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Low-thrust propulsion systems offer a fuel-efficient means tomaneuver satellites to new orbits; however, they can

only perform suchmaneuverswhen they are continuously operated for a long time. Such long-termmaneuvers occur

over many orbital revolutions, often rendering short time scale trajectory optimization methods ineffective. An

approach tomultirevolution large time scale optimal control of an electrodynamic tether is investigated for a tethered

satellite system in low Earth orbit with atmospheric drag. Control is assumed to be periodic over several orbits

because, under the assumptions of a nearly circular orbit, periodic control yields the only solution that significantly

contributes to secular changes in the orbital parameters. The optimal control problem is constructed in such away as

to maneuver the satellite to a new orbit while minimizing a cost function subject to the constraints of the time-

averaged equations of motion by controlling current in the tether. Three optimal maneuvers were investigated for a

4 km tether in a 270 km initial orbit: maximum climb,maximum final inclination, and aminimum time orbit change.

The resulting control solutions were propagated to verify their accuracy.

Nomenclature

a = semimajor axis
B = local Earth magnetic flux density vector
B� = system ballistic coefficient
D = resultant atmospheric drag force
e = eccentricity
F = resultant Lorenz force on electrodynamic tether
g = path constraint
h� = atmospheric density scale height
I = current
i = inclination relative to magnetic equator
L = tether length
m = system mass
n = orbital mean motion
R� = Earth radius
r = radial distance with respect to Earth center
u = periodic control coefficient vector
x = orbital state vector
�m = Earth magnetic dipole moment
� = true anomaly
� = atmospheric density
� = right ascension of the ascending node
! = argument of perigee referenced from intersection of orbit

plane and magnetic equator plane

I. Introduction

E LECTRODYNAMIC tethers (EDTs) in lowEarth orbit offer an
attractive alternative to conventional satellites that use

propellant-based propulsion systems because the thrusting forces
are derived from the Earth’s magnetic field, a renewable resource.
Electrodynamic tethers are electrically conductive wires extending
between two or more subsatellites. When a current is passed through
the wire in the Earth’s magnetic field, a Lorenz force is generated

perpendicular to both the current direction and the direction of the
local Earthmagnetic field lines. A two-ball EDT is depicted in Fig. 1.
The force magnitude depends on the current, length of wire, and the
wire orientation with respect to the local magnetic field. Controlling
the current in thewire through variable resistance, the satellite system
would be capable of maneuvering to new orbits without propellant,
albeit at a slower rate than traditional maneuvering rockets. Because
of the slow rate of change, an orbit transfer requires a long time to
reach a desired orbit; thus, a method of control is needed to achieve
optimal trajectories that span many orbital revolutions.

Obtaining optimal control solutions for satellites that maneuver
over the course of many orbital revolutions can be challenging and
computationally intensive when states and controls are considered
on short time scales of a few orbital revolutions. Williams
demonstrates a method of optimal control using nonlinear
perturbation equations of motion as dynamic constraints and solves
an optimal control problem by direct transcription using nonlinear
programming (NLP) software [1]. This method is shown to be
effective in determining controls that execute a modest orbital
maneuver using an electrodynamic tether for thrust; however, the
solver required hundreds of collocation node points to capture all the
small state variations that occur in a single day of maneuvering. This
corresponds to thousands of optimization variables and constraints
for the NLP solver to compute. The number of nodes and
computation time required to perform the optimization over long
periods of time can be difficult or impossible to achieve using the
short time scale model and are susceptible to round-off errors. In
many low-thrust maneuvering situations, the instantaneous orbit
state will vary only slightly within an orbital period due to small
perturbations, but the variations tend to be periodic in the short term
and cancel out over the long term, leaving only slow secular state
changes. Carroll [2] and Tragesser and San [3] present a technique of
nonoptimal periodic tether control that uses the method of averaging
derived from perturbation theory, enabling control of the average
states and thus avoiding the computational burden associated with
controlling the rapidly changing instantaneous states. They
demonstrate that this approach is good for determining controls for
longer time periods; however, the results are not optimal, and the
periodic control is considered to be unchanging throughout the
trajectory. Furthermore, determining the control requires constrain-
ing the maximum current, which is less straightforward using the
method of averaging than constraining instantaneous current using
the short time scale model. The aim of this paper is to take advantage
of both control methods to achieve optimal control of an
electrodynamic tether over long periods of time. This is
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accomplished by recognizing the periodic nature of the optimal
control problem and transforming the constraints from the time
domain into Fourier space, where the optimization problem is
drastically reduced.

The objective is to maneuver a low-thrust satellite system to a new
orbit over many revolutions by posing an optimal control problem in
the context of large time scales because we are mainly interested in
the secular behavior and not the periodic behavior occurring during
each revolution. Although any low-thrust system could use this
method of large time scale optimal control, propulsion using an
electrodynamic tether was chosen for demonstration purposes
because it may be continuously operated without propellant for a
long time.

In this paper, we examine three different maneuvers that move a
two-ball, 4 km EDT from an initial orbit to a new orbit over many
revolutions. Because of the low altitudes considered, all the
trajectories account for atmospheric drag. We have taken advantage
of the fact that the orbits are nearly circular and have expanded the
orbital equations of motion about the very small eccentricity and
have ignored second and higher order terms. This assumption is good
for orbits with eccentricities less than about 0.01, keeping errors well
within the tolerances of the spectral algorithm. Furthermore, the
maneuvers are known to occur over many orbital revolutions, and so
the small oscillatory changes in the orbital parameters that are
evident over short time scales (within each revolution) are averaged
out, leaving only the secular changes that occur over long time
durations (many revolutions). The only control we have at our
disposal to perform the desired maneuvers is the current in the wire
using variable resistance. A close look at the type of control that
could contribute significantly to the long-term behavior of the EDT
reveals that controls periodic with the orbital rate are the only ones
that yield secular changes in the orbital parameters. Other
contributions of the controller are averaged out in the long term.
Therefore, we assume periodic control current modeled using the
relevant terms of a Fourier series:

I � u1�T� � u2�T� cos �� u3�T� sin �
� u4�T� cos 2�� u5�T� sin 2� (1)

where � is the true anomaly. To highlight the fact that the controlled
Fourier coefficients vary only over large time scales, we write them
as functions of T. The control in Fourier space is, therefore,

u �T� � �u1; u2; u3; u4; u5�T (2)

With the control written in this form, the approach to optimal control
is viewed in the Fourier space, where the goal is to determine the time
dependent Fourier coefficients u�T� that minimize a given cost
function for a trajectory subject to the time-averaged dynamic
equations of motion. A pseudospectral method of dynamic
optimization is employed using DIDO software [4,5] to solve the
subject optimal control problems, yielding the optimal control
coefficients and path discretized over large periods of time.

II. Dynamic Model

Orbital changes due to the relativelyweakLorenz forces generated
along the electrodynamic tether occur over many orbital revolutions.
The EDT is modeled as a “dumbbell” consisting of two end bodies
tethered together with a taut 4 km copper wire. The Lorenz force
generated along the wire containing electric current is given by

F � IL 	 B (3)

where I represents tether current (the control), B represents the
Earth’s local magnetic flux density vector, andL is the tether length
vector pointing in the direction from the upper end mass to the lower
one. The tether geometry and current direction that yields a positive
transverse thrust is shown in Fig. 1. The local magnetic flux density
for an Earth-orbiting satellite is modeled as

B � �m
r3


2 sin�!� �� sin i
cos�!� �� sin i

cos i

2
4

3
5
e

�
Br
Bt
Bn

2
4

3
5
e

(4)

where �m represents the Earth’s magnetic dipole moment, i is the
inclination relative to the magnetic equator, and Br, Bt, and Bn
represent the magnetic flux density vector components in the radial,
transverse, and orbit normal directions, respectively (i.e., êr, êt, and
ên directions). In the best conditions at the equator, a force of 0.1 N
distributed along a 1-amp, 4 km EDT is achievable at an altitude of
270 km, which can be the same order of magnitude as the
atmospheric drag at that altitude, depending on the physical
characteristics of the tether and end bodies. To ensure the satellite
lives longer than a few days, the control system will need to apply a
constant average current to provide constant in-track thrust that will
compensate for drag forces acting in the opposite direction. The
problem of drag compensation is exacerbated when the EDT resides
in a higher inclination orbit because the out-of-plane component of
the magnetic field, which produces the required in-track thrust, is
reduced [Eq. (4)]. Drag magnitude depends on the physical
properties and dimensions of the EDT, the atmospheric density, and
satellite velocity. For a near circular orbit, the drag force on the entire
tether system is given by

D �
 1

2
B���r��

r
êt (5)

where ��r� represents the average air density at radial distance r, and
B� is the average ballistic coefficient of the entire tether. Here the
ballistic coefficient is defined as B� � CdA=m, where Cd is the
average coefficient of drag, A is the average cross-sectional area
perpendicular to the velocity vector, and m is the system mass.
Modeling an exponentially decaying atmospheric density using a
scale height h�, we can expand about the small eccentricity and
approximate the average density through first order as [6]

��r� � �0e

r
R�
h� � ��a�

�
1� ae cos �

h�

�
(6)

where the radial distance has been approximated as
r� a�1 
 e cos ��.

Gravity gradient torque tends to keep the tether nadir pointingwith
librations that are assumed to be small, and so the acceleration due to
the Lorenz force in Eq. (3) is given by

F � IL�m
mr3
�cos iêt 
 cos��� !� sin iên� (7)

Recognizing that the orbits of interest at this low altitude are nearly
circular, we ignore O�e2� and higher order terms and write the
equations of variation for five classical orbital elements as

Fig. 1 Electrodynamic tether FBD.
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da

dt
� 2a

nr
�F�D� � êt

de

dt
� 1

na2e

�
a2

r

 r

�
�F�D� � êt

d!

dt
� 1

nae

�
1� 1

1� e cos �

�
sin ��F�D�

� êt 

r cot i sin��� !�

na2
F � ên

di

dt
� r cos��� !�

na2
F � ên

d�

dt
� r sin��� !�

na2 sin i
F � ên

(8)

where n is the mean motion of the satellite. Expanding these
equations of motion about the small eccentricity using r
1 �
a
1�1� e cos �� and ignoring second and higher order terms, we
write the general perturbation equations of motion for a nadir-
pointing tether in terms of the true anomaly, the only variable that
changes significantly on a short time scale.

da

dt
� 2Ca cos iI�1� 4e cos�� 
 2D

�
1�

�
2� a

h�

�
e cos�

�

de

dt
�C cos iI�2 cos�� 5ecos2�� e�


 2D

a

�
cos�� e�

�
1� a

h�

�
ecos2�

�

d!

dt
�C cos i sin�2!� 2��

2
I�1� 2e cos��

� sin�

�
C cos i

e
I�2� 5e cos�� 
 D

ae

�
2�

�
1� 2a

h�

�
e cos�

��

di

dt
�
C sin iIcos2���!��1� 2e cos��

d�

dt
�
CI

2
sin�2�� 2!��1� 2e cos�� (9)

We have letC� L�m=nma4 represent the term resulting from thrust,
and D� B����a�=2na represent the drag term. In this form, these
equations could serve as dynamic constraints in posing our optimal
control problems; however, due to the rapid variation of true anomaly
with each revolution, we would need to discretize the problem with
enough node points for the solver to capture the motion of each
varying element with each revolution. This is the approachWilliams
used in [1] to achieve optimal control solutions for short time scale
problems. Because we are only interested in the secular state changes
of the EDT orbit over long time scales, we use the method of
averaging to eliminate the small oscillations that occur within each
revolution, which effectively approximates the nonautonomous
system in Eq. (9) as an autonomous averaged one [7]. This is
achieved by recognizing that

d t� 1

n
�1 
 2e cos ��O�e2��d� (10)

and then integrating over 2�N orbits (N � 1; 2; . . .). Because the
average states vary slowly with time, they are considered constant
over the short time periods of integration and are removed from the
integrand. The fast time variable � always appears in the argument of
a sine or a cosine function, thus will only yield nonzero values after
integration when the current control I is itself a linear combination of
sine and cosine functions periodic with � and a constant. A current
that is purely dc will produce secular motion in semimajor axis and
inclination because the first two derivatives in Eq. (9) would yield
nonzero values after integration. Because the orbits of interest remain
very close to the Earth, where the magnetic field is strong, they are
nearly circular. We will, therefore, substitute two equinoctial
coordinates for the eccentricity and argument of perigee in Eq. (9) to
avoid singularity near e� 0. The new coordinates are the
eccentricity vector components defined as h� e sin! and
k� e cos!. The average state equations of motion are derived in
the appendix using the periodic current defined in Eq. (1), and are
written as

�a

�T
� 2Ca cos i�u1 � u2e� 
 2D

�h

�T
� C cos i

��
3h

2

�
u1 �

�
h

e

�
u2 �

�
k

e

�
u3 �

�
h

4
� hk

2

2e2

�
u4

�
�
k

4
� �k

2 
 h2�k
4e2

�
u5

�

D
a

�
1� a

h�

�
h

�k

�T
� C cos i

��
3k

2

�
u1 �

�
k

e

�
u2 


�
h

e

�
u3 �

�
k

4

 h

2k

2e2

�
u4

�
�

 h
4
� �h

2 
 k2�h
4e2

�
u5

�

D
a

�
1� a

h�

�
k

�i

�T
�
C sin i

��
1

2

�
u1 �

�
k2 
 h2
4e2

�
u4 


�
hk

2e2

�
u5

�

��

�T
�
C

��
hk

2e2

�
u4 �

�
k2 
 h2
4e2

�
u5

�
(11)

Secular changes to the orbit state are now expressed over a large time
scale �T � 2�N=n. The state vector x now represents the average
orbital state values rather than the instantaneous values and is written
using a quasi-equinoctial element set, that is, x�T� � �a; h; k; i;��T .
Notice that these average states onlyvary slowlyover long time scales
(indicated by T) and are considered constant within each revolution.
The average state equations of motion are thus devoid of the short
time scale variable, the true anomaly. From the first equation, we see
that the average drag effect due to the air density (in the drag termD)
primarily affects the average change in semimajor axis. To a lesser
extent, drag decreases the h and k states and has a circularizing effect

becausee�
����������������
h2 � k2
p

.With the secular equations ofmotion in hand,
we now turn to constraining the allowable tether current to values that
are within the system power limitations.

III. Constraints

To determine the optimal controls for the system described by
Eq. (11), we need to solve for the periodic control coefficients u�T�.
In addition to enforcing the initial state conditions as event
constraints, the control current must also be bound to remain within
an available power limit, which is itself defined by the electron
collection capabilities, ohmic losses, voltage current, and other
factors. For a description of electron collection in the ionosphere and
the associated limitations, see [8]. Because the control in Eq. (1) is
defined using the rapidly changing true anomaly, we cannot simply
bound the instantaneous periodic current between a minimum and
maximum value because we need to keep our averaged equations of
motion devoid of short time scale variables. To properly bound the
control then, we need to define a path constraint that is a function of
the slowly varying Fourier control coefficients u�T�. The approach
used here limits the average power available for thrust which in turn
places bounds the on the rms current. For a given constant wire
resistance R and average power limit Pavgmax, the maximum
allowable rms current is defined by

I2rmsmax �
Pavgmax

R
(12)

The actual rms value for the periodic current in the wire is defined by

I2rms �
1

2�

Z
2�

0

I2�u; �� d� (13)

For the periodic current given in Eq. (1), this value is

I2rms � u21 � 1
2
�u22 � u23 � u24 � u25� (14)

Using Eq. (14), we may express the path constraints in terms of the
controls. The path constraint for the controls is written as

g1�u�T�� � I2rms 

Pavgmax

R

 0 (15)
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This path constraint approach has the double advantage of
averaging out any parameters periodic with the orbit that affect the
available thrust current, such as diurnally varying ionospheric
electron density, as well as eliminating the short time variable, the
true anomaly. The event constraints (constraints on states at specific
times during the trajectory) are comprised only of the initial
conditions and are written as

e �x�T0�� � �a�T0�; h�T0�; k�T0�; i�T0��T (16)

Finally, states, controls, and time are bounded by upper and lower
limits (denoted using subscripts u and l, respectively). These box
constraints are written as

x l
x�T�
xu ul
u�T�
uu T0l
T0
T0u Tfl
Tf
Tfu
(17)

Now all the pieces are in place to construct and solve optimal control
problems that will maneuver an EDT to a new orbit over many
revolutions while overcoming drag by controlling nothing but
current in a wire.

IV. Three Optimal Control Problems
and Their Solutions

Three sample maneuvers were chosen to demonstrate large time
scale optimal control because of their slow secular orbital changes
that occur over many revolutions. The tether modeled in all three
problems is 4 km long and 2 mm in diameter. The system mass and
average cross-sectional area is 500 kg and 8 m2, respectively. The
first two subsections outline the optimal control problem setup,
solution, and results for maximizing inclination and altitude and
serve as benchmark problems because other authors have
investigated these problems [2,3]. The third subsection provides an
example optimal control problem and solution that achieves a
minimum time orbit change in average semimajor axis and
inclination occurring over 500 revolutions using only 40 nodes in the
discretized optimization problem. All problems were solved using

DIDO, an optimization software package that discretizes and solves
general optimization problems using a pseudospectral method [9].
Verification of the optimal control solution was achieved by
evaluating the Hamiltonian output by DIDO. To demonstrate the
accuracy of the model used as the dynamic constraint in these
problems, the output Fourier coefficient controls were converted into
the time domain and then used to propagate instantaneous states
using Eq. (8).

A. Maximum Final Altitude

Perhaps there is a need to tow an object (spacecraft, debris, etc.) to
a higher orbit in the same orbital plane using an EDT. For the sake of
testing the algorithm against a known solution, we seek the
maximum altitude anEDT can reach in 50 orbital revolutionswith no
drag. In this case, we expect that a direct current in the nadir-pointing
tether will provide maximum thrust in the direction of the velocity to
spiral the spacecraft out to a higher orbit [2,3]. Although we may
actually want to control the other orbital elements to a desired end
state, we seek only this known solution for this benchmark problem.
The optimal control problem is written as the following.

Minimize cost

J�
af

Subject to

dynamic constraints _x�T� � f�x�T�;u�T��
event constraints e�x�T0�� � �6648 km; 0; 0:001; 30��T

path constraints g1�u�T�� � I2rms 
 2:25 
 0 amps2

where _x�T� is the average state change and f�x�T�;u�T���
�x=�T. Box constraints in Eq. (17) are also enforcedwherewe have
chosen the bounds to be

Fig. 2 Control solution for maximum altitude maneuver using 32 nodes.
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x u� �16;000 km;0:4;0:4;80 deg;180 deg�
xl� �6638 km;
0:4;
0:4;15 deg;
180 deg�

uu� Irmsmax�1;
���
2
p
;
���
2
p
;
���
2
p
;
���
2
p
� ul�
uu T0� 0

Tf� 50 P

(18)

where P is the orbital period. The initial states h and k correspond to
an eccentricity of 0.001 and an initial argument of perigee of zero.
Before using the optimization solver, the states and time were scaled
to span values of order 1 to make the problem numerically well
conditioned [4,10]. Solving the problem using DIDO yields the
control history shown at the top of Fig. 2, and the bottom of the figure
shows the control transformed into the short time scale domain, in
this case just a direct current. The average altitude and inclination
trajectories are shown in Fig. 3, in which the stars indicate the DIDO
solution at discrete times (spanning large time scale steps), and the
lines indicate the propagation of the instantaneous state values using
DIDO-derived controls and a MATLAB® stiff ordinary differential
equation solver. As expected, to perform a maximum climb
maneuver, the solution indicates that the controller should drive a
maximum allowable direct current through the wire to accomplish
the large transverse thrust needed to boost the orbit. Starting at an
altitude of 270 km, this EDT can climb about 130 km in about 3 days
without drag. Introducing drag into the dynamic constraints does not
affect the control profile but reduces the achievable altitude change in
the given time to about 117 km. In reality, we would need to contend
with libration control and, at times, adverse electron collection or
battery conditions that could limit power available for tether
thrusting. However, in principle, modest maneuvers can be
accomplished if they are not time critical.

Because there is no explicit time dependence in the Lagrangian of
the Hamiltonian of this optimal control problem [Eq. (19)], the

resulting Hamiltonian should be constant, that is, _H � 0. The
Lagrangian of the Hamiltonian is

�H �H � �gg1 � �Txx� �Tuu (19)

where the Hamiltonian is given by H� �Tf and � represents the
costates. The covector functions associated with the path constraint,

state-variable box constraints, and control-variable constraints are
represented by�g,�x, and�u, respectively. DIDO uses the covector
mapping principle [11] to produce adjoints and the Hamiltonian as
part of the solution. To check optimality, we plotted the output
Hamiltonian and discovered that it was indeed constant, as shown in
Fig. 4.

B. Maximum Final Inclination

From Eq. (11), it is evident that a carefully and constantly applied
dc control current could indeed compensate precisely for drag to
maintain altitude; however, it would come at the expense of a secular
decay of the inclination after a long time, which may be undesirable.
To maximize the final inclination achievable in a fixed time
(500 revolutions), we write the same optimal control problem as in
the previous example with the following exceptions.

Fig. 3 Maximum altitude maneuver trajectories. Stars indicate DIDO solution; lines indicate instantaneous state propagation using optimal control.

Fig. 4 Hamiltonian profile for maximum altitude with drag solution.
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Minimize J�
if
Subject to

Tf � 500P;

e�x�T0�� � �6648 km; 0; 0:01; 30 deg�T;
g2�x�T�� � h2 � k2 
 e20 � 0

where the new path constraint, g2�x�T��, ensures a constant
eccentricity transfer.

As a test case, we first look for the no drag solution [i.e.,
atmospheric density terms in Eq. (11) are zero] and then compare it
with the solution that accounts for drag. The 32-node DIDO control
solution to the no-drag problem is depicted in Fig. 5. The contrast
between the two plots of the same control in Fig. 5 clearly shows the
advantage of solving the optimal control problem using Fourier

Fig. 5 Maximum inclination control solution with no drag.

Fig. 6 Maximum inclination maneuver trajectory without drag.
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coefficients over a large time scale. Attempts to discretize and
optimize this control problem using instantaneous states and their
respective dynamic equations of motion [Eq. (8)] for this long-term
trajectory would require thousands of nodes and run the risk of
round-off errors and long solution times. Propagating the
instantaneous states using the optimal control output produces the
trajectory shown in Fig. 6. Because there is no drag to contend with,

the optimal solution indicates that it is best tomainly use an ac current
that has double the orbital frequency, that is, a combination of u4 and
u5 within constraints. This result is consistent with references [2,3],
which indicate that to achieve a maximum inclination change, the
strategy is to drive a control current such that

I �

���
2
p
Irmsmax cos 2��� !�. Here, it is assumed that the path

constraint in Eq. (15) is active, which bounds the peak amplitude of

Fig. 7 Maximum inclination control solution with drag.

Fig. 8 Maximum inclination maneuver trajectory with drag.
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this ac input to
���
2
p
Irmsmax. Transforming this result into the Fourier

coefficient controller described in Eq. (1), we see that the control
solution is the same, only expressed in the context of the partial
equinoctial set. To achieve a maximum final inclination, the control
may be written

I �

���
2
p
Irmsmax cos�2�� 2!�

� 

���
2
p
Irmsmax�cos 2! cos 2� 
 sin 2! sin 2��

� 

���
2
p
Irmsmax

�
k2 
 h2
e2

cos 2� 
 2kh

e2
sin 2�

�
(20)

Fig. 9 Minimum time orbit change control solution without drag.

Fig. 10 Minimum time orbit change trajectory without drag.
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In this form, we recognize the Fourier coefficients for the second
mode cosine and sine functions as

u4 �

���
2
p
Irmsmax

�
k2 
 h2
e2

�
u5 �

���
2
p
Irmsmax

�
2kh

e2

�
(21)

The optimal controls calculated using Eq. (21) are consistent with the
corresponding control Fourier coefficients determined by DIDO
(within an error 2 norm of 0.04). This trajectory uses some negative
dc thrust to decrease altitude while cranking the orbit to a higher
inclination. The Fourier control coefficients displayed in Fig. 5 show
that the tether current controller initially uses a small negative dc
component to descend to the lowest allowable altitude to maximize
the final inclination. Controlling the spacecraft in such a way
increases the orbit inclination from 30 to 31.19 deg in about a month.
This strategy outperforms a similar constant altitude maneuver by
0.04 deg. When drag is considered, the control strategy is altogether
different because more of the limited available current must be
constant dc to compensate for the increased drag as seen in Fig. 7.We
see from Eq. (11) that a large positive dc coefficient tends to reduce
the inclination. There is a penalty for orbiting where the air density is
higher because more power is expended simply to maintain altitude,
which causes inclination to decay and less power to be available to
maximize the inclination. In this case, the strategy is to climb to a
lower density altitude, level off to increase inclination, then descend
again to the minimum allowable altitude, taking advantage of the
largest possible inclination gain opportunities as shown in Fig. 8. The
initial climb comes at the expense of inclination gain; however,
overall the satellite achieves maximum inclination change because it
operates in a lower average drag environment and does not need to
expend as much power to maintain altitude. After a month of
thrusting in a reduced average drag environment, the satellite
achieves an inclination gain of 1.0 deg outperforming a constant
altitude maneuver by 0.25 deg. Because this maneuver occurs over
so many revolutions, it would be nearly impossible for short time
scale optimization to yield a solution to this problem.

C. Minimum Time Orbit Change

Having looked at the baseline orbital maneuvers, we now turn our
attention to determining the controls for a minimum time orbit
change involving a desired final altitude and inclination while
maintaining a constant eccentricity. In this example, we start by
using our initial states from the first example and then construct the
optimal control problem to achieve a 10 km climb and a 1 deg
inclination increase, while maintaining a constant eccentricity of
0.005, in the quickest time. We write the problem as follows.

Minimize cost:

J� tf

Subject to

_x�T� � f�x�T�;u�T��
e0�x�T0�� � �6648 km; 0; 0:005; 30 deg�T

ef�x�Tf�� � �af; if�T � �6658 km; 31 deg�T

g1�u�T�� � I2rms 
 2:25 
 0 amps2

g2�x�T�� � h2 � k2 
 e20 � 0

Box constraints are still those listed in relations (17) and Eqs. (18),
but because this problem has a free final time, we write

T0 � " 
 Tf 
 5 	 104 P

The control solution without drag, depicted in Fig. 9, indicates that
the strategy is to initially apply a negative dc control current,
indicated by u1, to descend. The controller needs to apply large ac
control components cycling at twice the orbital frequency to reach
the desired inclination (i.e., large u4 and u5 components), all while
avoiding large components cycling at the orbital frequency, namely
u2 andu3, which are large contributors to eccentricity change. The dc
component is nearly zero for the majority of the trajectory and then
reverts to positive flow at the end of the trajectory to climb to the final
desired orbital altitude (Fig. 10). When drag is considered, the dc

Fig. 11 Minimum time orbit change control solution with drag.
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component of the control current is throttled (see Fig. 11) such that
the satellite initially climbs and then descends to the final orbit to
avoid the cost of increased drag at lower altitudes asmuch as possible
as shown in Fig. 12. Contending with drag, this EDT takes an
additional four days to complete the maneuver.

Controlling the slowly varying current Fourier coefficients over
many revolutions has the advantage of solving long-term problems
with relatively few nodes in the optimization algorithm. A similar
problem solved using a small time scale and exact equations of
motion would yield the instantaneous states during each revolution;
however, it would require an exorbitant number nodes over the same
time frame to arrive at a meaningful solution. The periodic current
would require at least four nodes per orbit revolution in the short time
scale domain to establish a control current that avoids aliasing. The
first day alone in this example consists of 32 control current cycles
(Fig. 13),whichwould require at least 64 nodes to adequately capture

all the cycles. Using large time scales and averaged states, we have
solved a multirevolution orbital maneuvering problem using
40 optimization nodes contrasted to the 2000 nodes that would have
been required using a short time scale and instantaneous states.

V. Conclusions

Solving optimal control problems in Fourier space using large
time scales and time-averaged orbital states has significant
advantages when the desire is to control the secular behavior of a
continuously operating, low-thrust satellite system over a long time
rather than the instantaneous periodic behavior. In satellite control, a
rapidly changing periodic variablemay be averaged out, leaving only
the dynamics of the slowly changing variables. In this paper, we
investigated a method of constructing and solving a large time scale
optimal control problem using an electrodynamic tether to maneuver

Fig. 12 Minimum time orbit change trajectory with drag.

Fig. 13 Current control in time domain for the first 16 revolutions for minimum time maneuver with drag.
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to a desired orbit. Optimal controls for three sample maneuvers
spanning up to 500 orbital revolutions were determined using 30–40
optimization nodes. This method of optimal control in Fourier space
could assist engineers with initial trade studies to determine design
and performance parameters for a tether or any other low-thrust
maneuvering satellite. Implemented as a far horizon controller, it
could determine a long-term control strategy and feed commands to
another controller operating over short time scales to manage
instantaneous states such as tether libration.

Appendix: Derivation of Averaged Equations of Motion

This appendix provides a derivation of secular equations of
motion using amixed set of classical and equinoctial coordinates and
the method of averaging. To determine the secular change in a given
state xi, we use the approximation

d t� 1

n
�1 
 2e cos �� d�

and integrate over N periods as follows:

�xi �
Z
tf

t0

dxi �
1

n

Z
2�N

0

dxi
dt
�1 
 2e cos �� d�

Because the orbits considered are nearly circular, eccentricity is
very small, and the argument of perigee is ill defined. Therefore, two
equinoctial coordinates defined as h� e sin! and k� e cos! are
better suited for this orbit type. Thus, changes in semimajor axis,
inclination, and right ascension of the ascending node are
approximated as

�a� 2Ca cos i

�
1

n

�Z
2�N

0

I�1� 2e cos �� d�


 2D

n

Z
2�N

0

�
1� 2e cos �� ae cos �

h�

�
�1 
 2e cos �� d�

�i�
C sin i

�
1

n

�Z
2�N

0

Icos2�!� �� d�

�
C sin i

�
1

n

�Z
2�N

0

I

e2
�k2cos2�� h2sin2� 
 hk sin 2�� d�

���
C
2

�
1

n

�Z
2�N

0

I sin�2�� 2!� d�

�
C
2

�
1

n

�Z
2�N

0

I

e2

�
hk cos 2�� 1

2
�k2 
 h2� sin 2�

�
d�

where C� L�m=nma4 represents the thrust per unit current, and the
drag rate is D� B����a�=2na.

The only control that will yield nonzero solutions after integrating
these equations is a periodic current. The control current may be
expressed as the sum of the periodic functions that produce secular
changes to the states; therefore, we use the first five terms of a Fourier
series [Eq. (1)]. After integration, we obtain the secular changes to
three of the five states that change on a long time scale.

�a� �2Ca cos i�u1 � u2e� 
 2D� 2�N
n

�i�
C sin i

�
u1
2
� k

2 
 h2
4e2

u4 

hk

2e2
u5

�
2�N

n

���
C
�
hk

2e2
u4 �

k2 
 h2
4e2

u5

�
2�N

n

(A1)

These results are consistent with [3].
The time derivatives of the equinoctial coordinates may be

calculated as follows:

_h� e cos! _!� _e sin!�CI cos i�cos���!��h cos�� k sin��
	 �1� 2e cos�� cos!� �2
 e cos���1� 3e cos�� sin� cos!
� �2 cos�� esin2���1� 3e cos �� sin!�


 2D

a

�
sin�

2e

�
1�

�
1� a

h�

�
e cos�

�
�2
 e cos�� cos!

�
�
cos�� e�

�
1� a

h�

�
ecos2�

�
sin!

�
(A2)

Carrying out the multiplications, eliminating second and higher
order eccentricity terms, then substituting in h and k, we write

_h� CI cos i
���

k

e
cos � 
 h

e
sin �� 2kcos2� 
 h sin 2�

�

	 �h cos �� k sin �� �
�
2 sin �� 5

2
e sin 2�

��
k

e

� 2h

e
cos �� h� 5hcos2�

�


 2D

a

��
sin �

e
� a

2h�
sin 2� 


�
1� a

h�

�
e

2
cos2� sin �

�
k

e

�
�
cos �� e�

�
1� a

h�

�
ecos2�

�
h

e

�
(A3)

recognizing that

cos��� !� � cos � cos! 
 sin � sin!� k
e
cos � 
 h

e
sin �

and e2 � h2 � k2.
Integratingwith respect to the true anomaly from0 to2�N, wefind

the change in the average h state:

�h�
�
C cos i

�
u1

�
3h

2

�
� u2

�
h

e

�
� u3

�
k

e

�
� u4

�
h

4
� hk

2

2e2

�

� u5
�
k

4
� �k

2 
 h2�k
4e2

��

D
a

�
1� a

h�

�
h

�
2�N

n
(A4)

We obtain the k state dynamics in a similar manner:

_k�
esin! _!� _ecos!�CI cos i�
cos���!��hcos�� ksin��
	 �1�2ecos��sin!
�2
 ecos���1�3ecos�� sin�sin!
��2cos��esin2���1�3ecos��cos!�


 2D
a

�

 sin�
2e

�
1�

�
1� a

h�

�
ecos�

�
�2
 ecos��sin!

�
�
cos��e�

�
1� a

h�

�
ecos2�

�
cos!

�
(A5)

Rewriting Eq. (A5), using definitions of h and k, we obtain

_k� CI cos i
��


�
k

e
cos � 
 h

e
sin �� 2kcos2� 
 h sin 2�

�

	 �h cos �� k sin �� 

�
2 sin �� 5

2
e sin 2�

��
h

e

� 2k

e
cos �� k� 5kcos2�

�


 2D

a

�


�
sin �

e
� a

2h�
sin 2� 


�
1� a

h�

�
e

2
cos2� sin �

�
h

e

�
�
cos �� e�

�
1� a

h�

�
ecos2�

�
k

e

�

Integratingwith respect to the true anomaly from0 to2�N, wefind
the change in the k state:
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�k�
�
C cos i

�
u1

�
3k

2

�
� u2

�
k

e

�
� u3

�

h
e

�
� u4

�
k

4

 h

2k

2e2

�

� u5
�

 h
4
� �h

2 
 k2�h
4e2

��

D
a

�
1� a

h�

�
k

�
2�N

n
(A6)
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