for the solutionsfrom the nu-
merical method.The graphs clearly demonstrate the accuracyof the
results from the Chebyshev pseudospectralmethod. Note that from
Ref. 7 the collocation solutions are generally accurate to O.10¡4/;
which is about the same order of accuracy for the Chebyshev pseu-
dospectral method for this number of nodes. However, the order of
accuracy in the control for the other collocation methods is about
O.10¡2/ [with a maximum pointwise error at the � rst node of about
O.10¡1/], whereas for our method the maximum pointwise error is
of order O.10¡3/.

B. Example 2: Brachistochrone as a DAE
Here we eliminate the control variable µ and rewrite Eqs. (36)

and (37) in terms of a single fully implicit DAE [see Eq. (3)]:

Px2 C Py2 D 2gy (44)
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164 FAHROO AND ROSS

Fig. 1 Time history of x and y for the brachistochrone problem.

Fig. 2 Time history of control µ for the brachistochrone problem.

Thus, there is a reduction in the number of NLP variables by ON ,
the number of CGL points. The DAE constraint is discretizedat the
CGL points resulting in

¡
4
¯

¿ 2
f

¢
.D ¤ X /2 C

¡
4
¯

¿ 2
f

¢
.D ¤ Y /2 ¡ 2gY D 0 (45)

From Table 1, we see that, although the degree of accuracy for
the cost function is not as high as the original formulation, it is
still better than the results from the other collocation methods. The
accuracy of the solutions is still of the order of O.10¡4/. Therefore,
the pseudospectral method can handle formulation of the problem
as an DAE without sacri� cing accuracy.

C. Example 3: Moon-Landing Problem as a Differential Inclusion
The control problem is formulated as maximizing the � nal mass

and, hence, minimizing

J D ¡m.¿ f / (46)

subject to the equations of motion

dh

d¿
D v (47)

dv

d¿
D ¡g C

T

m
(48)

dm

d¿
D ¡

T

Ispg
(49)

where the statevariablesh; v, andm are altitude,speed,and mass, re-
spectively.The control is providedby the thrustT , which is bounded
by

0 · T · Tmax

The other parameters in the problem are g; the gravity of moon (or
any planet without an atmosphere), and Isp, the speci� c impulse of
the propellent.Given any set of initial conditionsh0; v0 , and m0; the
normalized parameters for the problem were arbitrarily chosen as

Tmax=m0g D 1:1; Ispg=v0 D 1; h.0/=h0 D 0:5

v.0/=v0 D ¡0:05; m.0/=m0 D 1

Therefore, we have the following normalized initial conditions:

h.0/ D 0:5; v.0/ D ¡0:05; m.0/ D 1:0 (50)

For soft landing, we must have

h.¿ f / D 0; v.¿ f / D 0 (51)

In addition, for a physically meaningful trajectory,we must have

m.¿ f / > 0 (52)

The discrete differential inclusion version of these equations for
the variables H D [h.t0/; h.t1/; : : : ; h.tN /]T , V D [v.t0/; v.t1/; : : : ;
v.tN /]T , and M D [m.t0/; m.t1/; : : : ; m.tN /]T can be formulated as

.2=¿ f /D ¤ H ¡ V D 0 (53)

M[.2=¿ f /D ¤ V C g] C Ispg[.2=¿ f /D ¤ M] D 0 (54)

0 · ¡Ispg[.2=¿ f /D ¤ M ] · Tmax (55)

Fig. 3 Phase portrait of h vs v for the moon-landingproblem.
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FAHROO AND ROSS 165

Fig. 4 Time history of m and control T for the moon-landingproblem.

Figure 3 shows the phase portrait projected into the v–h space
for 32 CGL points. This problem has at most one switch in the
control variable (Ref. 22), and the results are shown in Fig. 4. The
control was calculated from Eq. (49). It is clear that the method has
adequately captured the optimal bang–bang structure of the control
with one switch.

V. Conclusions
The simplicity, ef� ciency, and versatility of the Chebyshev pseu-

dospectral method allows one to perform rapid and accurate tra-
jectory optimization. A low degree of discretization appears to be
suf� cient to generate good results. Because the CGL points and
weights can be quickly evaluated, it suggests that the techniquehas
a high potential for use in optimal guidance algorithms that require
a corrective maneuver from the perturbed trajectory. In any case,
reference optimal paths can be easily generated, and the numerical
examples indicate that the converged solutions are indeed optimal.
Further tests and analysis are necessary to investigate the stability
and accuracy of the method.

Appendix: Derivation of Lagrange Polynomials
for CGL Nodes

We derive the followingexpressionfor the Lagrange polynomials
of order N interpolatinga function at the CGL nodes:

Ák .t/ D .¡1/k C 1

N 2ck

.1 ¡ t 2/ PTN .t/

.t ¡ tk /

where

ck D
»

2; k D 0; N

1; 1 · k · N ¡ 1
(A1)

TN .t/ is the Chebyshevpolynomialof degree N , and tk are the CGL
points over the interval [¡1, 1]:

tk D cos.¼k=N /; k D 0; : : : ; N

Differentiation is denoted by a prime.
The general expression for a Lagrange interpolatingpolynomial

at N distinct nodes tk is

Ák .t/ D
NY

m D 0
m 6D k

.t ¡ tm/

.tk ¡ tm /
; k D 0; : : : ; N

De� ning

w.t/ D
NY

m D 0

.t ¡ tm /

we easily obtain

w0.tk / D .tk ¡ t0/.tk ¡ t1/; : : : ; .tk ¡ tk ¡ 1/.tk ¡ tk C 1/; : : : ; .tk ¡ tN /

D
NY

m D 0
m 6D k

.tk ¡ tm /

Therefore, we have

Ák.t/ D w.t/

.t ¡ tk/

1
w0.tk /

From the de� nition of the CGL points that are the extrema of TN

or the zeros of T 0
N .t/, and t0 D 1; tN D ¡1; we can write

T 0
N .t/ D .t ¡ t1/.t ¡ t2/; : : : ; .t ¡ tN ¡ 1/

w.t/ D
NY

m D 0

.t ¡ tm/ D .t ¡ t0/.t ¡ t1/; : : : ; .t ¡ tN ¡ 1/.t ¡ tN /

D .t 2 ¡ 1/T 0
N .t/

For w0.tk/, we use that the Chebyshev polynomials are the eigen-
functions of

£
.1 ¡ t 2/T 00

N

¤
¡ t T 0

N C N 2TN .t/ D 0

From this expression and the equation for w.t/, we have

w0.t/ D
£
¡.1 ¡ t 2/T 0

N

¤0 D N 2TN .t/ C t T 0
N (A2)

Evaluating the precedingexpressionat t D tk , k 6D 0, N , and using
thatT 0

N .tk / D 0, fork D 1; : : : ; N ¡ 1,andTN .tk / D cos.¼ kN=N / D
.¡1/k , k D 1; : : : ; N ¡ 1, we have

w0.tk / D .¡1/k N 2; k D 1; : : : ; N ¡ 1

For k D 0; N , we use the following identities:

TN .t0 D 1/ D 1; T 0
N .1/ D N 2

TN .tN D ¡1/ D .¡1/N ; T 0
N .¡1/ D .¡1/N N 2

which give us from Eq. (A2)

w0.1/ D 2N 2; w0.¡1/ D 2.¡1/N N 2

Finally, we have

Ák.t/ D
w.t/

t ¡ tk

1

w0.tk /
D

.t 2 ¡ 1/T 0
N .t/

.t ¡ tk /

.¡1/k

N 2ck

D
.1 ¡ t2/T 0

N .t/

.t ¡ tk/

.¡1/k C 1

N 2ck

where ck is as de� ned in Eq. (A1).
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