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Discussion 770I have read this paper with interest since its subject matter
pertains to our work in embankment dam engineering. As in-
dicated in the paper, there are several procedures devised to
locate a shear surface with the lowest factor of safety, and the
author has presented one more and compared the results of
his procedure with those of others; all based on the limit equi-
librium method of slope stability analysis. The new results are
about the same as the results previously reported by others.

In an attempt to see how the results from a continuum-
mechanics-based procedure will compare with those in-
cluded in the paper, I made a quick analysis of the six prob-
lems using a commercially available computer program,
FLAC (Itasca 1995). Also, I made an analysis of the prob-
lems using the limit-equilibrium-based slope stability analy-
sis procedure SSTAB2 (Chugh 1992). Results of these
analyses form the basis of this discussion.

For Example 3, the values of effective internal friction an-
gle, φ′, given in Table 1 of the paper are different from the
values in the 1996 Greco paper; in fact they are a repeat of
the numbers in the unit weight, γ, column. The values given
in the 1996 Greco paper were used for results included in
this discussion. For the Case 2 problem, Fig. 15 of the paper
was scaled to obtain the data necessary for the analysis.

In limit-equilibrium-based numerical procedures, the ef-
fectiveness of an automated search procedure depends on the
successful performance of a nonlinear equation solver used
to adjust trial values of factor of safety, F, and interslice
force inclination, θ, to achieve a match between the com-
puted and known values of boundary parameters at the other
end of a shear surface. However, there is no assurance that
the solution details associated with the critical shear surface
thus found will necessarily be reasonable. These solution de-
tails are in terms of normal and shear forces at the base of
slices, and interslice forces; their inclination and locations.
Thus a search procedure which does not involve a criterion
for an acceptable solution leaves the task of final selection
of critical shear surface up to the user.

There is no uniqueness in criteria for an acceptable solu-
tion to a slope problem by limit equilibrium procedures. For
the location of interslice forces, some engineers prefer the

middle third of the interslice boundary on the basis of linear
distribution of normal stress, while others accept a solution
in which interslice forces remain within the slide mass on
the basis of nonlinear distribution of normal stress. Simi-
larly, when a soil has cohesive strength, some engineers are
willing to accept a solution with tensile stresses that are con-
sistent with the magnitude of the cohesion value, while oth-
ers consider the tensile strength of the soil to be zero and
introduce a crack at the upper end of a shear surface. Incli-
nation of interslice forces affects interslice shear forces.
Some computer programs check for interslice shear failures,
while others do not. Relying on a computed factor of safety
without checking on the acceptability of the associated solu-
tion details is a mistake and should be discouraged. It would
be helpful to know the criteria the author used in his work.

Also, in limit equilibrium slope stability analysis, a search
for critical shear surface should be preceded by analysis of
shear surfaces of the engineers’ choosing. Such practices
sharpen engineers’ skills to judge the path along which a
sliding failure is likely, if one were to occur. Some of the
shear surfaces included in the paper, especially those with
long-drawn reverse curvatures at their exits, must be numeri-
cal constructs, as those geometries are unlikely to occur even
in an ideal environment where the numerical model condi-
tions could be duplicated, much less in nature. Thus, all of
the slip surfaces attempted in the problems included in the
paper must not have acceptable solution details. This should
affect the final selection of an acceptable critical shear sur-
face. It would be helpful to know what nonlinear procedure
the author used; the slope stability computer program in
which he implemented his search procedure; his experiences
with their use; and if he checked the computed solutions by
examining the details for each shear surface obtained and
what he found. Use of eq. [9] does not necessarily preclude
occurrence of an unacceptable solution to a slope stability
problem in general.

Figures D1–D6 show the results of the problems using the
continuum mechanics program FLAC. There are three parts
to each figure: (a) shows the problem as modeled, (b) the
convergence of trial factors of safety, and (c) the material
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Fig. D1. Example 1. Fig. D2. Example 2.
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state at the onset of slope instability, and the contours of ve-
locity in the horizontal direction at the onset of slope insta-
bility. In these calculations, in addition to the material
properties given in the paper, the elastic constants of bulk
and shear modulus were assigned values of 2 × 1010 and 1 ×
1010, respectively; the tensile strength was specified to be
zero; and the dilation angle was set equal to the friction an-
gle. The units for the values assigned to elastic constants
were the same as those of the cohesion values used. In the
results of FLAC calculations, the potential slip surface is
along the path of velocity discontinuity, which in Figs. D1–

D6 can be taken as the velocity contour of lowest value. Ta-
ble D1 summarizes the converged values of factor of safety
for the sample problems. In general, the location of the slip
surfaces shown in Figs. D1–D5 are in general agreement
with the ones shown in the paper. For the first five prob-
lems, the corresponding factor of safety values are close to
those obtained using the limit-equilibrium-based procedures
and given in the paper, but they are not necessarily the
same. The differences in results are likely due to differences
in the methods of analyses, and (or) unacceptable solution
details for the critical shear surfaces reported in the paper.
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Fig. D3. Example 3.
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For the sixth problem, however, the differences in the factor
of safety by the two methods are significant. It is quite pos-
sible that the problem modeled in FLAC is not the same
problem as the author had modeled. Also, due to lack of in-
formation, no ground water or pseudostatic earthquake was
included in the FLAC model. The problem details modeled
in FLAC and the results obtained are shown in Fig. D6.
These results are interpreted to say the following: (i) if the
rock instability were to occur, it is likely to be in the lower
exposed layer 1; and (ii) only if the lower exposed layer 1
was held in place, a slip surface similar to the one given in
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Fig. D4. Example 4. Fig. D5. Case 1.
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the paper can occur. It would be helpful if the author could
point out the differences in the two problem definitions
since he has an intimate knowledge of the field conditions
and his numerical modeling of them. In general, for complex
situations such as this Case 2 problem, realistic use of con-

tinuum-mechanics-based solution procedures should be most
effective and advantageous.

In the computer program SSTAB2, the problem solving
strategy is through the use of recursive relations for the force
and moment equilibrium for each slice; the nonlinear equa-
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Fig. D6. Case 2.
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tion solver used to simultaneously adjust trial values of
factor of safety and interslice force inclination is RQNWT,
which is a proprietary software of Boeing Aircraft Com-
pany. The automated search scheme is for circular shear sur-
faces only and implements Spencer’s assumption of constant
interslice force inclination. The SSTAB2 program is not de-
signed for rock slopes with the attributes of Problem 6;
therefore, it was not analyzed. Table D1 shows the results
for the first five problems using SSTAB2. It should be noted
that all of the solutions obtained by the SSTAB2 search and
included in Table D1 did not necessarily meet our require-
ments of being an acceptable solution. They are included
here only for comparison purposes. No attempt was made to

investigate their effects on the computed factor of safety.
Details of these results can be obtained from the writer by
request. They are not included here to conserve space.

In our work, we generally report factors of safety to two
significant figures. Only for comparison purposes, extra sig-
nificant figures are included in this write-up.
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Author’s results FLAC results SSTAB2 results

Problem Fs θ Fs Fs θ°

Example 1 1.022 0 1.245 1.053 19.65
Example 2 0.794 0 0.980 0.761 8.91
Example 3 1.395 f(x) = 1; λ = ? 1.398 1.430 18.06
Example 4 1.016 f(x) = 1; λ = ? 1.015 1.026 12.74
Case 1 0.947 f(x) = half sine; λ = ? 1.096 0.960 3.15
Case 2 1.304 f(x) = 1; λ = ? 1.101 Procedure not applicable

Note: Question mark (?) indicates information not given in the original paper.

Table D1. Comparison of results.
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