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Abstract: Wider acceptance of QSARs would result in a constellation of benefits and savings to both private
and public sectors. For this to occur, particularly in regulatory applications, a model’s limitations need to be
identified. We define a model’s limitations as encompassing assessment of overall prediction accuracy,
applicability domain and chance correlation. A general guideline is presented in this review for assessing a
model’s limitations with emphasis on and examples of application with consensus modeling methods. More
specifically, we discuss the commonalities and differences between external validation and cross-validation
for assessing a model’s limitations. We illustrate two common ways of assessing overall prediction accuracy,
depending on whether or not the intended application domain is predefined. Since even a high quality model
will have different confidence in accuracy for predicting different chemicals, we further demonstrate using the
novel Decision Forest consensus modeling method a means to determine prediction confidence (i.e., certainty
for an individual chemical’s prediction) and domain extrapolation (i.e., the prediction accuracy for a chemical
that is outside the chemistry space defined by the training chemicals). We show that prediction confidence and
domain extrapolation are related measures that together determine the applicability domain of a model, and
that prediction confidence is the more important measure. Lastly, the importance of assessing chance
correlation is emphasized, and illustrated with several examples of models having a high degree of chance
correlations despite cross-validation indicating high prediction accuracy. Generally, a dataset with a skewed
distribution, small data size and/or low signal/noise ratio tends to produce a model with high chance
correlation.

We conclude that it is imperative to assess all three aspects (i.e., overall accuracy, applicability domain and
chance correlation) of a model for the regulatory acceptance of QSARs.

Keywords: SAR/QSAR, model limitation, model uncertainty, applicability domain, model validation, chance correlation,
decision forest, consensus modeling.

INTRODUCTION

Quantitative structure-activity relationships (QSARs)
have been widely used in the pharmaceutical industry,
primarily for lead discovery and optimization. QSARs have
also been employed in toxicology [1,2] and regulation [3-5]
and have been particularly cost effective for prioritizing
untested chemicals for more extensive and costly
experimental evaluation. However, for QSARs to receive
wider acceptance by regulatory communities, their
limitations of use needs to be identified [6-9].

Obtaining a good quality QSAR model depends on
many factors, such as the quality of biological data and the
choice of descriptors and statistical methods. Given the
technological advances and broader availability of various
statistical methods and types of descriptors, it is now
relatively easy and straightforward to develop a statistically
sound model. However, methods for quantifying QSAR
limitations of usage have not been addressed adequately and
represent a current challenge to those working in the field
[10]. The limitation of a QSAR model’s applicability can be
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characterized in three distinct areas: (1) overall quality; (2)
applicability domain; and (3) chance correlation.

The importance of validation has been generally
acknowledged, and most QSAR models in the literature are
validated either by cross-validation or external test sets
[11,12]. Model validation for classification models is
typically specified by statistical quality measures of overall
quality such as sensitivity, specificity, false positives, false
negatives and overall prediction. Unfortunately, it is not
typical and often not possible to specify accuracy and
prediction confidence for individual unknown chemicals,
specifically those unknown chemicals with structures
requiring that the model extrapolate beyond the chemistry
space determined by the training set. Differing from overall
model validation, the assessment of applicability domain
involves determining a model’s confidence level in each
prediction. Model validation and applicability domain are
separate assessments addressing model predictivity from
distinct but related perspectives. Assessing chance
correlation is another measure of QSAR quality that is often
not provided with a QSAR model. Assessment of chance
correlation intends to determine whether a valid model can
be developed in the first place. This usually accomplished
by averaging many models where activity classification
(dependent variable) of a training set are randomly shuffled.
Generally speaking, training data of small number, with
skewed activity distributions and low signal to noise ratio
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are most vulnerable to chance solutions, especially with a
larger number of descriptors.

Among the two major types of QSARs, classification-
and regression-based, this review primarily focuses on
quantitatively assessing the limitations of a classification
model, with examples presented for two-class SAR models.
Assessing limitations of regression-based QSARs would be
theoretically similar, but differ in implementation. The usual
QSAR approach is to develop a single model with as large
and diverse of a training set as possible. This approach
inherently results in an applicability domain that is difficult
to determine and that is highly constrained by the training
set. Here we present an alternative approach based on
consensus of predictions of multiple models where the
applicability domain is readily determinable.

This review will first present an overview of the
methodological approaches to consensus modeling. Next, we
will discuss the commonalities and differences between
cross-validation and external validation in assessing a
QSAR’s limitations. Several examples will be given to
illustrate how to assess a model’s limitations for a novel
consensus method, Decision Forest (DF), developed in our
lab, including model validation, applicability domain and
chance correlation. The emphasis of the review will be our
current thinking and direction in QSARs with respect to the
regulatory acceptance of QSARs.

CONSENSUS MODELING

Consensus modeling has been investigated for many
years in the field of statistics as a means of combining
multiple individual models to produce better single
predictions [13]. A thorough review of this subject can be
found in a number of papers [14-16]. The critical and
implicit assumption in consensus modeling is that multiple
models will effectively identify and encode more aspects of
the SAR relationship than will a single model [17]. The
corollaries are that combining several identical models
produces no gain, and benefits of combining can only be
realized if individual models give different predictions. In
other words, benefits of combining are only expected if
separate models encode differing aspects of how activity
depends on structure. An ideal combined system should
consist of several accurate but independent models. More
recently, we also found that the information gained from
combining models provides valuable indication in assessing
prediction confidence for individual chemicals, which is
usually difficult to obtain from a single SAR model [17].

In consensus modeling, individual models can be
developed based on either the same or different methods. For
example, we developed a screening procedure using four
phases of separate models based on different methods for
prioritizing potential environmental endocrine disruptors
[18,19]. In Phase II, we combined 11 models, i.e., three
structural alerts, seven pharmacophores and one Decision
Tree (DT) model. The combined results dramatically reduced
false negatives, which is important for regulatory
applications. Alternatively, the individual models can be
developed using the same modeling methods, such as
artificial neural networks [20-22] and DT [23,24].
Combining models derived from the same method can be

effective in reducing noise-induced error in individual
models.

There are many approaches to consensus SAR modeling.
Among the simplest is developing individual models using
differing chemicals that are randomly selected from the entire
original training dataset [25], as illustrated in Fig. 1 .
Recently, we found that even combining ten models based
on ten datasets from a 10-fold cross-validation procedure
enhanced the overall performance of prediction [26].
Alternatively, the training set can be generated using more
robust statistical “resampling” approaches, such as Bagging
[27] or Boosting [28] (Fig. 2). Both methods have been
reported to improve predictive accuracy. However, it has also
been demonstrated that when Boosting heavily weighs
incorrect predictions during individual model development,
there is inherent risk of over fitting noise associated with the
SAR data, resulting in a worse prediction from an ensemble
model [28].

The aforementioned resampling approaches use only a
portion of the dataset for constructing the individual models.
Care must be taken because using a substantial portion of
datasets (e.g., 90%) tends to result in individual models that
are highly correlated, whereas using a less substantial
portion of datasets (e.g., 70%) tends to result in individual
models of lower quality. Either highly correlated or lower
quality individual models can reduce the benefit obtained
from combining that might otherwise be realized. Moreover,
since each chemical in a dataset encodes some SAR
information, reducing the number of chemicals in a training
set for model construction will weaken most individual
models’ predictive accuracy. Logically, it follows that
reducing the number of chemicals also reduces the
improvement in a combining system gained by the
resampling approach. Having too few chemicals in the
training set is too frequent a problem in SAR modeling that
compromises both individual and consensus models.

Alternatively, multiple models can be developed using
different sets of descriptors [29]. One popular DT-based
consensus method (consensus tree method), random forests,
has been demonstrated to be more robust than a Boosting
method [30]. In this method, a small number (subset) of
descriptors is randomly selected from the original descriptor
pool in every split for growing a tree, and a descriptor in the
subset giving the best split is chosen for splitting. Usually,
this method needs to grow a large number of individual trees
(>400) for convergence and could generate many correlated
trees that increase bias in prediction. To keep correlation
low, each tree is grown on a boostrap sample (resampling) of
the training set in the current version of random forest.
However, in a recent example of applying this method for
classification of naïve in vitro drug treatment sample based
on gene expression data showed reduced prediction accuracy
of random forests (83.3%) compared to DT (88.9%)[31].

It is important to note that the aforementioned techniques
rely on random selection of either samples or descriptors to
produce individual models. In each repeat, the individual
models of the ensemble are different, making the biological
interpretation of the ensemble less straightforward.
Additionally, since only a portion of the original training
chemicals is used for developing individual models, all
SAR information in the training set is not incorporated,
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Fig. (1). A resampling method. A dataset is first randomly divided into two sets, e.g., 2/3 for training and 1/3 for testing. A model
developed with the training set is accepted if it gives satisfactory predictions for the testing set. A set of predictive models is
generated by repeating the procedure, and the predictions of these models are then combined when predicting a new chemical.

Fig. (2). Consensus modeling based on Bagging and Boosting. Bagging is a “bootstrap” ensemble method by which each model is
developed on a training set that is generated by randomly selecting chemicals from the original dataset. In the selection process,
some chemicals may be repeated more than once while others may be left out so that the training set is the same size as the original
dataset. In Boosting, the training set for each model is also the same size as the original dataset. However, each training set is
determined based on the performance of the earlier model(s); for the next training set, chemicals that were incorrectly predicted by the
previous model are chosen more often than chemicals that were correctly predicted.

possibly reducing the full benefits otherwise attainable when
combining multiple models.

Recently, we reported a novel DT-based consensus
modeling method, named Decision Forest (DF) [17] that
emphasizes the combining of heterogeneous yet comparable
trees in order to better capture the association of structure
and biological activity. The heterogeneity requirement
assures that each tree uniquely contributes to the combined
prediction; whereas the quality comparability requirement
assures that each tree equally contributes to the combined

prediction. Since a certain degree of noise is always present
in biological data, optimizing a tree inherently risks over
fitting the noise. DF attempts to minimize over fitting by
maximizing the difference among individual trees, which
could result in cancellation of some random noise when trees
are combined. As depicted in Fig. 3 , the maximum
difference of trees is achieved by constructing each
individual tree using a distinct set of descriptors. There are
three derived benefits associated with DF compared with
other similar consensus modeling methods: (1) since the
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difference in individual trees is maximized, a best ensemble
is usually realized by combining only a few trees (i.e., 4 or
5), which consequentially reduces computational expense ;
(2) since DF is entirely reproducible, the SAR relationships
are constant in their interpretability for biological relevance;
and (3) since all chemicals are included in individual tree
development, the SAR information in the original dataset is
fully appreciated in the combining process.

Fig. (3). Overview of Decision Forest (DF). The individual trees
are developed sequentially, where each tree uses a distinct set of
descriptors. Classification (i.e., prediction) of an unknown
chemical is based on the mean results of all trees.

EXTERNAL VALIDATION VERSUS CROSS-
VALIDATION

A model fitted to the training set has minimal utility
unless it can be generalized to predict unknown chemicals.
The ability to generalize the model is an imperious
requirement for the regulatory acceptance of QSARs. Most
experts in the QSAR field, as well as the present authors, are
emphatic that a model's predictive capability minimally
needs to be demonstrated using some sort of cross-validation
or external validation procedures. Although both procedures
share many common features in principle, they are different
in both ability and efficiency in assessing a model’s overall
prediction accuracy, applicability domain and chance
correlation during implementation and execution.

When sufficient data is available, a fitted model should
be validated by predicting chemicals not used in the training
set, but whose activities are known (the test set). This
external validation method is analogous to a real-world
application. However, external validation lacks validity
unless the test set is sufficiently large and diverse, and
encompasses the chemical space of the intended application.
Using a small number of test set chemicals is inadequate for
validation and also possibly wastes valuable data that
otherwise could improve the overall quality of a model.
Design of the test set in terms of size and diversity and,
most importantly, suitably for the intended application is
the principal prerequisite for acceptable external validation.
Most QSAR models for which external validation has been
used does not use a designed test set for a pre-specified
application domain. As a matter of fact, it is surely
meaningless to design a test set without knowing how the
model will be applied, which, in fact, accounts for most
QSAR applications. Although the external validation
method might be able to discover the classes of chemicals
that are not well predicted by the model, it generally
provides only an overall assessment of a model with little

indication of the prediction confidence for individual
chemicals. In other words, external validation is of little
value for assessing the applicability domain.

A common practice for defining a test set in external
validation is to randomly select a portion of chemicals from
a dataset. From this perspective, cross-validation provides a
similar measure of model performance for a given and fixed
set of chemicals. In cross-validation, a fraction of chemicals
in the training set are excluded, and then predicted by the
model generated from the remaining chemicals. When each
chemical is left out one at a time, and the process is repeated
for each chemical, it is known as leave-one-out cross-
validation. If the training set is divided into N groups with
approximately equal numbers of chemicals, and the process
is repeated for each group, it is called N -fold cross-
validation. The 10-fold cross-validation procedure is
commonly used to assess the predictive capability of a
classification model. It appears that, by comparing with
external validation, cross-validation provides a systematic
measurement of a model’s performance without the loss of
chemicals set aside for testing. It is necessary to point out
that the cross-validation results vary for each run due to
random partitioning of the dataset, and thus it is
recommended to repeat the cross-validation process many
times [32]. The average result of the multiple cross-
validation runs provides an unbiased assessment of a
model’s predictivity.

Most, if not all, classification methods require selection
of the relevant or informative descriptors before modeling is
actually performed. This is necessary because the method
could otherwise be more susceptible to the effects of noise.
The a priori selection of descriptors, however, carries with it
the additional risk of so-called “selection bias” [33] when the
descriptors are selected before the dataset is divided into the
training and test sets (Fig. 4A). Because of selection bias,
both external validation and cross-validation could
significantly overstate prediction accuracy [34]. To avoid
selection bias, the descriptor selection should be made after
the dataset splitting (Fig. 4B). It appears that this procedure
is much easier to implement in external validation than in
cross-validation because the computational cost maybe
prohibitive for iterative descriptor selection during cross-
validation for many classification methods. However, the
tree-based methods, including both DT and the consensus
tree methods, hold the advantage of avoiding the selection
bias during cross-validation, because the model is developed
at each cycle by selecting the descriptors from the entire pool
of descriptors. The cross-validation thereby provides a
realistic, unbiased assessment of the predictivity in a
consensus tree model.

Given a constant set of chemicals, we feel that cross-
validation is more powerful in measuring model performance
than external validation with respect to assess overall
prediction accuracy, applicability domain and chance
correlation.

MODEL VALIDATION

In general terms, SAR model validation has the purpose
of demonstrating the overall prediction quality of the model.
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Fig. (4). Two procedures involving descriptor selection in validation processes: (A) descriptor selection occurs before dataset
splitting (selection bias); and (B) descriptor selection occurs after dataset splitting (correct procedure). The solid line illustrates the
external validation process while both solid and dashed lines together are for the cross-validation process.

Fig. (5). Schematic presentation of a model-driven selection method to construct a test set. In Step 3, two diversity analysis methods
can be used to select N chemicals from one category (N=lA for the active category and N=lI for the inactive category): (1) Group this
category of chemicals into N clusters on the basis of their structural similarity using clustering methods, and one chemical from each
cluster is randomly selected; and (2) Group this category of chemicals into n clusters (n<N), different number of chemicals are
randomly selected from each cluster using a weighted factor, and the total number of chemicals will be N. Both approaches have been
used in drug discovery for hit selection, and the weighted approach has proven to be more efficient.

How and the extent to which validation is done, however,
largely depends on the model’s intended use.

If the model is to be applied to a known population of
chemicals, regulatory acceptance of the model could depend
entirely on the results of validation carried out that is
specific to the particular chemical population. The model’s
validity can be demonstrated by comparing the predicted
results with the experimental results on an external test set
that is objectively selected from the application population.

Consequently, the unbiased selection of an appropriate test
set becomes an essential step in determining the validity of
the model. The selected chemicals should represent the
diversity of molecular structure and activity of the
application population, and the selection process should
provide statistically significant data to assess false positives
and false negatives. Fig. 5 depicts a model-driven selection
method to determine a test set that meets the aforementioned
criteria.
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Fig. (6). Depiction of the recursive process used in our lab to develop QSAR models for predicting estrogen receptor binding. The
process starts with data from an initial set of chemicals from the literature for QSAR modeling. Next, the preliminary QSAR models are
used prospectively to define a set of chemicals that will further improve the model’s robustness and predictive capability. The new
chemicals are assayed, and these data are then used to challenge and refine the QSAR models. Validation of the model is critical. The
process emphasizes the living model concept.

In many cases, however, an intended chemical
application domain is broadly or vaguely defined, such as
“the model will be used to predict estrogenic activity for the
environmental chemicals”. In these cases, the chemical
structure domain intended for application is not entirely
known, and is perhaps not entirely knowable, prior to either
model development or validation. Validation for such
models is best undertaken as part of a recursive process of
incremental improvement, as depicted in Fig. 6, where such
a process was employed to predict potential environmental
endocrine disruptors [35]. More specifically, the QSAR
model is essentially a “living model” that is successively
challenged as new data are available, where incorrectly
predicted chemicals are investigated to determine whether
their inclusion in the training set will further improve the
model’s robustness and predictive capability. If so, the new
chemicals will be assayed and incorporated into the model.
Although this is a natural process with many benefits
[12,35], it has the drawback of being reactive in nature.
While confidence in model prediction may grow over time
as the training set expands, there is no quantitative measure
of prediction accuracy available when the model is
challenged by new untested chemicals.

APPLICABILITY DOMAIN IN CONSENSUS TREE
METHODS

Discussion in the literature regarding the accuracy or
acceptability of QSARs will often state the need to define a
QSAR’s applicability domain. In fact, however,
applicability domain means different things to different
modelers, and would unavoidably be quantified with
different parameters for different modeling and statistical
techniques [10]. Since a single simple definition of
applicability domain is not feasible, and its conceptual
purpose is in model quality, applicability domain might
best be viewed for measures of confidence in each prediction
when the overall quality of a model is acceptable.

We describe applicability domain for consensus tree
models as being determined by two parameters: (1)
prediction confidence, or the certainty of a prediction for an
unknown chemical; and (2) domain extrapolation, or the
prediction accuracy of an unknown chemical that lies outside
of the chemistry space of the training set chemicals [36].
Both parameters can be quantitatively estimated in the
consensus tree approaches, where individual models are
developed based on DT. Taken together, prediction
confidence and domain extrapolation assess the applicability
domain of a model for each prediction.

For each tree in a consensus tree model, the probability
(0-1) for an unknown chemical to be active is taken to be the
percentage of active chemicals in the terminal node to which
the chemical belongs. Consequently, for the consensus tree
model, the mean probability value for a chemical can be
calculated by simply averaging the probabilities across all
individual trees (or other combining methods such as
voting). Chemicals that have a probability larger than 0.5 are
designated active, whereas those that have a mean
probability less than 0.5 are designated inactive.
Importantly, this mean probability is also a measure of the
confidence of each prediction. Specifically, larger
probabilities approaching one correspond to high confidence
that the chemical is active. Correspondingly, smaller
probabilities approaching zero correspond to high confidence
the chemical is inactive. Conversely, probabilities near 0.5
are the most equivocal and correspond to low confidence
whether the prediction is active or inactive [37].

Fig. 7 gives an example illustrating how prediction
accuracy and prediction confidence are related. Prediction
accuracy is plotted versus prediction confidence for both DF
and DT for a problem where 2000 runs of 10-fold cross-
validation for a dataset (ER232 that contains 232 chemicals)
that was used to model estrogen receptor binding activity
[36]. A strong trend of increasing accuracy with increasing
confidence is readily apparent for both DF and DT, as is the
substantially higher accuracy for DF across the entire range



Assessing QSAR Limitations Current Computer-Aided Drug Design, 2005, Vol. 1, No. 2     201

Fig. (7). DF prediction accuracy versus confidence level for ER232 based on 2000 runs of 10-fold cross-validation.

Table 1. Prediction Accuracy in the HC and LC Regions for ER232 Based on 2000 Runs of 10-Fold Cross-Validation

Decision Forest Decision Tree

High Low High Low

Prediction Accuracy 86.5% 63.8% 77.3% 66.7%

81.9% 76.7%

of Confidence Level (The Confidence Level is defined as |Pi
– 0.5| / 0.5, where Pi is the probability value for chemical
i.). Table 1  compares the high confidence (HC), low
confidence (LC) and overall prediction accuracy when HC
and LC are defined as Confidence Level > 0.4 and < 0.4,
respectively. For DF, the HC prediction accuracy is ~86%,
~22% higher than the LC prediction accuracy (~64%), and
~5% higher than the overall prediction accuracy. In contrast
for DT, the HC prediction accuracy is only marginally better
than total prediction accuracy. The minimum improvement
in DT is a direct consequence of over fitting with DT
resulting in 95% of predictions being HC, compared with
only 80% for DF. The results demonstrate that the
consensus tree model gives a better assessment of prediction
confidence than does the single tree model.

Defining the training domain is the prerequisite for
assessing the domain extrapolation. Commonly in QSAR, a
training domain is viewed as an N -dimensional space
defined by the N descriptors used by the model and could be
called the global domain. In a tree, however, the
classification of an unknown chemical is determined by only
one terminal node that is descendent from the root node
through a set of “IF-THEN” rules based on k descriptors xi
(i=1, … k) as illustrated in Fig. 8. Analogous to the global
domain, the training domain for a tree, and by rational
extension for a DF model, can be defined as a k-dimensional
space, called the focused domain. For the datasets we have
evaluated, there was no appreciable difference in results for
global domain compared to focused domain [36]. Fig. 9
shows the results of evaluation of DF domain extrapolation

for two training datasets, ER232, and a larger ER1092
(contains 1092 chemicals with estrogen receptor binding
activity) [36]. Specifically, the plot compares the overall
prediction accuracy for chemicals within the training domain
with accuracy for chemicals falling several degrees of

Fig. (8). The focused domain representing the training domain
of a tree. For an unknown chemical predicted by the tree, its
classification is determined by a terminal node (e.g., dark circle)
to which it belongs. There are three descriptors used in the path
(bold line) from the root to the terminal node and the range of
these three descriptors across all chemicals in the training set
determines the training domain.
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Fig. (9). DF prediction accuracy versus domains extrapolation for ER232 and ER1092 based on 2000 runs of 10-fold cross-
validation. Domain extrapolation (d) for a chemical is defined as a percentage away from the focused domain as illustrated in Fig. (8),
while the prediction accuracy for the domain d is calculated by dividing correct predictions by total number of chemicals in this
domain.

Fig. (10). DF prediction accuracy versus domain extrapolation for ER232 and ER1092 in both HC and LC regions based on 2000 runs
of 10-fold cross-validation.

extrapolation outside the focused domain. In general, the
farther away the chemicals are from the training domain, the
lesser the prediction accuracy. For ER232, the prediction

accuracy is some 10% less for chemicals having 10%
extrapolation. In contrast, for ER1092, a marked decrease in
accuracy only occurs beyond 30% extrapolation.
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Fig. (11). Assessment of the chance correlation in DF for four datasets listed in Table 3. For each graph, the null distribution (-------) is
generated from the results of 10-fold cross-validation on 2,000 pseudo datasets while the real distribution (  ) is derived from
2,000 runs of 10-fold cross-validation for the original dataset.

It is generally acknowledged that a model’s prediction
accuracy largely depends on the size and diversity of the
training set. It is also widely acknowledged that models
from a larger training set yield predictions with greater
confidence, even for the chemicals that are less well
represented by the training set. Despite the broad acceptance
of these concepts, they have actually not been well tested in
a quantitative sense. The results shown in Fig. 7 and 9,
taken together, offer compelling substantiation that larger
training sets provide predictions with both greater accuracy
and confidence. The results also suggest that a DF model’s
applicability domain can be well determined by two
inextricably linked concepts, prediction confidence and
domain extrapolation.

Fig. 10 combines the results of Figures 7 and 9 in order
to examine the relative importance of prediction confidence
and domain extrapolation. Prediction accuracy is plotted
versus domain extrapolation for each dataset (ER1092 and
ER232), with separate bars distinguishing predictions in HC
and LC domains. Figure 10 shows the trend of decreasing
prediction accuracy with increasing extrapolation in the HC
region, for both ER232 and ER1092 datasets, which is
consistent with the results shown in Figure 7. In contrast,
the LC region prediction accuracy is consistently lower and
exhibits no discernable trend with extent of extrapolation for
both datasets. The results imply that the model’s
applicability domain is predominantly determined by
prediction confidence. For the HC predictions, the accuracy

is dependent on domain extrapolation. However, for the LC
predictions, the prediction accuracy is substantially lower
and fairly insensitive to extent of domain extrapolation.

ASSESSMENT OF CHANCE CORRELATION

Testing whether a fitted SAR model is, in fact, a chance
correlation is highly recommended. Testing becomes
increasingly imperative for smaller training data sets, with
increasing numbers of descriptors, with increasing noise in
biological data, and with an increasing skew of numbers of
chemicals across activity categories. All of these conditions
increase the omnipresent risk of obtaining a chance
correlation lacking predictive value.

To assess the degree of chance correlation, we first generate
many pseudo datasets (e.g., 2000 pseudo datasets) using a
randomization test, where the activity classification is
randomly scrambled across all chemicals in the training set.
Next, we apply a 10-fold cross-validation on each of pseudo
datasets. The null distribution, i.e., the distribution of
prediction accuracy for all pseudo datasets, can then be
compared with the distribution of multiple 10-fold cross-
validation results derived from the real dataset. The degree of
chance correlation in the predictive model can be estimated
from the overlap of the two distributions.

Fig. 11 shows the results of a test for chance correlation
of DF models to predict liver carcinogenicity based on four



204    Current Computer-Aided Drug Design, 2005, Vol. 1, No. 2 Tong et al.

Table 2. DF 10-Fold Cross-Validation Results for Four Liver Carcinogenicity Datasets Obtained from Testing on Two Species,
Rat and Mouse, for both Sexes

Datasets # of Cmpds # of carcinogens # of non-carcinogens Cross-validation accuracy (%)

Female mouse 247 60 187 74.6

Male mouse 241 48 193 80.1

Male rat 230 28 202 88.5

Female rat 237 21 216 89.8

Fig. (12). Assessment of the chance correlation in DF for ER232, an estrogenic dataset that contains 232 chemicals tested in an
estrogen receptor binding assay. The same assessment described in Fig. (10) was used in this test.

datasets. Although high cross-validation results were
obtained for the models based on these four datasets (Table
2), there was a significant overlapping between the null and
real distribution for each dataset (Fig. 11), indicating high
degree of chance correlations for these models.

In another example, we compared the null distribution
for 2,000 pseudo datasets with the real distribution generated
from 2,000 runs of 10-fold cross-validation for ER232. As
shown in Fig. 12, the distribution of prediction accuracy of
the real dataset centers around 82% while the pseudo datasets
are near 50%. The real dataset has a much narrower
distribution compared to the pseudo datasets, indicating that
the training models generated from the cross-validation
procedure for the real dataset give consistent and high
prediction accuracy within corresponding test sets. In
contrast, as expected, the prediction results of each pair of
training and test sets in the 10-fold cross-validation process
for the pseudo datasets varied widely, implying a large
variability of signal/noise ratio among these training
models. Importantly, there is no overlap between two
distributions, indicating that a statistically and biologically
relevant DF model could be developed using the real dataset.

CONCLUSION

Any QSAR model will produce some degree of error. It
is highly desirable in regulatory applications to identify the

limitations of a model. Being able to quantitatively assess
the accuracy limitation of each specific prediction allows
selection of alternative methods, whether in silico or
experimental, to augment or supplant unreliable predictions,
thus improving the value and utility of QSAR-based risk
assessment. Assessing model limitations is a vital step
towards the regulatory acceptance of QSARs.

A model’s limitations should be assessed from three
different perspectives: (1) overall model predictivity (model
validation); (2) individual prediction confidence
(applicability domain); and (3) chance correlation. These can
be more readily assessed in the consensus tree modeling
such as the DF method than other SAR methods. Using DF
as an example, we have found that in DF:

� Combining multiple valid trees that use unique sets
of descriptors into a single decision function produces
a higher quality model than individual trees.

� The prediction confidence and domain extrapolation
can be readily calculated and constitutes the definition
of applicability domain for DF.

� Since the descriptor selection and model development
are integrated, the cross-validation avoids descriptor
selection bias and is a more useful means than the
external validation in assessing a model’s limitations.

� Carrying out many runs of cross-validation is
computationally inexpensive and provides an
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unbiased assessment of a model’s predictive
capability, applicability domain and potential chance
correlation.
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