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Toroidal bubbles with circulation are studied numerically and by means of a 
physically motivated model equation. Two series of computations are performed by 
a boundary-integral method. One set shows the starting motion of an initially 
spherical bubble as a gravitationally driven liquid jet penetrates through the bubble 
from below causing a toroidal geometry to  develop. The jet becomes broader as 
surface tension increases and fails to penetrate if surface tension is too large. The 
dimensionless circulation that develops is not very dependent on the surface tension. 
The second series of computations starts from a toroidal geometry, with circulation 
determined from the earlier series, and follows the motion of the rising and spreading 
vortex ring. Some modifications to the boundary-integral formulation were devised 
to  handle the multiply connected geometry. The computations uncovered some 
unexpected rapid oscillations of the ring radius. These oscillations and the spreading 
of the ring are explained by the model equation which provides a more general 
description of vortex ring bubbles than previously available. 

1. Introduction 
Vortex ring bubbles are fairly easy to  create. There is a photograph in the National 

Geographic Magazine (Earle & Giddings 1976) which shows a diver (Giddings) twenty 
feet below the surface, exhaling a series of toroidal bubbles. These are air-core vortex 
rings, with approximately constant core volumes perhaps as large as half a litre, 
which expand to be rings of the order of two feet in diameter as they rise towards the 
surface. J. G. Brasseur (private communication, 1989) observed a dolphin a t  Sea 
World, San Francisco to blow a ring bubble and then swim through it, apparently for 
amusement. D. McSweeny (private communication, 1990), a whale scientist, diver 
and professional photographer, has observed whales blowing ring bubbles. Vortex 
ring bubbles can be created by manually letting air bubbles into the neck of an 
inverted gallon jug filled with water. 

There are several studies of vortex ring bubbles in the fluid dynamics literature. 
Turner (1967) has studied buoyant vortex rings, and includes constant-volume 
vortex ring bubbles as a special case. Turner used the concept of the impulse of a 
vortex ring to predict the spreading rate of the ring. Vortex ring bubbles were 
studied experimentally by Walters & Davidson (1963). These authors created vortex 
ring bubbles by rapidly opening and closing an air jet in the bottom of a water tank, 
obtaining ring bubbles with volumes from 6 to 110 om3. These are observed to  spread 
as they rise as Turner predicted, but there were no measurements of the spreading 
rate. Pedley (1968) pointed out that  vortex ring bubbles have a finite lifetime. 
Ultimately they are destroyed by surface tension instabilities. This will be discussed 
below. 
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FIGURE 1. Growth rate versus wavenumber for a cylindrical bubble with circulation. Instability 
occurs when w2 is negative. 

Large spherical cap bubbles can be created under conditions similar to those for 
vortex ring bubbles and are more frequently observed. Davies & Taylor (1950) 
created spherical cap bubbles, with volumes from 4.5 to 200 cm3, by tilting an 
inverted beaker of air under water. It appears that large vortex ring bubbles and 
spherical cap bubbles of the same volume can be created by slightly different initial 
conditions. 

The vort,ex ring bubbles described above are all of a fairly large size. Small vortex 
ring bubbles occur as a result of the collapse of cavitation bubbles near boundaries 
(Blake & Gibson 1987). The emphasis of the present study will be on large, persistent, 
gravitationally driven vortex ring bubbles. 

Large vortex ring bubbles appear, from the observations cited above, to be very 
stable. Rayleigh (1 892) showed that two-dimensional cylindrical bubbles are unstable 
to axially symmetric disturbances with wavelength longer than the circumference. 
Ponstein (1959) showed that circulation has a strongly stabilizing effect. Ponstein 
studied the stability of a two-dimensional bubble about which there is an irrotational 
swirling flow with V ,  = r,/2xr for r 2 a, where a is the radius of a straight cylindrical 
bubble and r, the circulation about it. For axially symmetric solutions of the form 
exp [i(kz-wt)], the result is 

where T is surface tension and p the density of the liquid. When r, = 0 this is 
Rayleigh’s result. Stability occurs when w2 is positive, therefore when 

Stability occurs a t  all wavelengths when 

Stability curves are shown in figure 1. As r, increases, the range of unstable wave- 
numbers shifts towards longer waves and the maximum growth rate becomes smaller 
until the flow becomes completely stable when (1.3) is satisfied. The steepness of the 
curves near k = 0 is caused by the logarithmic singularity of K,(ka). 
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Equation (1.3) would appear to show persistent stability for vortex ring bubbles, 
since the core radius a decreases slowly as the ring expands (assuming constant 
volume of the air core), thus strengthening the inequality. Pedley (1968) showed that 
viscous effects lead one to the opposite conclusion. 

Pedley (1967) showed that if the swirling velocity outside a cylindrical bubble is 
not irrotational, but has circulation which increases outward from the bubble, the 
stability criterion for axially symmetric disturbances is the same as (1.2) and (1.3), 
with r, in these expressions being the circulation about a contour at the bubble 
surface. That is, the stability depends only on the swirling velocity a t  the bubble 
surface and not on the surrounding vorticity distribution. In a later paper, Pedley 
(1968) applied this result to the stability of the viscous vortex ring bubble, modelling 
it as a cylindrical bubble in an axial strain field in order to allow for the decreasing 
radius of the bubble as the ring spreads. Zero shear stress at the bubble surface 
implies a continuous source of vorticity which diffuses outward, causing a slowly 
evolving rotational swirling flow. Since the circulation about a contour outside the 
rotational region must remain constant, the circulation around the bubble surface 
itself must decrease continually with time. He showed that the criterion (1.3) will 
finally be violated, despite the shrinking core radius, and the bubble will be 
destabilized. The bubble must rise a considerable distance before this occurs. 
Instability was not observed in Walters & Davidson’s 3 f t  high tank (Pedley 
estimated it would require a tank more than 5ft  deep), nor in the much greater 
distance (nearly 20 ft)  exhibited in Earle & Giddings article. D. McSweeny (private 
communication, 1990) says vortex rings exhaled by divers can rise 50 to 60 ft  before 
breaking up into a ring of smaller bubbles. 

The purpose of this paper is to study the motion of vortex ring bubbles by means 
of a boundary-integral method. No other computations of vortex ring bubbles are 
known. The numerical aspects of the problem are very similar to  those used by 
Lundgren & Mansour (1988) ; therefore, except for a brief review, only modifications 
required by the different geometry are presented. This material is to  be found in $Q3 
and 4 and the results of the computations in $$5 and 6. Many aspects of our 
computations can be understood by means of a simple model equation which we 
present first in $2. 

2. A model equation for a vortex ring bubble 
The physics of vortex ring bubbles can be understood from a simple model 

equation which yields Turner’s spreading law as a special case. We find some results 
which cannot be obtained by Turner’s method. 

The velocity of advance of a hollow circular vortex ring with circular section is 
given by the formula (Hicks 1884) 

vB = &(lnx-z), 8R 1 

where R is the ring radius and a the core radius. This formula does not account for 
the buoyancy of the ring. 

Let u be the velocity of a point on the ring centreline relative to the velocity given 
by (2.1). A force-momentum balance on a section of a slender ring, treated as locally 
two-dimensional, gives 

du 
PA- dt = p r ,  f x  u+pAgR. (2.2) 
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The term on the left is the apparent mass per unit length times acceleration. The 
bubble, being air filled, has little mass of its own. The apparent mass per unit length 
is the same as for a circular cylinder. The first term on the right is the 
Kutta-Joukowski lift per unit length on a vortex in a cross-flow. It acts 
perpendicularly to the relative velocity u. The unit vector f is  along the centreline of 
the vortex, in the direction of the vorticity. The last term is the buoyancy force per 
unit length acting in an upward direction. We could add to this a surface tension 
force acting toward the centre of the ring. Equations of this kind, which use 
Kutta-Joukowski lift, have been discussed and used by Widnall & Bliss (1971), 
Moore & Saffman (1972) and Lundgren & Ashurst (1989). 

Equation (2.2) is general enough that it could be applied to a non-circular vortex ; 
however, we shall assume that it is circular with constant properties around the 
circumference. Then the cross-section area A (  = nu') is related to the ring radius R 
by a constant-volume assumption (which will be relaxed in future work) 

2nRA = &r:, (2.3) 

where ro  is the equivalent spherical radius of the bubble. Thus a in (2.1) can be 
given by 

The components of (2.2) yield the following system of dimensionless equations : 

d v  
dt 
- _  - $TRu+ 1, 

- = -u. 
dR 
dt 

Here u is the horizontal velocity component, directed toward the centre of the ring 
for positive values, and v is the vertical component, positive upward. All lengths 
have been made dimensionless with ro,  all velocities have been made dimensionless 
with (gr,); and the time is made dimensionless with (ro/g)$. Effectively we have set 
ro = 1 and g = 1 in the equations. The circulation r which appears above is now the 
dimensionless quantity r,/ (gr;);. We shall use these dimensionless variables in this 
section unless otherwise stated and again in $65 and 6. 

If the inertial terms are neglected (2.6) and (2.7) together have a simple solution: 

2 
3rR ' 

u = -- 

R = R, = (R;+$r. (2.9) 

Equation (2.9) is Turner's result for a constant-volume buoyant vortex ring. Our 
interpretation is that the ring spreads radially a t  a velocity that gives just enough 
downward cross-flow lift to balance the upward buoyancy force. This is the direct 
physical reason for the radial growth of the ring. 

We also note the possibility of oscillations, for if gravity is neglected in (2.6) and 
R is taken to be approximately constant there is a solution in which u and v are 
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sinusoidal with angular frequency w = $TR. This is exactly twice the (dimensionless) 
turnaround angular frequency of a fluid particle on the bubble surface. This means 
that the centre of the bubble core executes a circular trajectory with high frequency. 

In general (2.5), (2.6) and (2.7) can be solved for large r by a multiple time 
expansion method described by Cole (1968). To get the equations into a convenient 
form we note that if we substitute u from (2.7) into (2.6) the equation can be 
integrated once. Then if u and u are eliminated by using (2.5) and (2.7) a single 
second-order differential equation for R results, namely 

- $(t/T+a(Ri -R2)). 
1 d2R 
r2 dt2 

(2.10) 

We have used the initial condition u = 0 a t  t = 0 and we shall also take u = 0 at that 
time. We introduce a slow time T and a fast time 7 :  

T = t/r, 
T = [#rR(t) dt, 

and assume that the solution is a function of both times so that 

We then expand the solution in the form 

with r large. We find that R, must satisfy the partial differential equation 

which has the solution 

R,(T,T) = A , ( T ) s i n ~ + B , ( T ) c o s ~ ,  

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

where the amplitudes A, and B, are unknown functions of the slow time. The 
equation for R, is the same as (2.16) but with a function of R ,  and R, on the right- 
hand side. The amplitude functions are determined by requiring that secular terms 
be eliminated from the R, solution, i.e. by eliminating resonance driving terms from 
the right-hand side. The result is 

(2.17) 

(2.18) 

The amplitudes decay slowly as the ring spreads. Since R, is zero at the initial time 
B, must be zero. However, in order to get the initial constant for A ,  we must 
calculate u. From (2.7) we find 

(2.19) 
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The first term on the right, is the same as (2.8). The second, oscillating, term is of the 
same order as the first and cannot be neglected. The condition that u be zero a t  
t = 0 gives 

2 

= -(&) , 
therefore using (2.16), (2.17) and (2.20) the final result for R is 

(2.20) 

(2.21) 

with a small fast oscillation superimposed on Turner’s solution. One should note that 
the oscillating part depends on the initial conditions and can be eliminated by a 
different choice. We cannot tell whether the natural starting condition for a vortex 
ring bubble will excite these oscillations. In any case it seems likely that oscillations 
could be excited by external disturbances. 

The fast time can be calculated to lowest order by substituting R, into (2.12). This 
gives 

A simple calculation shows that the frequency is approximately ZTR,, which varies 
slowly as the ring expands. This is double the instantaneous turnaround frequency. 
The slow increase in frequency is a consequence of a slow decrease in core radius while 
the circulation around the core remains constant. 

Just  as the buoyancy force causes radial growth of the vortex ring. surface tension 
will cause i t  to rise a little faster than (2.1). The surface tension force being directed 
toward the centre of the ring is balanced by an outward Kutta-Joukouwsky lift 
induced by positive v. Since persistent vortcx ring bubbles are fairly large this is a 
small effect. 

Viscous effects have been neglected in the above derivations. One might 
contemplate including a quasi-steady drag force per unit length in (2.2). However, as 
discussed by Pedley (1968), there can be no drag until the vorticity diffuses outward 
from the bubble surface and forms a wake. The bubble is likely to become unstable 
before this occurs. 

The cross-flow lift term in (2.2) is essentially independent of the viscosity as long 
as the vorticity distribution is centred on the bubble core. In  the force balance one 
merely considers the force on a cylinder large enough to enclose the vorticity. The 
inertial term would then be in error since one should include the mass between the 
bubble and the control cylinder as well as the apparent mass of this larger cylinder. 
We conclude that the integrity of (2.2) is maintained as long as the diffusing vortical 
layer is thin compared to the radius of the air core, i.e. vt + a2. In dimensionless form 
this requires 

r = t r 2 ( R $  - Ri). (2.22) 

(2.23) 
V 

The right-hand side is of order 1000 for typical large bubbles, large enough to allow 
many oscillation periods. Our computations in $6 only go to t = 12. 

The nature of the oscillations discovered above may be understood from an exact 
two-dimensional potential flow solution which is given in some detail in the 
Appendix. This is generated from a well-known solution for a circular cylinder with 
circulation, executing any arbitrary motion, which consists of a two-dimensional 
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dipole oriented along the direction of the instantaneous velocity plus a line vortex. 
In  the case under consideration the path of the centre of the cylinder is a circle of 
radius A ,  traversed at constant speed. One can calculate the pressure, and from this 
the force that one must apply to the cylinder in order to maintain this motion. It 
turns out by a simple calculation that if the angular frequency of the centre of the 
circle is twice the turnaround angular frequency the resultant force will vanish, i.e. 
the lift force will just balance the ‘apparent’ centrifugal force. This result is 
independent of A .  In  this self-balanccd condition the local pressure on the surface is 

(2.24) 
A 2  A 2  

p 2 2na a2 a2 
= qG)2( -i2-+32-cos2O-I (dimensional), 

where O is measured from the direction of the instantaneous velocity of the centre of 
the cylinder. The surface pressure is not constant, but has variations of only second 
order in A .  This solution is therefore appropriate for small-amplitude oscillations of 
a cylindrical bubble. Surface tension would allow a solution in which the bubble 
shape differs slightly from circular, accommodating to the small pressure variation 
outside the bubble. 

3. Boundary-integral method for bubbles 
We consider the motion of gas-filled bubbles in an incompressible liquid. We adopt 

a description and numerical procedure used by Baker, Meiron & Orszag (1984) and 
Lundgren & Mansour (1988). Viscosity will be neglected and the liquid motion will 
be assumed to be irrotational. The gas in the bubble will be assumed to  have uniform 
pressure. This is justified if the sound speed in the gas is large compared to  the 
velocity scale in the liquid. 

First we shall consider the case where the bubble volume is constant. It is filled 
with a fictititious incompressible fluid of negligible density compared to that of the 
surrounding fluid. The velocity potential q5 is given by a distribution of dipoles over 
the bubble surface B ,  expressed by 

where ,u is the dipole density and 

1 
4x11 - r’l 

g(r, r’) = - (3.2) 

is the velocity potential of a point source of unit strength. The normal here is taken 
into the bubble, outward from the liquid. The dipole representation ensures that the 
volume of the bubble stays constant. 

The pressure in the liquid is determined from the Bernoulli equation, 

-+;(u.u)+-+gz aq5 P = P, -, 
at P P 

(3.3) 

where p ,  is the ambient pressure a t  the elevation z = 0. The boundary condition a t  
the bubble surface requires that the pressure difference across the surface be 
balanced by surface tension forces, 

p ,  -p ,  = Tdiv ii, (3.4) 
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where p ,  is the pressure on the liquid side of the interface, p ,  is the bubble pressure, 
T is the surface tension and div ri is the curvature of the surface. Equations (3.3) and 
(3.4) together give an evolution equation for the velocity potential on the interface, 
namely 

T P m  - P b  --- '" i(u.u)+-divri+gz = -, 
dt P P 

(3.5) 

where dldt is a material derivative. 
The velocity on the interface is determined from the dipole density as follows. 

Upon taking the limit as the point r in (3.1) tends to the interface from the liquid side 
the Plemelj formula gives 

The tangential components of the velocity are determined from surface derivatives 
of $hl. The normal component of the velocity is found from a vector potential A ,  
defined on the surface by 

A = -P.V. p'ii' x V'g(r, r') dS', 
J B  

using the formula 
u-ii = ( i i x V ) * A ,  

which also only requires surface derivatives. Thus the velocity on the interface is 
given in terms of quantities defined on the interface. Points on the interface are 
evolved by 

dr 
dt 
- = u. (3.9) 

The numerical procedure is therefore to use (3.5) and (3.9) to update the surface 
potential and the surface shape, then solve the integral equation (3.6) to obtain an 
updated value of ,u from which the velocity can be computed for the next time step. 
However, there is an immediate problem because pb is not known, so this procedure 
will not work without modification. There is a solvability condition which gets us out 
of this difficulty. This is where the analysis differs between drops and incompressible 
bubbles. Equation (3.6), regarded as an equation for ,M when g5, is given, does not 
have a unique solution for bubbles. This may be seen from the exact integral 

(3.10) 

(Integrals of this kind may be evaluated by noting that the value is the volume flux 
across the surface from a unit source at  the point r. In (3.10) the point r is on the 
surface so half the flow goes away from the bubble and the other half goes through 
the surface in the negative direction.) This shows that the solution to (3.6) is only 
determined to within an arbitrary constant. Therefore the homogeneous adjoint 
equation 

(3.11) 
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has a non-trivial solution (but not simply a constant except for a spherical bubble). 
The condition that (3.6) be solvable is that  be orthogonal to 7, i.e. 

s, 7 ( r )  q5lW ds = 0. (3.12) 

In  order to implement this we define a new variable 

so that (3.5) may be written 

'" :(u.u)+T/pdivri+gz = 0, 
dt 

and then (3.6) becomes 

(3.13) 

(3.14) 

(3.15) 

This change of variables takes the pressure out of the differential equation and into 
the non-homogeneous part of the integral equation. We can now update 6I with 
(3.14) and determine the pressure integral, and hence the bubble pressure, by the 
solvability condition 

(3.16) 

thus ensuring a unique solution. 
This becomes more interesting, and more physical, if we allow for the 

compressibility of the bubble and approach the incompressible case in the limit. 
Compressibility may be accounted for by adding a time-dependent point source to 
the potential, so that the representation becomes 

(3.17) 

where rb(t) is a position inside the bubble. The tangential component of the velocity 
is calculated as before from surface derivatives of q51 (or &). The normal component 
is now obtained from 

(3.18) u. f i=  ( i i x V ) . A + & -  ag(r ,  rb)  

an 

with A still defined by (3.7). The integral equation to  determine p becomes 

and the solvability condition is now 

The bubble pressure is now related to the volume of the bubble 
regarded as known, while the source strength &(t)  is determined by 

(3.20) 

and should be 
this equation. 
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For an isentropic gas we can use 

where 

and 
2T 

p ,  = p,m+--. 
r0 

(3.21) 

(3.22) 

(3.23) 

Here we have defined I: as the bubble volume, V ,  as a reference volume with 
equivalent spherical radius ro, and p ,  is defined as the equilibrium pressure in a 
spherical bubble of radius r,, at the ambient prcssurc p,. The bubble volume is 
related to thc source strength by 

dV 
at = Q  - (3.24) 

as may be seen from (3.18), since the vector potential part conserves volume. 
We define a pressure-integral variable 

so that 

(3.25) 

(3.26) 

The numerical strategy is to use (3.9), (3.14), (3.24) and (3.26) to update r ,  I‘ and 
I,, solve (3.11) for 7 in the updated geometry, determine an updated Q from (3.20), 
then solve (3.19) for updated p. Then with p and Q we can determine the updated 
velocity. Baker et al. (1984) have shown that both (3.11) and (3.19) may be solved 
by iteration. 

The incompressible case may now be recovered from thc compressible case by 
taking the incompressible limit y + co, which makes Vconstant ( V / V ,  = (p/po)-”Y+ 1 
as y +  00) and hence makes Q zero (from (3.24)). Then (3.19) and (3.20) bccome the 
same as (3.15) and (3.16). 

4. Modification for toroidal geometry 
For a vortex ring bubble the circulation, r*, around the ring cross-section must be 

specified. A dipole representation as in $3, with a continuous distribution of dipole 
density will give a single-valued velocity potential, hcncc no circulation. Restricting 
now to constant volume bubbles, we propose to represent the velocity potential in 
the form 

where @,,, is the velocity potential of a ring vortex of strength r, with core 
coordinates rvor, z,,, which are inside the bubble cross-section. @,,, is given (Lamb 
1932,$ 161) by a uniform dipole distribution of density r o v e r  the aperture disk. @,,, 
is discontinuous across the disk approaching -tI‘, from above and +r* from below. 
Thus the velocity potential consists of a continuous part represented by a smooth 
periodic dipole distribution over the bubble surface plus the discontinuous part Qvor 

which carries all the circulation. The velocity field generated is continuous and one 
can convince oneself that it is independent of the location of the ring core, a change 
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in core location being compensated by a modification in the continuous dipole 
distribution. 

The velocity field is thus computed from two parts. One part from the concentrated 
vortex ring using the expressions for an axially symmetric vortex which can be 
deduced from Lamb (1932, $161); the second part from the smooth dipole 
distribution on the bubble surface, using the potential and vector potential method 
described in $3. In  order to  update the velocity potential on the bubble surface by 
(3.5) it is necessary to compute d@,,,/dt. This gives a numerical difficulty since 
Lagrangian nodal points can cross the disk discontinuity during a partial time step. 
To eliminate the need to deal with this we have performed this operation analytically 
by making use of the functional relationship 

given by Lamb (1932, $161). Noting that t,he velocity generated by the concentrated 
vortex ring is 

we find, by the chain rule, 

(4.3) 

whcre u, and u, are the velocity components at the point of interest. In  order to 
compute this we need to specify how to compute zVOr, rvor and their time derivatives. 
We have used the centroid of the bubble section for these coordinates. The centroid 
can be expressed as a line integral over the bubble interface and evaluated at each 
partial time step. 

To implement this for an incompressible bubble we redefine il (originally defined 
by (3.13)) as 

Then the integral equation becomes the same as (3.15) and the solvability condition 
the same as (3.16). Now is to be updated by 

T -+--- ’” d@vor :(u.u)+-divri+gz = 0. 
dt dt P 

(4.7) 

One should notice that d@,,,/dt is a continuous function of position. In the 
procedure described here it is not necessary to  evaluate the discontinuous function 
@vor* 

5. Starting vortex ring bubbles 
Walters & Davidson (1963) showed analytically that an initially spherical bubble 

will evolve toward a toroidal shape because of buoyancy forces. As the bubble begins 
to rise the vortex sheet which develops at  the surface has a sense of rotation which 
induces motion of a tongue of liquid that pushes into the bubble from below. When 

7 FLM 224 
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the bottom surface impinges on the upper surface the topology changes. We have 
simulated this initial-value problem numerically carrying the process further than 
Walters & Davidson could do analytically. This is done to assess the effect of surface 
tension which was neglected by them and to determine the circulation to use in the 
toroidal computations in $6. Unfortunately we can only compute until the two 
surfaces touch. The physics of the process beyond first contact is very complex, and 
appears to be similar to the impact of a raindrop on a free surface as described by 
Oguz & Prosperetti (1989). The impacting jet carries a thin air layer into the upper 
liquid which subsequently dissipates into small bubbles. During dissolution, the 
vorticity in the interfaces is transferred to circulation about a series of very thin 
annular vortex ring bubbles which in turn break up into strings of bubbles, 
presumably connected by thin viscous vortical regions in order to preserve 
circulation. 

We have carried out these computations with 121 nodal points, time step 0.005 and 
different values of a dimensionless surface tension defined by 

In figure 2 (a-e) the results are shown for S = 0.005, 0.025, 0.05,0.1, 0.125 which for 
water with T = 75 dyne/cm3 correspond to bubbles with volumes 243.1,22.8,7.8,2.7 
and 1.9 cm3, respectively. As the effect of surface tension increases the impinging jet 
becomes broader until in the last figure, where S = 0.125, it can no longer penetrate 
the upper interface and the separating layer of air thickens again so that the bubble 
becomes cup-shaped. For larger values of S the bubbles form shallower cups until a t  
about S = 1 there is no indentation at the bottom a t  all and the bubble evolves into 
a disk-like shape. This suggests that small vortex ring bubbles cannot be created by 
this simple gravitational mechanism. In  the cases where the jet penetrates and 
changes the topology we assume that the circulation about the resulting toroidal 
bubble is the difference in velocity potential between the bottom surface and the top 
surface at  the point of contact. The dimensionless circulations for cases ( a ) ,  ( b ) ,  (c),  
( d )  are computed to be 5.51, 5.16, 4.87 and 4.28, respectively, a rather narrow range 
of values compared to the range of bubble sizes. 

The free evolution of an initially spherical bubble gives a mechanism for the 
creation of a toroidal bubble which is close to  the experimental arrangement of 
Walters & Davidson and gives circulation values near those observed by them. It is 
difficult to see what is so different about the Davies & Taylor experiment that results 
in spherical cap bubbles. Spherical cap bubbles have turbulent parisitical trailing 
vortices and wakes. Somehow, because of differences in the external geometry and 
starting conditions, the flow must separate from the flanks of the evolving bubble 
before the penetrating jet can change the topology. 

Computations similar to those shown above have been carried out by Baker & 
Moore (1989) for a two-dimensional bubble and compared with experiments of 
Walters & Davidson (1962). The main difference in the phenomena is that thc 
penetrating jet becomes much broader and pinches off two side lobes from a 
symmetric cap, i.e. breaks into three pieces. Baker & Moore observed some numerical 
instabilities of a type that we did not observe in the present axially symmetric 
starting flows. 
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FIQURE 2. Evolution of an incompressible initially spherical bubble by buoyancy forces. (a) 
S = 0.005, final f = 5.51; ( b )  S = 0.025, final f = 5.16; (c) S = 0.05, final f =  4.87; (d) 6' = 0.1, final 
r=  4.28; (e) S = 0.125. 

6. Computations of vortex ring bubbles 
In this section we describe computations of the evolution of vortex ring bubbles 

by the method described in $4. We have used 61 nodal points and a time step of 0.005. 
The computations are started from a toroidal configuration with a circular core and 
several values of the radius ratio Rla. The initial value of J1 (in (4.7)) is taken to be 
zero. Therefore the initial dipole distribution p is zero, and the initial velocity 
induced by this dipole distribution is also zero. The initial velocity of the bubble 
surface is therefore determined from the concentrated vortex at the centre of the 
circular core. This is approximately the same as the hollow vortex velocity given by 
(2.1), but it is not quite constant over the circle (it would be constant if R/a+ co). 
The initial conditions are therefore not quite identical to those adopted for the model 
equation of $2. 

For the first series we have taken Rla = 5 initially, a fairly large value in order to 
7-2 
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FIQURE 3. Cross-section shapes of an evolving vortex ring bubble. S = 0.025. initial R/a = 5.  
r = 5.  The left-hand axis is the axis of symmetry of the ring. 

minimize curvature effects, and we have taken a = 0.3488 to make the volume be tn, 
i.e. ro = 1. We have taken r = 5 ,  which is in the range of possible values for the 
circulation. This value of T i s  large enough to satisfy the asymptotic requirements of 
the model equation solutions. We have taken S = 0.025 for the surface tension 
parameter, which corresponds to  a volume of 22.8cm3 in water. (We have also 
repeated this series with S = 0 with only small differences.) 

In  figure 3 the successive shapes of the cross-section are plotted at dimensionless 
times 1 unit apart. The left coordinate axis is the symmetry axis of the vortex 
bubble. There are a number of things to be explained in this figure. First, it should 
be observed that the section shapes do not deviate very much from circular. Also the 
spreading rate is not large. Over the 12 time units of the computation the radius 
increases by only about 50%. The core area decreases noticeably as the radius 
increases. The black dots near the centres of the sections are at the centroids of the 
sections. We have included a curve on this figure which is the trajectory of the 
centroids. One can barely see oscillations on the trajectory. The black dots on the 
bubble surfaces are the positions of a marker which follows the fluid motion. From 
the bottom section to the next one up (T = 1) the marker has travelled once around 
the bubble in a clockwise sense, plus a little. The turnaround time is thus a little less 
than one time unit. If one computes it from (2nu)* / r  one obtains 0.97 time units for 
the turnaround time. As the sections are followed through increasing times the 
marker gains a small amount at each circuit, until at the top of the figure the 
turnaround time is about Q of a unit, reflecting the reduction in core radius. 
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FIGURE 4. The difference between the radius of the vortex ring bubble and Turner’s radius. 
S = 0.025, initial R / a  = 5, f = 5. The upper curve and the right coordinate axis are for the model 
equation. The lower curve and the left coordinate axis are for the computations. 

In order to compare the spreading of the ring radius with Turner’s result we have 
plotted R-R, versus time, R being the computed radial coordinate of the centroid. 
This is the lower trace in figure 4 which uses the scale on the left axis. The upper trace 
is calculated from the model equation results (2.21) and (2.22). This curve uses the 
scale on the right axis. The only difference in the scales is the shift in the zero 
position. The period of the oscillations is observed to  be about the same, the 1.5% 
difference is within the error of the asymptotics. However, the amplitudes of the 
oscillations differ by a factor of almost 2. We think this is because of the difference in 
the initial conditions described in the first paragraph of this section. There is also a 
small offset of the computed values from zero, the average value of R being less than 
R, by about 0.01 unit. The overall agreement with the model is very good. 

The pressure in the bubble results from a solvability condition as explained in $3. 
In figure 5 ( a )  the pressure is plotted versus time in the lower curve. Pressure 
oscillations are clearly seen in this figure. The observed drop in pressure with time is 
mostly a consequence of the decrease in hydrostatic pressure as the bubble rises. 
However, the upper curve in figure 5 (a ) ,  which is the pressure minus the hydrostatic 
pressure a t  the centroid, still shows an observable drop with time. This is caused by 
the variation in the dynamic pressure of the swirling part of the flow (which is the 
largest contribution to the velocity). The pressure on the surface of a two- 
dimensional bubble with circulation is smaller than the ambient pressure by $$, or 

which increases in value as the core gets smaller. In  figure 5 ( b )  we have plotted the 
quantity 

in dimensionless form at  a larger scale. This accounts for most of the persistent 
variation of pressure with time. It remains to explain the very apparent pressure 
oscillations. They are not caused directly by the circular motion of the centre of the 
bubble section ; according to (2.24) this would give a steady pressure. The oscillations 
of the radius of the ring causes the bubble area to pulsate (in order to conserve 
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FIGURE 5. Pressure versus time. (a) The lower curve is the computed pressure, the upper curve is 
pressure minus hydrostatic pressure. (b) Pressure minus hydrostatic pressure plus the dynamic 
head of the swirling part of the flow. 

volume) and we believe that this causes the pressure oscillations. In support of this 
assertion we note that the velocity potential of a ring source can be expressed in 
terms of elliptic integrals. Near the ring this potential is approximately 

where r is the distance from the bubble centroid. The source strength q is dA/dt, 
therefore the pressure at the surface of the bubble, which is related to the velocity 
potential by p = -pa$/at  for small perturbations, is given by 

ld2A 8R 
ln-, P = -___ 

p 2 dt2 a (6.4) 

neglecting some smaller terms. Then determining A from (2.3) and using (2.21) we 
find the dimensionless result 

1 In (8R,/a) P = -& R; R; sin 7. 
T O  

For the case under consideration where R, x 5a and a x 0.3488 we find 

p x -0.13sin7. (6.6) 
The amplitude 0.13 compares favourably with the amplitude of about 0.1 from figure 
5 ( b )  and the phase is right. This level of pressure fluctuation in a bubble of volume 
22.8 cm3 (ro = 1.76 cm) represents a sound level of 75 dB near the bubble, which 
should be detectable, and has a frequency of 50 Hz. 

Figure 6 compares the computed axial velocity with Hicks’ formula for the hollow 
vortex velocity V ,  given by (2.1). It appears that V ,  is an accurate average velocity. 
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FIGIJRE 6. Axial velocity versus time. The oscillating curve is the  computed axial velocity of 
the centroid. The smoother curve is Hicks’ hollow vortex velocity. 
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FIQURE 7. Cross-section shapes of an evolving vortex ring bubble. S = 0.025, initial R/a  = 3, 
r = 5. (a) Compare with figure 3. (b) Intermediate shapes. Each section is displaced upward by one 
unit more than the section below it. 

A second series with Rla = 3, a = 0.413, r = 5 and S = 0.025 is presented to show 
the effect of large curvature. In figure 7 (a )  the section shapes are displayed. Kow we 
see much larger deviations from circular because of the strain field of the smaller ring. 
However, from T = 6 onward the shapes look similar to the beginning of the Rla = 5 
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case. The early stages are shown with section shapes at  intermediate times in figure 
7 ( b ) .  In  this figure each section has been displaced upward by one more unit of length 
in order to prevent overlapping. What we are looking a t  here is the change of shape. 
Starting from a circular section the bubble becomes elongated at  1 and 1.5, more 
circular a t  2 and 2.5, elongated again at 3 and 3.5 and so on. The bchaviour is similar 
to that of a two-dimensional elliptical vortex, with uniform vorticity, in a plane- 
strain velocity field. An exact solution due to Kida (1981) shows that for small strain 
the ellipse rotates, stretching and slowing down when its major axis is oriented near 
a direction 45" past the direction of the principal axis with positive strain, and 
shortening and speeding up when it is perpendicular to this direction. In figure 7 ( b )  
the direction of positive strain, due to the finite vortex ring, is inclined 45O toward 
the axis of the ring, so that a line 45' past this direction is a vertical line. Indeed when 
the bubble is most elongated i t  is oriented near the vertical and the angular velocity 
of the bubble can be seen to be slower in this configuration. However, a full period 
of this rotation is about 4 turnaround times, which contrasts with a value near 2 
turnaround times for the two-dimensional case with uniform vorticity. 

The number of nodes used in this computation was 101 and the time step was 
0.005. Results with 61 nodes were only slightly different but showed small surface 
oscillations of a type reported by Lundgren &, Mansour (1988) and by others who 
have used boundary-integral methods. 

7. Discussion and conclusions 
Computations of the evolution of vortex ring bubbles were carried out using a 

modified boundary-integral method described in $93 and 4. Because of the toroidal 
geometry, circulation about a loop through the bubble aperture must be specified for 
uniqueness. This problem was solved by representing the solution by a smooth dipole 
distribution over the bubble surface, plus a singular vortex ring located inside the 
bubble. The singular vortex ring carries the specified circulation. In a naturally 
occurring vortex ring bubble which evolves from a released spherical bubble, say, the 
circulation of the ring is determined by the starting process. We are unable to 
perform a single computation which follows the changing topology from sphere to 
toroid, therefore we have broken the process into two pieces. In  the first computation 
a sphere evolves u h i l  the jet of fluid which penetrates the bubble from behind 
touches the upper part of the surface. Then we start a new computation starting from 
a toroidal geometry with the value of the circulation that developed from the first 
computation. 

An added problem for all bubble geometries, not just toroidal, is non-uniqueness 
of the integral equation which determines the dipole density. In $3  i t  was shown how 
the required solvability condition determines the bubble pressure in the case of 
constant-volume bubbles. 

The computations show that a vortex ring bubble grows as i t  rises, in agreement 
with Turner's (1957) predictions ; however, the radius oscillates about Turner's 
result. These unexpected oscillations of the radius, and of the pressure, with a period 
one half of the turnaround time of a point on the bubble surface, were explained in 
$ 2  by means of a model equation, (2 .2 ) .  The oscillations result from a self-balanced 
circular motion of the vortex core in which the centrifugal apparent mass force is 
balanced by the Kutta-Joukowski cross-flow lift. 

Finally, we point out that the pressure oscillations may be large enough to be 
measurable by means of a hydrophone. 
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Appendix. Exact potential flow solution 
The solution for the flow about a cylindrical body of radius a moving through an 

incompressible inviscid fluid which is a t  rest a t  infinity is given by the superposition 
of a two-dimensional dipole and a line vortex (Lamb 1932, $69). The velocity 
potential for this flow is 

where R(t)  = X ( t )  f+ Y ( t ) j  is the instantaneous position of the centre of the cylinder 
and U =  R( t )  is its velocity. The velocity field a t  a point in the flow is easily 
calculated to be 

(A 2) 
( r - R ) ( r - R )  r ( r - R ) x f  

lr-RI2 )-% lr-RI2 ’ 
u(r, t )  = Vq5 = --- 

where f is a unit vector parallel to the axis of the cylinder. At a point, r = R + ad,  
on the cylinder, where f i  is a unit radial vector, it is easily shown that the boundary 
condition u-ii = U-ii  is satisfied. 

The pressure p in the flow may be found from the Bernoulli equation 

P - P ,  = t ( l 4 . U )  
P at 

with a$/at  calculated from (A 1) as 

aq5 a 2 0 - ( r - R )  
at Ir - RI2 

- U.U. -=- 

In particular the pressure on the surface of the cylinder is given by 

The external force F which is required to produce this arbitrary motion is given by 

F = /: (p-p,)iiadB = pna2&-ppT& x U.  

Therefore, if the cylinder is massless (a bubble) and has no applied forces, its motion 
must be governed by 

that is, thc apparent mass times acceleration must be balanced by the Kutta- 
Joukowski lift, i.e. acceleration perpendicular to velocity. The only possible 
motion is constant speed along a circular path ; 

pnazR = pri x R ,  (A 7) 

R = A(fcos wt +Jlsin wt)  (A 8) 
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satisfies the equation with constant circular radius A and angular frequency 

T.  S.  Lundgren and N .  N .  Mansour 

r w = -  
na2 

which is independent of the radius of the circle. 
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