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Pseudospectral Knotting Methods
for Solving Optimal Control Problems
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A class of computational methods for solving a wide variety of optimal control problems is presented; these
problems include nonsmooth, nonlinear, switched optimal control problems, as well as standard multiphase prob-
lems. Methods are based on pseudospectral approximations of the differential constraints that are assumed to be
given in the form of controlled differential inclusions including the usual vector field and differential-algebraic
forms. Discontinuities and switches in states, controls, cost functional, dynamic constraints, and various other
mappings associated with the generalized Bolza problem are allowed by the concept of pseudospectral (PS) knots.
Information across switches and corners is passed in the form of discrete event conditions localized at the PS
knots. The optimal control problem is approximated to a structured sparse mathematical programming problem.
The discretized problem is solved using off-the-shelf solvers that include sequential quadratic programming and
interior point methods. Two examples that demonstrate the concept of hard and soft knots are presented.

Introduction

O VER the last few years, pseudospectral (PS) methods, and
in particular the Legendre PS method, have been extensively

used to solve a broad class of optimal control problems arising in the
trajectory optimization and real-time control of systems governed
by ordinary differential equations. Examples range from low-thrust
orbit transfers,1 impulsive orbit transfers,2 pick and place maneuver
of robots,3 solar sail trajectory optimization,4,5 ascent guidance,6,7

reentry trajectory design,8,9 spacecraft attitude control,10,11 tethered
satellite system control,12 and many more. Many of these applica-
tions of PS methods have been facilitated by various versions of the
software package DIDO13 that often have certain implementations
of concepts that are not published in a peer-reviewed journal. The
concept of PS knots is one such example. In this paper, we formally
introduce the concept of PS knots and show how this simple idea
extends a standard direct PS method14,15 to solving a large class of
optimal control problems that include the problems of switches and
discontinuities frequently encountered in engineering applications.
In one sense, this paper brings together the concepts introduced
in Refs. 16 and 17. In addition, we solve a hybrid optimal control
problem and demonstrate nonsmooth concepts using a neoclassic
optimal control problem introduced by Clarke.18 Thus, the concept
of phases, frequently employed in standard methods,19,20 is auto-
matically subsumed in this formulation. Such problem formulations
frequently arise in the mission design of interplanetary spacecraft
trajectories5 and multistage launch vehicle trajectory optimization.7

PS methods along with Galerkin and tau methods are major ex-
amples of spectral methods, which have been used extensively in
computational fluid mechanics.21,22 In fact, the driver for the de-
velopment of spectral methods was problems in fluid dynamics
and not optimal control. The first introduction of spectral meth-
ods (Legendre–tau) for solving optimal control problems (governed
by partial differential equations) was initiated in Ref. 23 for solving
problems in active noise control. This work was followed by the ap-
plication of the PS methods in Refs. 14 and 24 for solving nonlinear
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control problems governed by ordinary differential equations. Since
these initial works, PS methods have been used to solve a wide
range of problems, as mentioned earlier. PS methods have also been
extended to solve problems governed by differential inclusions,15

differential-algebraic equations,25 and higher-order dynamics,26 as
well as differentially flat systems.27

Standard PS approximations14,28 in optimal control are based on
expanding the underlying functions in terms of interpolating poly-
nomials, which interpolate these functions at some specially cho-
sen nodes. These nodes are zeros of orthogonal polynomials (or
their derivatives) such as Legendre polynomials (Legendre–Gauss
points) or Chebyshev polynomials (Chebyshev points). What dis-
tinguishes these methods is the choice of these nodes, subsequently
the expression for the Lagrange interpolating polynomials. These
methods are quite efficient and more accurate than the traditional
collocation methods19,20 in solving smooth optimal control prob-
lems, but their use in solving nonsmooth and hybrid problems, that
is, problems with switches, can cause major difficulties. For exam-
ple, interior point constraints cannot be accurately handled by the
smooth pseudospectral method because the location of the point
may not be at the preallocated Gauss node. Adding more nodes for
mesh refinements could lead to inefficiencies and ill conditioning
of the discretized problem. Furthermore, many practical problems
include empirical models based on table lookups, which are often
nonsmooth data.20 Also, jump discontinuities in states (such as those
encountered in the trajectory optimization of multistage launch ve-
hicles) cannot be handled by these methods. Even for problems
with smooth data, the solution may be nonsmooth.18 In this case, PS
methods exhibit the well-known Gibbs phenomenon (see Ref. 29)
resulting from the approximation of a nonsmooth function by a finite
number of smooth functions. These difficulties are fundamentally
due to the use of global orthogonal polynomials and nodal points that
have a predetermined distribution. This distribution of nodal points
yields optimal interpolation, but offers no choice in the selection
of the points. Some of these difficulties can be overcome by the
concept of spectral patching,30 but a strict application of patching
limits the method to only a reallocation of the nodes.

All of the mentioned difficulties are eliminated by the concept
of PS knots. PS knots essentially generalize the spectral patching
method by exchanging information across the patches in the form of
event conditions associated with the optimal control problem. We
introduce the concepts of hard and soft knots for a method based on
the Legendre PS method, but it is trivially applicable for other PS
methods as well. In between these knots, the problem is discretized
at the Legendre–Gauss–Lobatto (LGL) nodes. The discretization
of the dynamic constraints is achieved by a differentiation operator
that naturally allows for one-sided stencils29 at the knots, whereas
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398 ROSS AND FAHROO

the integral associated with the cost function is approximated by a
Gauss quadrature. Information to nodes across the knots is passed
in the form of event or switching conditions localized at the knots.
The concept of knots can be best illustrated by considering a class of
prototype problems based on a single-switching condition discussed
in the next section.

Prototype Problems
The class of problems that can be addressed by PS knotting meth-

ods is nonsmooth hybrid optimal control problems18,31 that sub-
sume the notion of multiphase optimal control problems.19,20 A for-
mal mathematical formulation of such problems requires significant
mathematical machinery (for example, Refs. 32 and 33), which we
circumvent for the purposes of engineering applications. The route
we adopt is a formalization of some intuitive concepts. In this regard,
we employ the concept of a multifunction.18,32 Whereas a function,
f : R → R, is a point-to-point map, a multifunction is a point-to-set
map, denoted as f : R � R, where the symbol � means that the im-
age of f is a set in R. The notations18,32 � and ⇒ are also used to
represent a point-to-set map, but we prefer the more evocative no-
tation � used by Sussmann.33 In many instances, a multifunction is
essentially a formalization of concepts frequently used in engineer-
ing without much fanfare. For example, the Heaviside step function
H(τ ) is frequently plotted as shown in Fig. 1, but under the concept
of a function, H (0) is argued to be either 0, 1, 1/2, or irrelevant.
This is done to conform to the notion that the image of a function
be a point. This conceptual difficulty is overcome rather simply by
a set-valued definition of the step function as

H(τ ) =






0 τ ≤ 0

[0, 1] τ = 0

1 τ ≥ 1 (1)

so that the intuitive multivalued nature of the function at τ = 0 is
embraced while recognizing that nonsmoothness typically occur at
discrete points, that is, over zero measure. Thus, over τ ∈ R\{0},
the step multifunction conforms with the standard definition of
the step function. One of the main mathematical reasons for view-
ing nonsmoothness as multifunctions is that a consistent calculus
can be developed.18,32,33 For example, the generalized derivative of
the absolute-value function, τ �→ |τ |, is the signum multifunction:
sgn(τ ) = 2H(τ ) − 1. At the origin (which may be the only point of
interest because it is the minimum), the generalized derivative of
the absolute-value function is the closed interval, [−1, 1], that is,
a set. Because 0 ∈ [−1, 1], it is apparent that the vanishing of the
ordinary derivative for the extremum of a function (0 = ∂ f/∂τ ) is
generalized to the notion that zero be an element of the general-
ized derivative (0 ∈ ∂ f ). The idea of a multifunction is applicable to

Fig. 1 Step function as a set-valued map; at τ = 0, H(τ ) is set [0, 1].

concepts well beyond generalizing jumps. For example, a control
set U ⊂ R

Nu can be viewed as a multifunction, U(·) : [τ0, τ f ] � R
Nu

with a control function u(·) : [τ0, τ f ] → R
Nu being a selection from

this set. Throughout this paper, we will use the notation N(·) to mean
some element of N, the set of natural numbers. To further facilitate
the concepts used, let X be the space of piecewise differentiable
bounded functions. In a formal setting, X must be replaced by the
space of functions that are Lipschitz continuous almost everywhere
(see Ref. 32). As noted before, we avoid such formalities to facilitate
a wider exposition to the concepts delineated in this paper.

Now, consider an arbitrary point τe ∈ (τ0, τ f ), where [τ0, τ f ] =
I ⊂ R is a time interval of interest (which may be fixed or free). Let
τ �→ x ∈ R

Nx be any function from the space X , so that τe is a point
of potential interest. Let

x−
e = lim

τ ↑ τe

x(τ ), x+
e = lim

τ ↓ τe

x(τ ) (2)

Suppose that Nx is the same before and after τe. (Switches in Nx are
also allowed as will be apparent shortly.) We define x(τe) to be the
set

x(τe) = {y:y = αx− + (1 − α)x+, α ∈ [0, 1]} (3)

This generalized definition of the value of a function implies that, if
x(·) is continuous at τe, then x(τe) conforms to the usual notion of the
value of a function as the right-hand side of Eq. (3) degenerates to a
point. Thus, the interval I may be arbitrarily divided into two closed
subintervals I 1 = [τ0, τe] and I 2 = [τe, τ f ] so that I 1 ∩ I 2 = {τe} is
of no consequence if all of the generalized notions reduce to the
familiar ones at τe. The observation is made that I 1 ∩ I 2 does not
equal the empty set but does equal the singleton {τe}will be explicitly
exploited in the discretization method and is central to the concept
of knots.

Let x ∈ R
Nx and u ∈ R

Nu be the state and control variables, re-
spectively. We define prototype problems based on a single event
time τe. We call τe an event time if it satisfies the discrete event
condition

eL ≤ e
(
x0, x−

e , x+
e , x f ; u−

e , u+
e ; τ0, τe, τ f ; p

) ≤ eU (4)

where eL ∈ R
Ne and eU ∈ R

Ne are the lower and upper bounds on the
value of the function e,

e : R
Nx1 × R

Nx1 × R
Nx2 × R

Nx2 × R
Nu1 × R

Nu2 × R

× R × R × P → R
Ne (5)

where Ne is the dimension of the event function, x0 = x(τ0) ∈ R
Nx1 ,

x f = x(τ f ) ∈ R
Nx2 , u−

e and u+
e are defined similar to Eq. (2),

and P is the space of parameters that may be real, integers, or
some combination of real and integer space. The set of all points
(x0, x−

e , x+
e , x f ; u−

e , u+
e ; τ0, τe, τ f ; p) satisfying Eq. (4) will be de-

noted as the event set E.
Several points are worth noting in the representation of E given

by Eq. (4). First, no distinction is made between equalities and
inequalities; an equality is simply obtained by setting the lower
bound equal to its upper bound. Second, no distinction is made
between the initial point, the interior point, and the final point. In
this sense the boundary conditions are not necessarily split, such as,
for example, in a hybrid control formulation31 where the initial and
final conditions are given as

eL
0 ≤ e0(x0, τ0) ≤ eU

0 (6)

eL
f ≤ e f (x f , τ f ) ≤ eU

f (7)

whereas the interior point condition is stipulated as

eL
i ≤ ei

(
x−

e , x+
e , τe

) ≤ eU
i (8)
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ROSS AND FAHROO 399

Such a formulation is subsumed in Eq. (4) by simply letting

eL =






eL
0

eL
i

eL
f




 eU =






eU
0

eU
i

eU
f






e
(
x0, x−

e , x+
e , x f ; τ0, τe, τ f

) =





e0(x0, τ0)

ei

(
x−

e , x+
e , τe

)

e f (x f , τ f )





Third, the initial time, the final time, and the interior event time are
all allowed to be fixed or free, and no explicit distinction is made be-
tween time-fixed and time-free problems. For example, if the initial
time τ0 is fixed, for example, at 0, then an event constraint func-
tion, for example, e1, the first component of e is simply defined as
τ0 and its lower bound and upper bound (eL

1 and eU
1 ) are set to 0.

Having the initial time be a free variable is important in some ap-
plications such as those arising in finding optimal launch windows
in conjunction with optimizing space trajectories. In other words,
Eq. (4) is a strikingly simple representation of the event set E, while
being substantially general in allowing fairly complex formulations
of boundary conditions and interior point constraints including dis-
continuities in the state and control variables and interdependence
of point constraints beyond just the adjacent event times. Such a
parallel formulation is not performed just for the sake of greater
mathematical generality; rather, it is quite crucial for clearly formu-
lating practical engineering problems such as those arising in space
mission design involving continuous and discontinuous variables as
illustrated, for example, in Ref. 5. Fourth, we note that the possi-
bly distinct values of the left- and right-hand limits of the state and
control variables are respected, which, as will be apparent later, are
explicitly taken into account by the concept of PS knots.

Similar to the representation of the event function, we can define
an event cost function E ,

E : R
Nx1 × R

Nx1 × R
Nx2 × R

Nx2 × R
Nu1 × R

Nu2

× R × R × R × P → R (9)

which is defined over the same domain as the event function. The
running cost F , that is, the integrand in the Bolza cost functional,

J [x(·), u(·), τ0, τe, τ f , p] = E
(
x0, x−

e , x+
e , x f ; u−

e , u+
e ; τ0, τe, τ f ; p

)

+
∫ τ f

τ0

F(x(τ ), u(τ ), τ ; p) dτ (10)

can have a representation given by

F(x(τ ), u(τ ), τ, p) =
{

F1(x(τ ), u(τ ), τ ; p) τ ∈ I 1

F2(x(τ ), u(τ ), τ ; p) τ ∈ I 2 (11)

where Fi : R
Nxi × R

Nui × R × P → R, i = 1, 2, so that F is allowed
to have the possibility

lim
τ ↑ τe

F(x(τ ), u(τ ), τ, p) �= lim
τ ↓ τe

F(x(τ ), u(τ ), τ, p) (12)

Note that F is possibly multivalued at the point τe and is, hence, a
multifunction. Similarly, we define the path constraint to be mixed
with state and control variables,

hL ≤ h(x(τ ), u(τ ), τ ; p) ≤ hU (13)

where hL and hU are the lower and upper bounds on the values of
the function and h is

h(x(τ ), u(τ ), τ, p) =
{

h1(x(τ ), u(τ ), τ ; p) τ ∈ I 1

h2(x(τ ), u(τ ), τ ; p) τ ∈ I 2 (14)

where hi : R
Nxi × R

Nui × R × P → R
Nhi , i = 1, 2. If Nh1 = Nh2 , we

allow the possibility

lim
τ ↑ τe

h(x(τ ), u(τ ), τ ; p) �= lim
τ ↓ τe

h(x(τ ), u(τ ), τ ; p) (15)

Finally, we allow the differential constraints to be specified in terms
of a nonsmooth hybrid controlled differential inclusion that may be
specified functionally as

f L ≤ f (ẋ(τ ), x(τ ), u(τ ), τ ; p) ≤ fU (16)

where f L and fU are the lower and upper bounds on the values of
the function f represented by

f (ẋ(τ ), x(τ ), u(τ ), τ ; p) =
{

f 1(ẋ(τ ), x(τ ), u(τ ), τ ; p) τ ∈ I 1

f 2(ẋ(τ ), x(τ ), u(τ ), τ ; p) τ ∈ I 2

(17)

where f i : R
Nxi × R

Nxi × R
Nui × R × P → R

N f i , i = 1, 2. In our
generalized formulation of differential constraints we may also have
(if Nx1 = Nx2 )

lim
τ ↑ τe

ẋ(τ ) �= lim
τ ↓ τe

ẋ(τ ) (18)

in addition to switches in the function f itself. Furthermore, unlike
an ordinary differential inclusion, a controlled differential inclu-
sion is more common in engineering applications. For example, for
|u1| ≤ 1, the system of differential equations

ẋ1 = u1 (19)

ẋ2 = x1u1 cos u2 + x3u3
2 (20)

ẋ3 = x2 sinh u1 (21)

can be readily written as a controlled differential inclusion,

−1 ≤ ẋ1 ≤ 1 (22)

ẋ2 = x1u1 cos u2 + x3u3
2 (23)

ẋ3 = x2 sinh u1 (24)

without losing information by this partial hodograph transformation.
In some situations, a full passage to ordinary differential inclusions
is accompanied by a loss in information.33 In other words, a con-
trolled differential inclusion allows partial elimination of the control
variables, whereas an ordinary differential inclusion demands that
all control variables be eliminated: a severe requirement for dy-
namic systems that are not control affine. In recent years, many
new formulations of dynamics are directly given in terms of differ-
ential inclusions and not through control elimination. See Ref. 34
and the references contained therein for a vast array of examples in
rigid-body dynamics, Ref. 35 for an excellent survey on numerical
methods for differential inclusions, and Ref. 36 for a perspective on
inclusions and other transformations.

Note that our method applies to differential inclusions that may be
functionally specified in ways other than differential inequalities.36

In addition, various scenarios can happen both physically and in
terms of modeling across an event. For example, over one segment,
the dynamics of the problem may be given in terms of an ordinary
differential inclusion,

f L1 ≤ f 1(ẋ(τ ), x(τ ), τ ) ≤ fU1
(25)

that is, absence of control, whereas in another segment it may be
defined in terms of a controlled differential algebraic equation,

f 2(ẋ(τ ), x(τ ), u(τ ), τ ) = 0 (26)

that is, f L2 = fU2 = 0. As noted earlier, such formulations are moti-
vated not just for the sake of mathematical generality but because
practical engineering problems indeed exhibit such complexity. For
example, in the case of a particular example of a low-thrust trajec-
tory with terminal aerocapture,37 the exoatmospheric segment has
only thrusting capability and no aerodynamic controls, whereas the
endoatmospheric segment has no thrusting capability. In addition,
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400 ROSS AND FAHROO

the dimensions of the states and controls are different across the ae-
rocapture event. Other possibilities such as higher-order differential
constraints26 over selected segments are also allowed, but we omit
these descriptions for the sake of clarity in describing a prototype
problem.

We now define our prototype optimal control problem as
follows: Determine the possibly discontinuous switched state-
control function pair [τ0, τ f ] 
 τ �→ {x, u}; the optimal event times
τ0 ∈ R, τe ∈ (τ0, τ f ) and τ f ∈ R; and the parameter p ∈ P that mini-
mize the generalized Bolza cost functional given by Eq. (10), subject
to the differential inclusions of Eq. (16), the mixed-state control path
constraints given by Eq. (13), and the event constraints Eq. (4).

This problem formulation is deceptively simple and is superfi-
cially similar to a somewhat standard Bolza problem except that we
now allow the functions F, f , and h to have nonsmooth and hybrid
characteristics that include possible switchings in their dimensions
across an event. Note that, even if h is smooth, it automatically gen-
erates nonsmooth trajectories32 because of the mixed nature of the
path constraints. That is, even with smooth data, optimal trajectories
can be nonsmooth. Note in our problem formulation that at τe one
or more controls maybe a Dirac delta function that causes a jump
in the state variables. The effect of this Dirac function and its cost
can be modeled in terms of the event pair {E, e}. An example of
this may be found in Ref. 2. Finally, it is apparent that the prototype
problem formulation easily extends to more than one interior event.
Hence, for the purposes of ease of discussion, we describe the PS
knotting method for the case of a single interior event constraint.

PS Knotting Methods
To solve directly the Bolza problem posed in the preceding sec-

tion, two basic discretizations are needed: one for the integral associ-
ated with the cost function and another for the dynamic constraints.
We approximate the integral by a sum (using quadrature over the
LGL or other PS points), whereas the derivative is approximated by a
discrete differential operator. We focus on the Legendre PS method
for the purpose of brevity; the extension to other PS methods is
trivial.

Domain Transformation
In the Legendre PS approximation of the optimal control problem,

the LGL node points lie in the computational interval [−1, 1]. The
time coordinates τ 1 ∈ I 1 = [τ0, τe] and τ 2 ∈ I 2 = [τe, τ f ] are related
to t ∈ [−1, 1] by the following affine transformations:

τ 1 = [(τe − τ0)t + (τe + τ0)]/2, τ 2 = [(τ f − τe)t + (τ f + τe)]/2

This results in the following reformulation of Eqs. (10), (16), and
(13):

J [x(·), u(·), τ0, τe, τ f , p] = E
(
x0, x−

e , x+
e , x f ; u−

e , u+
e ; τ0, τe, τ f ; p

)

+ τe − τ0

2

∫ 1

−1

F1(x(t), u(t), τ (t), p) dt

+ τ f − τe

2

∫ 1

−1

F2(x(t), u(t), τ (t), p) dt (27)

f L1 ≤ f 1

{(
2 ẋ(t)

τe − τ0

)

, x(t), u(t), τ (t), p

}

≤ fU1
(28)

f L2 ≤ f 2

{(
2 ẋ(t)

τ f − τe

)

, x(t), u(t), τ (t), p

}

≤ fU2
(29)

hL1 ≤ h1(u(t), x(t), τ (t), p) ≤ hU1

hL2 ≤ h2(u(t), x(t), τ (t), p) ≤ hU2
(30)

Strictly speaking, we must use different symbols for all of the map-
pings due to the transformation of the domain. However, we abuse

notation here and retain these symbols for the purpose of brevity.
Thus, in this context, one must view x(t) in the first segment, for
example, as

x(τ (t)) = x{((τe − τ0)t + (τe + τ0))/2} ∈ R
Nx1

for τ ∈ I 1.

Problem Discretization
In the Legendre PS method, the LGL node points are closely

related to the Legendre polynomials, which are orthogonal over the
interval [−1, 1] with respect to a unit weight function. Let L N (t) be
the Legendre polynomial of degree N on the interval [−1, 1]. The
LGL points21 tl , l = 0, . . . , N , are given by

t0 = −1, tN = 1

and for 1 ≤ l ≤ N − 1, tl are the zeros of L̇ N , the derivative of the
Legendre polynomial L N . Our method may now be elaborated as
follows: Let the integers N 1 + 1 and N 2 + 1 denote the number of
LGL points on these subintervals and t i

l , i = 1, 2, refer to the corre-
sponding LGL points. The approximate solutions on these intervals
I i are denoted by xNi

for states and uNi
for controls, i = 1, 2,

x(τ ) ≈
{

xN 1
(τ ) τ ∈ I 1

xN 2
(τ ) τ ∈ I 2 (31)

u(τ ) ≈
{

uN 1
(τ ) τ ∈ I 1

uN 2
(τ ) τ ∈ I 2 (32)

where the superscript N i is used for interval i , that is, whether or not
the numerical value of N 1 is equal to N 2. The approximate states
and controls are assumed to be a linear combination of Lagrange
interpolating polynomials φi

l (t), so that we have

xN 1
(τ 1) =

N 1∑

l = 0

x1
l φ

1
l (t), xN 2

(τ 2) =
N 2∑

l = 0

x2
l φ

2
l (t) (33)

uN 1
(τ 1) =

N 1∑

l=0

u1
l φ

1
l (t), uN 2

(τ 2) =
N 2∑

l = 0

u2
l φ

2
l (t) (34)

where τ i = τ(t i ), t is in the computational domain [−1, 1] and
τ i

l = τ i (t i
l ), for l = 0, . . . , N i , i = 1, 2, are the shifted LGL points on

interval I i . Because φi
l (t) are interpolating polynomials, it follows

that

xi
l = xNi (

τ i
l

)
, ui

l = uNi (
τ i

l

)
, ∀i, l

An expression for the Lagrange polynomials that interpolates the
functions at the LGL points is given by21

φi
l (t) = 1

N i (N i + 1)L Ni

(
t i
l

)
(t2 − 1)L̇ Ni (t)

t − t i
l

(35)

for l = 0, 1, . . . , N i , i = 1, 2. The simple ideas described earlier are
already quite revealing in how they apply to the limits described in
Eq. (2). We assume that the operations of limits and approximations
commute so that we can write

x−
e ≈ lim

τ ↑ τe

xN 1
(τ ) = x1

N1
(36)

x+
e ≈ lim

τ ↓ τe

xN 2
(τ ) = x2

0 (37)

Similarly, we get u−
e ≈ u1

N1
and u+

e ≈ u2
0. Thus, the right-hand

sides of Eq. (2) are allowed to be distinct numbers in the
approximation scheme. Because τ 1

N 1 = τ 2
0 = τe, we can have

limτ ↑ τe x(τ ) �= limτ ↓ τe x(τ ), when Nx1 = Nx2 .
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To carry out the discretization of the problem, we impose the
condition that the preceding approximations satisfy the differential
inclusions at the LGL node points on the appropriate subinterval. To
express the derivative ẋNi

[τ i (t)] in terms of xNi
[τ i (t)] at the node

points t i
k , we differentiate Eq. (33) and evaluate the result at t i

k to
obtain a matrix multiplication of the following form for i = 1, 2:

ẋNi (
τ i

(
t i
k

)) =
Ni∑

l = 0

xi
l φ̇

i
l (tk) =

Ni∑

l = 0

DNi

kl xi
l (38)

where DNi

kl = φ̇i
l (tk) are entries of the (N i + 1) × (N i + 1) differen-

tiation matrix DNi

DNi
:= [

DNi

kl

]
:=






[
L Ni

(
t i
k

)/
L Ni

(
t i
l

)] · [1
/(

t i
k − t i

l

)]
k �= l

−[N i (N i + 1)/4] k = l = 0

N i (N i + 1)/4 k = l = N i

0 otherwise

(39)

The discretization of the dynamic constraints can now be carried
out in the following way:

f Ll≤ f 1
(
[2/(τe − τ0)]ẋ1

k, x1
k, u1

k, τ
1
k , p

)≤ fU1
, k = 0, . . . , N 1

f L2≤ f 2
(
[2/(τ f − τe)]ẋ2

k, x2
k, u2

k, τ
2
k , p

)≤ fU2
, k = 0, . . . , N 2

(40)

where the simplified, but somewhat abused, notation ẋi
k =

ẋNi
(τ i (t i

k)) is used. Next, with use of the Gauss–Lobatto integration
rule (quadrature), the Bolza cost function in Eq. (27) is discretized,
and the integrals are approximated by a finite sum,

J N (X, U, τ0, τe, τ f , p) = E
(
x1

0, x1
N1

, x2
0, x2

N2
; u1

N 1 , u2
0; τ0, τe, τ f ; p

)

+ τe − τ0

2

N 1∑

k = 0

F1
(
x1

k, u1
k, τ

1
k , p

)
w1

k

+ τ f − τe

2

N 2∑

k = 0

F2
(
x2

k, u2
k, τ

2
k , p

)
w2

k (41)

where

X ≡ (X1, X2) = (
x1

0, x1
1, . . . , x1

N 1 , x2
0, x2

1, . . . , x2
N 2

)
(42)

U ≡ (U1, U2) = (
u1

0, u1
1, . . . , u1

N 1 , u2
0, u2

1, . . . , u2
N 2

)
(43)

and wi
k are the weights given by

wi
k := [2/[N i (N i + 1)]

(
1
/[

L Ni

(
t i
k

)]2)

i = 1, 2, k = 0, 1, . . . , N (44)

Thus, the event constraint is approximated by

eL ≤ e
(
x1

0, x1
N1

, x2
0, x2

N2
; u1

N 1 , u2
0; τ0, τe, τ f ; p

) ≤ eU (45)

whereas the path constraints is discretized as

hL1 ≤ h1
(
x1

k, u1
k, τ

1
k , p

) ≤ hU1
, k = 0, . . . , N 1 (46)

hL2 ≤ h2
(
x2

k, u2
k, τ

2
k , p

) ≤ hU2
, k = 0, . . . , N 2 (47)

The optimal control problem is, hence, approximated to
the mathematical programming problem of finding coefficients
X = (X1, X2), U = (U1, U2), the parameter p, and possibly the event
times τ0, τe, and τ f that minimize the cost function (41) subject to
the constraints given by Eq. (40) and Eqs. (45–47).

a)

b)

Fig. 2 Knots and nodes.

Knots and Nodes
PS discretization techniques for optimal control problems are

distinctly different from the popular collocation methods including
the new Runge–Kutta schemes (see Ref. 38). One major difference
between PS methods and other methods is that PS methods are dif-
ferentiation methods, whereas a majority of the other methods are
integration methods. That is, PS methods discretize ẋ directly and do
not require f in ẋ = f (x, u) to generate the approximation. In this
sense, PS methods are similar to finite element in time methods,39,40

but offer higher accuracy known as spectral accuracy.41 In modern
terminology,42 PS methods rely on the discretization of the tan-
gent bundle [roughly, the left-hand side of the differential equation,
ẋ = f (x, u)] rather than an approximation of the vector field (the
right-hand side). This is the reason why PS methods have only node
points without extra collocation points. Because PS methods re-
tain much of the differential-geometric properties as well as the
functional-algebraic structures of the optimal control problem, they
can be readily adapted to solve a rich variety of optimal control prob-
lems that include exploiting special properties. To illustrate the ram-
ifications of the proposed method, note that τ 1

N 1 = τ 2
0 = τe = I 1 ∩ I 2;

see the middle arrow in Fig. 2a. That is, we have a double node point
at τe, which is the right Lobatto point of I 1 and the left Lobatto point
of I 2. To distinguish these double-node points from the remainder
of the single-node points (dashed vertical lines in Fig. 2), we use
the word knots. Thus, knots facilitate an accurate characterization
of multifunctions by allowing the value of the function at the knot
to be multivalued. The knotting condition is Eq. (45) and is sim-
ply an approximation of the event condition [Eq. (4)], where the
approximation stems from Eq. (36). Hence, the knotting condition
transfers information at the knots across the two segments 1 and 2.
We call such nodes hard knots, and they are intrinsic to the prob-
lem formulation. For example, the dropping of a stage, that is, mass
discontinuity, in a multistage launch problem defines a hard knot.
Because we may view x0 as limτ → τ0 x(τ ) and consequently define
two distinct values of x0 as x−

0 and x+
0 , it is apparent that we can

regard the initial conditions (event) as part of the general framework
of knots as illustrated by the left arrow in Fig. 2a. The same argu-
ment applies to the final-time conditions as well, as illustrated by
the right arrow in Fig. 2a. Problems with possible end point knots
arise in problems such as aeroassisted maneuvers, where initial and
final delta-V are part of the problem formulation.

Whether or not a problem has hard event conditions, we can use
the concept of knots for various other purposes by defining a false
event of state continuity at an arbitrary point τe,

x−
e ≡ x+

e
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leading to a linear knotting condition

x1
N1

− x2
0 = 0 (48)

We call such knots soft knots. Soft knots have many advantages
because Eq. (48) can be imposed at any point where the state is
continuous; see Eq. (3) and the discussion immediately following
it. Because continuity of the control is not imposed at the soft knot,
the control can take any admissible value at no cost; hence, the knot
facilitates an accurate representation of a control switch, if it exists.
In the examples to follow, soft knots are used to capture accurately
nonsmooth behavior such as corners in states and switches in the
control. We use the terms fixed (hard/soft) knot if τe is fixed and
free (hard/soft) knot if τe is free. Clearly, fixed/free hard knots are
based on problem formulation and fixed/free soft knots are designer
knots.

Non-PS Segments
The concept of knots can also be used to incorporate non-

PS segments5,13 as demonstrated in Ref. 5. To illustrate this no-
tion, consider a three-segment solution over the three subintervals,
I 1 = [τ0, τ1], I 2 = [τ1, τ2], and I 3 = [τ2, τ f ] (Fig. 2b). Suppose that
the trajectory over I 2 is a predefined segment, for example, a coast
arc over an interplanetary trajectory or a straight-line segment in an
obstacle-free zone in the path of a mobile robot. In such cases, it
is clear that it is not necessary to discretize I 2. We now define our
event times as τ1 and τ2 and let

x−
e = lim

τ ↑ τ1

x(τ ), x+
e = lim

τ ↓ τ2

x(τ ) (49)

[Compare Eq. (2).] Thus, the map x−
e �→ x+

e can be quite arbitrary
and becomes part of the event condition, and only the intervals
I 1 and I 3 are discretized. Because the map x−

e �→ x+
e does not even

have to be an analytic expression, it is obvious that a direct-shooting
segment is implied in this formulation. In the same vein, any other
discretization can be performed between two knots. Thus, for exam-
ple, we may discretize I 2 by a standard collocation method and use
the knotting conditions to connect non-PS segments. One reason for
this flexibility is that the PS knotting method is inherently parallel
in the sense that much of the computations that occur between two
adjacent knots can be done independently of those over other knots.

Using Knots for Efficient Scaling
The concept of knots can also be used for effectively scaling a nu-

merical problem, an important practical step in balancing equations
for computational efficiency. This notion can best be explained by
a simple example. Consider the problem of optimizing a low-thrust
interplanetary trajectory. If heliocentric-based canonical units are
uniformly used over multiple planetary encounters, the equations
of motion will be ill balanced near the planetary encounters and
can cause major difficulties in convergence. On the other hand, if
the units are switched near the planetary encounters (for example,
planet-centric canonical units) for balancing the equations, the dif-
ferently scaled variables exhibit an apparent discontinuity although
the actual variables may be continuous. Because it is the scaled vari-
able that is eventually being solved for, the apparent discontinuity
can be easily captured by the concept of knots, where the knotting
condition is simply a continuity of the real variable modeled as an
event condition in the form of a discontinuity of the scaled variable.
An example of such an application of knots is discussed in Ref. 37.

Software
The PS knotting method is implemented in the object-oriented

reusable software package DIDO.13 No knowledge of PS methods
is necessary to use DIDO because all of the concepts delineated
earlier are automated. As an outcome of the ideas described in this
paper, significant generality in problem formulation is allowed. For
example, the cost function may be a function of the derivative ẋ,
as in a neoclassical approach.32 DIDO exploits the problem solv-
ing environment of MATLAB® and uses the suite of mathematical
programming solvers available through TOMLAB.43 Although the

Fig. 3 Typical sparsity pattern for the PS knotting method: white
space represents the zero elements.

Fig. 4 Schematic of the nonsmooth problem of Queen Dido in the Bad-
lands.

default solver in DIDO is SNOPT,44 a sequential quadratic program-
ming (SQP) method,45 identical results (within the numerical accu-
racy of the plots) were also obtained by the use of a new concept of
the filter SQP method46 implemented in filterSQP47 and an interior
point method48 implemented in KNITRO.49 In all cases, the spar-
sity pattern of the PS method is explicitly exploited in various DIDO
constructs, as well as through the TOMLAB solver suite. A typi-
cal sparsity pattern is shown in Fig. 3. In the following section, we
illustrate some of the concepts. Applications to significantly more
complex problems may be found elsewhere, for example, Refs. 5,
7, 9, 37, and 50.

Example 1: Queen Dido and the Badlands
This is the famous nonsmooth problem of Clarke18 based on the

classic smooth isoperimetric problem: Queen Dido is given a rope of
fixed length L and she has to enclose a region of maximum area be-
tween two points, (0, 0) and (1, 0), along a straight shore represented
by x1 = 0 in the τ − x1 plane (Fig. 4). Unlike the classical problem,
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ROSS AND FAHROO 403

Fig. 5 Solution to Queen Dido’s nonsmooth problem.

a more realistic problem formulation requires that we account for
value of the terrain toward the shore being greater than that away
from it. In Clarke’s nonsmooth formulation, the terrain for x1 ≥ α
(dashed line in Fig. 4) is worth half as much as the terrain x1 ≤ α,
where α is some given positive number. When the Mayer formula-
tion suggested by Clarke is used, the problem can be posed as

maximize J = x2(τ f ) (50)

subject to ẋ1 = u (51)

ẋ2 =
{

x1 if x1 ≤ α

(x1 + α)/2 if x1 ≥ α
(52)

ẋ3 =
√

1 + u2 (53)

x1(0) = x2(0) = x3(0) = 0 (54)

x1(τ f ) = 0 (55)

x3(τ f ) ≤ π (56)

Note that in the problem formulation what is also unknown is the
number and sequence of phases in addition to a dwell time, if any,
over the line x1 = α (Fig. 4). In other words, a nonsmooth direct
method should be able to determine such segments automatically
without introducing combinatorial issues related to phases. That the
PS method can indeed do this is demonstrated in Fig. 5 where it
conforms to Clarke’s analytical solution of piecewise circular sub-
arcs. The solution for the smooth problem, that is, constant value of
the terrain, is simply a semicircle and is shown in Fig. 5 for compar-
ison. For the numerical simulation, we chose α = 0.4 and N = 45
somewhat arbitrarily. The solution from the PS method agrees with
Clarke’s theoretical result and reveals that there is no subarc over
the line x1 = α; compare Fig. 5 with Fig. 4. Furthermore, the opti-
mal solution consists of three subarcs with corners at the property
line where the value halves. From Fig. 5, it is apparent that one cor-
ner occurs in the subinterval [0, 0.5] and another one over [0.5, 1].
To capture the corners more accurately, we introduce two free soft
knots. To demonstrate that a more accurate result is possible by
the introduction of these soft knots, we now split the 45 node points
into three equal divisions of 15 points. This result is shown in Fig. 6.
From Fig. 6, it is apparent that free soft knots can be used to locate
corners accurately in the optimal solution.

Example 2: Vertical Ascent of a Two-Stage Rocket
This problem is chosen to illustrate the concept of hard knots and

the mixing of hard and soft knots. Solutions to significantly more

Fig. 6 Solution to Queen Dido’s nonsmooth problem with soft knots.
Note that the soft knots migrate toward the corners.

complex launch-vehicle trajectory optimization problems, including
guidance via real-time optimization, are discussed in Refs. 7 and 50.

The problem is to maximize the final altitude during the vertical
ascent of a two-stage rocket. This is a time-free problem of mini-
mizing

J = −r(τ f ) (57)

subject to the dynamic constraints

ṙ = v (58)

v̇ = −µ/r 2 + T/m (59)

ṁ = −T/ve (60)

where the state variables r , v, and m are radius, speed, and mass,
respectively. The constant parameters in the problem are the nor-
malized gravitational constant µ = 1 and the normalized exhaust
velocity of the rocket, ve = 0.5.

The rocket has two stages. The maximum thrust force on the
rocket is different over each stage and for stage 1 is given by

0 ≤ T ≤ T 1
max = 1.167 (61)

and for stage 2 is

0 ≤ T ≤ T 2
max = 0.875 (62)

The propellent in the first stage is 0.2 units and the drop mass is 0.1
units. Hence, at some unknown time τe, we have a jump discontinu-
ity in the mass given by m−(τe) − m+(τe) = 0.1. We formulate the
switching condition as

r−(τe) − r+(τe) = 0 (63)

v−(τe) − v+(τe) = 0 (64)

m+(τe) = 0.7 (65)

0.1 ≤ m−(τe) − m+(τe) ≤ 0.3 (66)

where the last inequality is simply written to allow the PS method
to drop fuel with the structure. Although it is obvious that fuel
should not be dropped with the structure mass for maximizing the
altitude, this condition is allowed as a self-check on the optimal
solution. In any case, this interior event serves as the hard knot
for this problem. The remainder of the hard knots are given by the
boundary conditions

r(0) = 1.0, v(0) = 0, m(0) = 1.0, m(τ f ) = 0.5 (67)
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404 ROSS AND FAHROO

Fig. 7 Vertical ascent of the two-stage rocket problem.

Fig. 8 Mixing of hard and soft knots for the two-stage rocket problem.

A solution to this problem using the hard-knot option of the PS
method is shown in Fig. 7. Note the set-valued representation at the
hard knot (first stage) and the Gibbs phenomenon near the switch
point during the second stage. This solution was obtained using
40 node (LGL) points with 10 points for the first stage and 30 points
for the second stage. What is immediately apparent from Fig. 7
is the accurate representation of switches in both the thrust and
mass variables, particularly at the point of stage drop. At the point
of stage drop, mass and thrust are represented as multifunctions.
Note also that only the structure mass of the vehicle is dropped
despite the fact that we allowed the code to drop some or all of
the first-stage fuel along with the dry mass. That the final result
does do as expected provides a self-check on the validity of the
solution. The solution also reveals that there is a switch in the thrust
magnitude (from its maximum value of the second stage to zero) at
some point τe ∈ [0.15, 0.25]. That we should have a zero thrust arc
for the terminal subarc is intuitively obvious and provides a second
self-check on the validity of the solution.

To better represent the switch point over the flight of the second
stage, it is apparent that we can use a free soft knot over this portion
of flight. The solution with the introduction of a soft knot (but with
the same total number of nodes) is shown in Fig. 8. Note the set-
valued representation at all knots. It is apparent that the absence
of a soft knot smears the discontinuity in the thrust, an artifact of
the Gibbs phenomenon, whereas the knotting method works well in
capturing switches. Note also that the knots cluster at precisely the
switching points; indeed, this is a natural artifact of the PS knotting

Fig. 9 Radius and velocity for the two-stage rocket problem: repre-
sentation of nonsmooth functions with mixed hard and soft knots.

method. This point is further illustrated in Fig. 9, where the plots of
the radius and velocity are shown. It is apparent from Fig. 9 that the
nondifferentiability in the velocity variable is captured very well by
the PS knotting method.

Conclusions
The concept of PS knots was formally introduced although its im-

plementation in the software package DIDO has been rather widely
used in the literature before the current exposition. PS knotting meth-
ods offer great flexibility in solving smooth, nonsmooth, and hybrid
optimal control problems. Smooth optimal control problems, that is,
problems with smooth data, may generate nonsmooth trajectories,
particularly due to mixed state-control constraints. General compu-
tational methods for solving nonsmooth problems are lacking in the
literature despite their wide applicability to solving practical engi-
neering problems. This paper has demonstrated that PS knots can be
effectively used to address difficulties encountered in solving such
practical problems. Our proposed method can efficiently handle a
vast number of other situations arising in real-world optimal control
problems such as rapid changes in dynamics, state-dependent con-
trol constraints, switching conditions, and generalized event condi-
tions associated with hybrid optimal control problems.
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Boston, 1997, pp. 351–372.

34Stewart, D. E., “Rigid-Body Dynamics with Friction and Impact,” SIAM
Review, Vol. 42, No. 1, 2000, pp. 3–39.

35Dontchev, A., and Lempio, F., “Difference Methods for Differential
Inclusions: A Survey,” SIAM Review, Vol. 34, No. 2, 1992, pp. 263–294.

36Ross, I. M., and Fahroo, F., “A Perspective on Methods for Trajectory
Optimization,” AIAA Paper 2002-4727, Aug. 2002.

37Josselyn, S. B., “Optimization of Low-Thrust Trajectories with Ter-
minal Aerocapture,” Aeronautical and Astronautical Engineering Degree
Thesis, Naval Postgraduate School, Monterey, CA, Dec. 2002.

38Hager, W. W., “Runge–Kutta Methods in Optimal Control and the
Transformed Adjoint System,” Numerische Mathematik, Vol. 87, 2000,
pp. 247–282.

39Hodges, D., and Bless, R., “Weak Hamiltonian Finite-Element Method
for Optimal Control Problems,” Journal of Guidance, Control, and Dynam-
ics, Vol. 14, 1991, pp. 148–156.

40Warner, M., and Bless, R., “ Solving Optimal Control Problems Using
hp-Version Finite Elements in Time,” Journal of Guidance, Control, and
Dynamics, Vol. 23, No. 1, 2000, pp. 86–94.

41Trefethen, L. N., Spectral Methods in MATLAB, Society for Industrial
and Applied Mathematics, Philadelphia, 2000.

42Sussmann, H. J., “Geometry and Optimal Control,” Mathematical Con-
trol Theory, edited by J. Baillieul and J. C. Willems, Springer-Verlag, New
York, 1998, pp. 140–198.
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