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Various characteristics of photon diffusion in turbid biological media are examined. Applications include the
interpretation of data acquired with laser Doppler blood-flow monitors and the design of protocols for therapeutic
excitation of tissue chromophores. Incident radiation is assumed to be applied at an interface between a turbid
tissue and a transparent medium, and the reemission of photons from that interface is analyzed. Making use of a
discrete lattice model, we derive an expression for the joint probability T'(n, p)d2p that a photon will be emitted in
the infinitesimal area d2p centered at surface point p = (x, y), having made n collisions with the tissue. Mathemati-
cal expressions are obtained for the intensity distribution of diffuse surface emission, the probability of photon
absorption in the interior as a function of depth, and the mean path length of detected photons as a function of the
distance between the site of the incident radiation and the location of the detector. We show that the depth
dependence of the distribution of photon absorption events can be inferred from measured parameters of the
surface emission profile. Results of relevant computer simulations are presented, and illustrative experimental
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data are shown to be in accord with the theory.

1. INTRODUCTION

In most in vivo clinical and research uses of light (other than
those involving transparent tissues such as are found in the
eye), incident radiation is applied to the interface between a
turbid tissue and a transparent medium (air or water).
Light that is reemitted at this interface into the external
transparent medium can be analyzed to obtain information
about parameters of photon interaction within the tissue.-
Because photon mean free paths in tissue are typically of the
order of 100 um, photon diffusion models are often appropri-
ate for interpreting optical measurements involving total
path lengths of the order of 1 mm or more.l3%6 A good
understanding of photon migration in turbid media can thus
be quite useful when applying light, either therapeutically or
diagnostically, to dense biological matter.

For example, laser Doppler blood-flow monitors are used
in a number of diagnostic procedures.”1° In this case laser
light is introduced at one point on a surface and collected at

another point located approximately 0.5 to 1 mm away.!l’

The emitted photons are analyzed for the mean magnitude
of the Doppler shift, which is proportional to the root-mean-
square (rms) blood cell speed.1213 Additionally, the fraction
of the light that is Doppler shifted provides a measure of the
number density of blood cells in the tissue. The calibration
of these measurements depends on determining the path
lengths, within the tissue, of the detected photons. Also,
knowledge of the paths that detected photons move along
while they are within the tissue is critical to understanding
which tissue volumes are sampled and which parts of the
microvasculature contribute to the flow signal.

Other techniques utilize light of several specific wave-
lengths, introduced at one point and detected at another on
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the surface of tissues, to determine the oxygenation of mi-
crovascular hemoglobin.!4-16 In this case the relative ab-
sorption of the different probing radiations is analyzed.
The wavelength dependence of photon path lengths critical-
ly affects the calibration and accuracy of these and similar
absorption techniques. In related schemes, the fluores-
cence of biological molecules such as nicotinamide-adenine
dinucleotide, reduced!”*8 is used to quantify tissue metabo-
lism or photochemistry. Knowledge of the distribution of
photon paths is important in absolute quantitation of the
measurements and in identifying which cells contribute to
the signals.

Light is also used therapeutically to excite a variety of
intrinsic and extrinsic chromophores, resulting either in
thermal damage and tissue ablation or in photochemical
excitation of cellular components (e.g., singlet oxygen pro-
duction).1%20 In these cases one is primarily concerned with
the depth distribution of the site of photon absorption with-
in a tissue and in being able to assess variations in this
distribution as the wavelength is changed. Here, too, the
only practical means of analyzing the interaction of light
with the living tissue is to monitor the light that is diffusely
reflected from the surface.

Thus there are several uses of light in tissue that are of
considerable clinical importance for which additional under-
standing of photon interactions in turbid media might be
beneficial. In this paper, therefore, we develop a theoretical
model of photon migration in tissue. The present study is
similar in spirit to that of Groenhuis et al.,>* who show by a
somewhat different analysis that surface emission can be
used to infer scattering and absorption cross sections of bulk
biological tissue. However, the emphasis here differs from
that in previous publications in that by using a random-walk
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model we are able to determine photon path lengths and
path-depth distributions. Once the bulk scattering and ab-
sorption properties of a tissue are specified, our analysis can
be used to deduce characteristics of the migration paths of
those photons that contribute to diffuse surface reflectance
measurements at any particular point. Similarly, the distri-
bution of chromophore activation within a tissue can be
determined.

For typical applications the radius of curvature and thick-
ness of the tissue are greater than 1 cm. These values are
very much greater than the length scale of scattering within
the tissue, and a model of photon diffusion in which particles
are injected perpendicularly to an infinite half-plane of tur-
bid material is therefore applicable. “Trapping” of photons
is deemed to occur either by emission of light from the
planar surface (diffuse reflection) or by absorption into the
bulk. Although we are interested primarily in optical appli-
cations, our analysis might pertain also to situations in
which surface emission of neutrons is used to probe the
interior properties of materials (e.g., petroleum explora-
tion). The use of light to investigate turbulence within
clouds might be described by a similar theory?! because, in
this case too, characteristic photon path lengths may be
large compared with distances between scattering centers.

In Section 2 we analyze mathematically a three-dimen-
sional lattice model that allows us to demonstrate relation-
ships between photon diffusion within the tissue and easily
measured surface intensity distributions. The main result
of this paper is an expression for the probability distribution
T'(n, p)d2p for the number of steps taken by a photon that is
injected into the medium and subsequently emitted within a
small area d?p centered at p = (x, y) relative to the point of
injection. From this expression we are able to deduce ex-
pressions for the intensity distribution and total diffuse re-
flectance at the surface, the mean path length of detected
photons as a function of the separation between emitting
and detecting probes, and the probability of photon absorp-
tion as a function of depth.

The expressions that we derive have relatively simple
forms. Although the present theory is but a first attempt to
analyze some very complicated systems, the results should
pertain to a variety of biomedically important measure-
ments, particularly when the receiving and transmitting fi-
bers of the probe are not too close to each other. Because of
the complex structure of biological tissue it is impossible to
specify precisely the physical details of photon migration,
and the utility of our model will have to be established
empirically. Although this work is similar in spirit to a
number of diffusion theory calculations,-$ the aspect of
lattice migration adopted here enables us to infer path-
length distributions that are not readily obtainable either
from conventional diffusion theory or from calculations
based on transport theory.322-%0 Moreover, transport the-
ory generally entails a great deal of numerical computation,
which limits its utility in the simple applications that we
envision.

Section 3 contains results of computer simulations that
substantiate and extend our theoretical results. In Section
4 we illustrate how the present theory can be used to analyze
real data obtained from living tissue. We also discuss sever-
al possibilities for further development of the model.
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2. MATHEMATICAL ANALYSIS

Each of the applications that we have described involves a
configuration in which light is incident primarily in the di-
rection normal to the surface of a tissue mass that can be
considered to be infinite in extent. (The probability that a
photon reaches a tissue boundary other than the illuminated
surface before being absorbed or reemitted is negligibly
small.) Although biological tissues are complex structures,
for many applications it suffices to consider models of homo-
geneous media that have the same average scattering and
absorptive properties as do the corresponding real sub-
stances. :

The model to be examined in the present paper is based on
representing photon movement by a random walk in discrete
time onalattice. Since the approximations to be used imply
that the number of steps is large, the model has certain
features of a diffusion model. However, a lattice structure is
necessary because the path length of a particle that performs
continuous Brownian motion is known to be infinite. In
order to establish a correspondence between a realistic pic-
ture of photon motion and the lattice model, we choose the
lattice spacing L to be the rms distance o traveled between
successive scattering events. In terms of diffusion on a
lattice, where the mean time interval between scattering
events is T, the mean-square displacement of a photon in an
infinite medium is thus given as

(r’@)) ~o®/T, t>»>T, - (1)
where ¢ is the elapsed time. We note that ¢/7 is the asymp-
totic average number of steps taken in time ¢.

We will assume that Beer’s law applies to photon absorp-
tion within the medium. Thus, if the probability of survival
(in an infinite medium) of a photon that travels for a dis-
tance L is exp(—»L), we assign the absorption probability

exp(—u) = (exp(—vL)) 2)

per unit step for the lattice model. In this equation the
right-hand side represents an average over all path lengths
between successive collisions. Finally, our model consists of
arandom walk that takes place on a simple cubic lattice, the
random walker being allowed to step to nearest neighbors
only. Moreover, scattering is assumed to be isotropic (i.e.,
all scattering directions are equally probable, regardless of
the incident direction). While this might appear to restrict
the generality of the model, it can be shown that in the limit
of a large number of anisotropic scattering events one can
readjust parameters and the results can be fitted to those of
the present analysis. Protons are considered to be injected
(without reflection) at a single point on the surface z = 0 and
detected (collected) at some other surface point. The entire
surface z = 0 is a homogeneous absorbing barrier, and pho-
tons emitted from the surface are assumed not to return to
the scattering medium. Our coordinate system is such that
2 > 0 corresponds to the interior. The first scattering event
occurs within the first layer of scattering centers.

Most interesting properties of this random walk can be
calculated in terms of the state probabilities [@,(r)], where
@x(r) is the probability that the photon is at r = (x, y, 2) at
step n. The variables (x, y, z) will be integers, it being
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understood that a given lattice point corresponds to (xL, yL,
zL) in terms of the distance L. Since the surface z = 0 is
absorbing, @,(r) is subject to the boundary condition

Q,(x,y,0) =0. ®

Furthermore, Q,(r) is to be found subject to the initial con-
dition

Qy(r) = €78, 48,60, 1, 4)

where §;; is a Kronecker delta. Equation (4) signifies that
photons are injected into the medium along the z axis and
experience their first collision at the lattice point (x =0,y =
0, z = 1) (having been subjected to absorption while travel-
ing to that point).

The @,(r), which allow for absorption, can be expressed in
terms of the Green’s functions for random walks taking place
on a fully infinite lattice in the absence of absorption. We
designate the latter as P,(x, y, 210, 0, 0) [to be abbreviated
P,(x, y, 2)], which is the probability that a random walker
that is initially at (0, 0, 0) is at (x, ¥, 2) at step n. The Q,(r)
can be written as

Q,(x)=[P,_i(x,y,2—1) = P,_,(x,y, 2+ 1)]e™", (5)

the bracketed terms accounting for the boundary condition
in Eq. (3), since by symmetry it follows that P,(%x, £y, +2)
= P,(x, y, 2) (equivalent to the assumption of an unbiased
random walk). The exponential factor is the probability of
survival for n steps. We therefore have reduced the prob-
lem of calculating the @,(r) to the simpler one of finding
P,(r). The latter, however, are known for lattice random
walks: if we let

M) = Yy(cos 6, + cos 6, + cos f5) (6)

be the structure factor3! of a nearest-neighbor random walk
on a simple cubic lattice, then P,(r) is given as

P (r)=

©@r)? I fw I NY(@)exp[—i(x8; + ¥, + 205)]d%0.
(7)

We will be interested in large n, in which limit a standard
argument in random-walk theory3! or central-limit theory
allows us to approximate P,(r) by

’ 3 3/2 3 2 2 9
P.(r)~ (%—n> exp[— o x*+y“+z )]. (8)

Having calculated P,(r), we can turn our attention to the
calculation of properties of radiation absorbed at the sur-
face, which constitute the observable information. The
joint probability that a photon will be absorbed at step n at
the point p = (x, ) on the surface is

T(n, p) = Y4@_1(x, ¥, Dexp(—p), 9

since absorption can occur only following a configuration in
which the random walker is one lattice point removed from
the absorbing surface. On substituting expression (8) into
Eq. (5) and then into Eq. (9), we find that I'(n, p) is given as

log ( T(p)e?* )
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I‘(n,p)=‘/§( !

o2 6/(n—2)
N 2 ) (1 — e ®nm
2 27r(n—2)) (1=e )

—a.2
X exp(——:ip— - un), , (10)
n—
where p2 = p-p = x2+ y2 When nislarge, which is the limit
that we are working in, only p >> 1 will be of interest, so that
we can regard I'(n, p) as having circular symmetry. The

total amount of energy emitted in a circle of radius between p
and p +dpis

v(p)dp = 2mpT(p)dp = 2mp > T(n, p)dp

n=2

~ 2mpdp f T(n +2, p)dn. (11)
o
In this approximation one has, from Eq. (10),

T'(p) = (2mp) v(p) = ;Tp{expw@)

- 2p+4eXp[—\/Gﬂ(p2+4)]}e'2", (12)
vp

which implies that the total amount of radiation diffusely
reflected from the surface is

= 1
dp = ——[1 — exp(—y24p)]e 13
L v(p)dp m[l exp(—y24u)]e (13)

Fig. 1. The logarithm of the surface emission intensity I'(p)e2 for
various values of absorption coefficient, calculated according to Eq.
(12). The dashed lines are corresponding curves calculated accord-
ing to the approximation given in expression (14).
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Fig. 2. Expected number of steps taken by a photon before it is
reemitted at the surface, given as a function of the distance along the
surface between the point of insertion and the point of emission.
The solid line has been calculated by using Eq. (15), and the dashed
line has been obtained from the approximate form given in expres-
sion (16). The agreement is particularly good for higher values of
the absorption coefficient .

The expression for T'(p), given by Eq. (12), is the point
intensity of the reemitted radiation. For sufficiently large
values of p, Eq. (12) can be rewritten as (see Fig. 1)

(o) = ‘/6—#2 e~ exp(—py/6u). (14)
4wp

A quantity that is of direct interest (see, e.g., Fig. 9 below)
is the expected number of steps taken by a photon before it is
reemitted at the surface z = 0. This is defined by the
relation

(nlp) = z nI'(n, p)/z I'(n, p) (15)
n=2

n=2

jw (n+2)I'(n+ 2, p)dn
0

/3
f s

T'(n + 2, p)dn
o

1 — explyBulp — (o* + 4)"?)}

o (pz—+p4)17 exp{yBu[o — (o + 4]}

(16)

The latter expression is a useful approximation when px >
0.025. A comparison of the expressions for (nlp), as given
by Eq. (15) and expression (16), is shown in Fig. 2. As can be
seen from the figure, the agreement between the two forms is
excellent at u = 0.1 and shows significant deviations for x =
0.01. The expression in Eq. (16) indicates that (nlp) is
approximately proportional to p, being given as

(nlp) ~ 2+ 3p/\Bu, p2> 4. an
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Figure 3 shows the behavior of the coefficient of variation
C = a(nlp)/(nlp), (18)

where a(nlp) = ((n2lp) — (n|p)2)1/2. The significant feature
of the curves is that they decrease as a function of p. This
indicates that photons that travel long distances before es-
caping from the surface tend to have trajectories whose pro-
jections onto the surface lie close to p. In addition, they
remain close to the surface, as otherwise their chance of
being trapped in the interior is greatly increased. We will
see a confirmation of this later when we calculate some
statistical properties of the maximum depth reached by pho-
tons that ultimately migrate to the surface (see Fig. 10 be-
low).

So far we have discussed statistical properties of photons
that escape from the lattice. We next consider some corre-
sponding properties of photons that are trapped in the inte-
rior. The probability that a photon is absorbed at r = (x, Y,
z),z >0, after having completed the (n — 1)st step but before
subsequent scattering, is

gn(r) = Q,(r) - (1 —e™)
=(1=-e"[P,(x,y,2—1) = P,_,(x,y, 2 + 1)]e™*",
(19)
Therefore, by using the integral approximation introduced

earlier, we can write for the probability of absorption at z

g(z) ~ L “dn f i [ dxdyg, () ~ exp(—2yB),  (20)

—c0

which decreases exponentially with z. The average depth at
which absorption occurs is therefore

(2)e= Y 2802) /Z £) = 1/[1 - exp(—Ep)], (21)
z=1 z=1

which increases slowly as u decreases. Thus, for u = 0.1 we
find that (z), = 1.8, while for . = 0.025 we have (z)q = 3.1.
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P
Fig. 3. Coefficient of variation C(p) = ((n2|p) — (nlp))V2/(nlp)
of photons emerging at a distance.p from the point of insertion,
calclulated by using Egs. (10) and (15) and a similar equation for
(n?lp).
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The average number of steps until an interior absorption
occurs also can be found in terms of g,(r) and is given in the
integral approximation as

© © © ©

(n), ~ z z n fw [gn(r)dxdy/z 2 j’_: ]gn(r)dxdy

n=1z=1 n=12=1
~1+ [w n1/2(1 + e—3/(2n))e—undn jw n-12
0 o
X (1 + e~ ¥C@mygmungp

PR B B V6u)exp(—ybu) | ©2)
2p 1 + exp(—y6p)

As one expects, this function decreases when the absorption
parameter u increases.

" Tt alsois of interest to find a parameter characterizing the
depth to which a typical photon will penetrate. One of the
simplest of such parameters is the maximum depth z = Z
that the photon reaches before it is ultimately absorbed. In
order to calculate the statistical properties of this random
variable we need to replace the expression in Eq. (5) for
Qn(r) with one that takes account of a second absorbing
barrier at z = Z. The purpose of this second barrier is to
permit the enumeration of the properties of random walks
that penetrate to a depth of exactly Z. If I'(p| Z) denotes the
probability that a random walk is absorbed at a point (x, y, 0)
on the surface, given that it has not been absorbed at the
second barrier at z = Z, then the probability that it is ab-
sorbed at p, having visited z = Z at least once, is T'(| Z + 1) —
T'(plZ). Hence we must find an expression for T'(p|Z). Let
Q.(p, 2| Z) be the probability of being at p at step n of the
random walk when there is an absorbing barrier at z = Z.
I'(pl Z) can then be expressed as

T(pl2) =™ Qulo,112)/6, (23)
n=1

so that as a start we must find an expression for @,(p, 1|2).
Since z = Z is a perfectly absorbing boundary, one can use
the method of images or a Poisson transformation to show
that @, is given as

Q,(p,112) =

> (Pacs(p, 212) = Py, 2+ 2D ™",

l=—o
(24)

After summing this expression over n and using the Gauss-
ian approximation for P,(r), one obtains

wTGlD~ (exr)[~m]
NEEA

_ expl—yBulp? + 4+ 127} \e (25)
JoP + 41+ 127 ’

which is the probability of being absorbed at p, not having
penetrated to a depth Z. In the presence of an absorbing
barrier at z = Z the total amount of radiation emitted at z = 0
is approximately

I=—
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Ry(2) ~ 2 j oT(el 2)dp
0

1

m[1+22exp( —1Z\[24y)

©

- z exp(—[1+ lZI\[2_4ﬁ):|e‘2“

l=—w

——1—~{1—exp< ~24R) +

— cosh(y24y )]}e"z"
V24p

exp(Zm y—1
(26)

When Z = =, this reduces to the result obtained earlier in
Eq. (13), and when Z =1, Ry(Z) reduces to 0, as it should. It
is evident from this expression (26) that for all but the
thinnest of layers, the absorbing boundary at z = Z can be
neglected. For example, when p = 0.025, one finds that
Ro() = 0.696, Ro(5) = 0.552, and R((10) = 0.693, so that with
10 layers the effect of the second boundary is negligible. If
the absorption parameter u is increased, a correspondingly
smaller number of layers allows the same conclusion to be
drawn.

Finally, the probability that a photon trapped on the sur-
face at a distance p from its entrance point will penetrate toa
maximum depth Z is

U(Zlp) = 16| Z + 1) = T (ol Z2)1/T(p)- (27)

This expressian allows us to calculate both the distribution
of the maximum depth and the moments of this variable.
The expressions for the first and second moments can for-
mally be given as

(2) = [1- TG/,

Jj=1
(2% =" @ = DL = T(l)/T (). (28)

By using these formulas, we have calculated (Z) and ¢(Z) =
((Z2) — (Z)2)V/2 as a function of p, finding that thege param-
eters can be fitted quite well by the following empirically
determined formulas

(Zy=a+bp??,  o(2)=a +bp (29)

where a,a’, b, and b’ depend on u. Results of calculating (Z)
and ¢(Z) as a function of p, both exactly and from the ap-
proximations given in Eq. (29), are compared in Fig. 4. 1t
can be seen from Eq. (29) that the coefficient of variation C
= ¢(Z)/{Z) decreases monotonically to zero except at the
lowest values of p.

3. SIMULATIONS

Computer simulations of photon diffusion were performed
in order to test the mathematical analysis of the preceding
section. In all instances the following characteristics were
assumed: (1) photons can be represented by random walk-
ers migrating within an “infinite” three dimensional medi-
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Fig. 4. (a) The expected value of maximum depth (Z); (b) the
variance ¢(Z), given as a function of the exit distance p. Nodiscern-
ible difference is noted between results calculated from Eq. (28) and
data points obtained by fitting according to the forms given in Eq.
(29).

um bounded by a surface plane located at z = 0; (2) photons
are injected without reflection into that medium at a single
point on the plane z = 0, in a direction of normal incidence;
(3) photons can be absorbed during each diffusion step with
a probability of e~#; (4) the scattering-angle distribution is
isotropic, and successive photon steps are uncorrelated; and
(5) when photons return to the surface z = 0 they are emitted
without reflection and collected. ' '

Monte Carlo simulations were performed for a cubic lat-
tice in which all steps are unit vectors along the x, y, and 2
axes. For comparison, we also investigated a continuum
model in which the step lengths are exponentially distribut-
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ed with a mean length Ly (Beer’s law) and in which all
scattering angles are equally likely (i.e., scattering is not
restricted to be along the lattice axes). The Monte Carlo
simulations on the discrete lattice are used to assess the
mathematical approximations needed to derive the analytic
expressions given in Section 2. The simulations of the con-
tinuum model, which mimic Beer’s law scattering, serve to
test the validity of the basic physical approximations implic-
it in the discrete lattice formulation of the diffusion provc'ess.
Note that, according to the discussion preceding Eq. (1), the
lattice spacing L is related to the mean length Ly of an
exponential distribution as L = y2 Ly. The absorption coef-
ficient for the continuum Monte Carlo calculations also
must be assigned; in the continuum simulations reported in
this paper, the number of surviving photons after each ran-
domly generated step of length I; was taken to be exp(—pul;),
and correspondence with the absorption coefficient u for the
discrete lattice model is achieved by setting z = u/\2.

Equation (12) and expression (14) provide expressions for
T'(p), the probability density of emitted photons (normalized
per unit area), given as a function of the distance froni the
point of injection to the point of emission from the surface.
The distance along the surface, p, is given in units of the rms
scattering length when Eq. (12) is used to calculate the
emission profile. Thus, in order to compare these theoreti-
cal expressions with emission profiles computed by a contin-
uum Monte Carlo model having a run-length distribution
given as exp(—/;), the distance axis of the latter has to be
contracted by the factor (2)12. Also, if the absorption
parameter in Eq. (12) is g, the absorption coefficient for
the corresponding continuum Monte Carlo calculation is
u/(2)12, ‘

As shown in Figs. 5 and 6, the Monte Carlo simulations
confirm the appropriateness of the analytical expressions
(cf. Fig. 1). They explicitly demonstrate a strong depen:
dence of I'(p) on the absorption coefficient u as well as an
implicit dependence on the lattice spacing L. The spatial

0 &

logl'(p)

Fig.5. Emission intensity as a function of p. Comparison between
analytical results given by Eq. (12) (solid lines) and results of Monte
Carlo calculations for the continuum model. )
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Fig. 6. Total reflectance, given in terms of the inverse absorption
coefficient 1/u. ~ Values shown as a solid line were calculated from
Eq. (13). The open circles are the results of Monte Carlo calcula-
tions for a cubic lattice, and the filled circles are the results of Monte
Carlocalculations for the isotropic continuum model.

distribution of diffusely reflected photons is readily mea-
sured noninvasively and should be particularly useful in
empirical evaluations of living biological tissue. This result
implies that both an effective mean free path for isotropic
scattering, Lo, and the absorption coefficient, u, can be ascer-
tained from the surface intensity profile if one or the other of
the parameters can be independently determined. Howev-
er, because the shape of -T'(p) at large values of p is very
sensitive to changes in u, even if independent measurement
is not feasible, a good estimate of x and Ly can be obtained.
Although the surface profile expressions given in Eq. (12)
and expression (14) were derived for an isotropic scattering
model, we have found similar results when anisotropic angu-
lar scattering is taken into account. (Additional studies are
currently under way to investigate further the applicability
of this model and its limitations.) .
The surface emission profiles described by Eq. (12) are
indeed experimentally observed. In Fig. 7 we show, as an
illustration, the results of measurements on human forearm
skin made with a laser Doppler blood-flow monitor (Laser-
flo, TMI Inc., Minneapolis, Minn.). The instrument had
been outfitted with a special probe that allowed variations in
the distance r between the incident beam and the detector.
Incident and emitted radiation were transported along 65-
pm-diameter fibers that could be separated by distances
varying from 0.3 to 3.3 mm. [In one case (see Fig.7) data
were augmehted by results obtained from a video system,
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which extended the distance to 4.5 mm.] When alaser diode
(A = 780 nm) or a He—Ne laser (A = 633 nm) was used as a
light source, the intensity profile exhibited a slowly decreas-
ing “tail” at large r, which is predicted by our model. How-
ever, when the emission from an argon-ion laser (A = 516
nm) was used as the probe radiation, the intensity profile
was much sharper. This, too, is expected from the theory,
because in this case the tissue absorption coefficient is great-
er. The behavior of I'(r) at small values of r is determined
largely by the scale factor associated with the effective mean
free path of isotropic scattering, L, whereas the behavior at
larger r is affected by the absorption coefficient 4. This can
be explained by the fact that for small values of p = r/L the
mean path lengths of photons that leave the tissue are short,
whereas the probability that a photon will survive as it tra-
verses the relatively long paths necessary to reach a detector
located far from the point of incidence is strongly affected by
absorption. An approximate estimate of L can be obtained
from the characteristics of I'(r) at smaller valués of r.

An analytical expression for the mean path length (nlo) of
photons emitted at distance p from the point of injection is
given by expression (16) and has the behavior illustrated in
Fig. 2. The most significant characteristic is the linear de-
pendence of (nlp) on p, for p > 2, with a proportionality
coefficient that varies as 1/(6p)/2 [cf. Eq. (17)]. Monte
Carlo simulations verify this somewhat surprising behavior;
in Fig. 8(a) we show the asymptotic values of the slope (nlp)/
p, as a function of u, determined both from Monte Carlo

log Intensity
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Fig.7. Emission intensity measurements, as a function of the dis-
tance between the incident source and the detector, of light diffus-
ing within human forearm skin, as determined with a laser Doppler
blood-flow monitor. The solid lines are least-squares fits to the
data (R2 > 0.99), obtained by using Eq. (12). (Parameters are given
in Table 1.) Note that the intensity decreases more rapidly, as a
function of p, for shorter wavelength radiation (for which tissue
absorption is greater).
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Fig. 8. (a) Values of the asymptotic slope, {nlp)/p, determined
from plots of the expected value of path lengths of photons emitted
at surface distance p, ascertained for different values of . Symhols:
[3, Monte Carlo (cubic lattice); O, Monte Carlo (continuum model);
@, slope determined from expression (16) when calculated: from
valuesof p 5 10. The dotted line is the limiting slope at very high p,
as determined by Eq. (17). (b) Typical results of Monte Carlo
calculations for the isotropic continuum model. Note that in this
case (n|p) is linear with p, even for vanishingly small values of p.
The lines are obtained from expression (16).

calculations and from expression (16). We also see in Fig.
8(b) that the linear dependence of (nlp) holds for the Beer’s
law continuum model, even as p tends to 0 [see Fig. 8(b)].
The solid curves in Fig. 8(b) have been calculated from
expression (16), and ‘we conclude 'that the mathematical
approximations implicit in expression (8) are particularly
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appropriate when the discrete lattice is replaced by a model
that more closely represents tissue.

Knowledge of the mean photon path between two points
separated by a (real) distance r on the surface of tissues,
(nlr), is often critical when quantifying noninvasive optical
measurements (for example, in evaluating blood volume and
flow parameters from Doppler-shifted signals!? and in ana-
lyzing the absorption of light within a tissue mass20:32), Ac-
cording to our model, (nlr) can be determined from the
parameters Ly and u obtained from the surface emission
profiles. Experimental evidence is presented in Fig. 9 that
shows the behavior between (n) and r as predicted by ex-
pression (16). Measurements were made with the same
laser Doppler blood-flow monitor used to obtain the data
shown in Fig. 7 (again, for human forearm skin with a vari-
able spacing probe, A = 633 nm). This instrument allows us
to determine the average number of times that a photon
collides with a moving red cell before leaving the tissue
(calculated from the fraction of the light that is Doppler
shifted, which is designated as “blood volume” on the face of
the instrument), the latter being proportional to the path
length of photon migration. The data points denoted by
circles pertain to resting skin, and those denoted by squares
pertain to vasodilated tissue. The lines were calculated
from expression (16), using values of x and L obtained from
the data shown in Fig. 7 and scaled by appropriate factors
along the ordinates. (These scale factors can be used to
determine the mean distance that a photon diffuses before
being Doppler shifted, from which one can ascertain the
number density of red cells in the tissue.)

It also may be desirable to know how deeply photons
might have penetrated within a tissue. The probability of a
photon’s being absorbed at depth z is shown by expression
(20) to decrease exponentially with distance from the sur-
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Fig. 9. Average number of times that a photon collides with mov-
ing red cells versus distance along the surface, measured in human
forearm skin with a laser blood-flow monitor. Data were obtained
with a probe that enabled the distance between polats of photon
injection and detection to be varied (O, resting skin; [, vasodilated
skin).
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Fig. 10. Comparison between expected values of maximum (Z)
and average (z) depths experienced by photons that emerge at
distance p. Points are obtained from Monte Carlo simulations for
isotropic continuum model. Curves are fitted according to the
analytical form shown in Eq. (29). (u = 0.047.)

face, with an apparent absorption coefficient (6x)/2. Since
we assume that the tissue has homogeneous absorption char-
acteristics, this distribution is identical to the depth distri-
bution of photon flux. Knowledge of the latter quantity is
critically important in therapeutic uses of light if one wishes
to determine dosimetry of different cell layers. Thus the
relationship shown in expression (14) is of particular inter-
est. The logarithms of the depth distribution g(z) given by
expression (20) and the quantity p2T'(p) [cf. Eq. (12)] have
the same slope, indicating that one can ascertain the depth
distribution by measuring the intensity at the surface of the
tissue. In other words, the depth distribution and a simple
function of the surface intensity both vary as exp(—ar),
where r is the actual distance and the decay constant is a =
(v/Lo)V2 [see Eq. (2)].

Finally, when light is used diagnostically, it frequently is
important to know the depth distribution of the diffusive
paths of photons emerging at a given point on the surface.
This distribution corresponds to the average residency time
at a given depth 2. Figure 10 shows the first moment of the
depth probability distribution, {z), as determined by Monte
Carlo simulation for selected exit distances p, compared with
the average value of the maximum depth, (Z). We note
that both quantities have the functional dependence given
in Eqs. (29) and that the expected value of the maximal
depth is approximately twice the mean depth.

4. DISCUSSION

Several optical procedures for diagnosis and therapy cur-
rently are being applied to diverse tissues, the internal struc-
ture of which may differ quite significantly. Skeletal mus-
cle, for instance, contains highly organized protein networks
that result in periodic variations in the index of refraction of
the order of 1-um length scale. It also contains large concen-
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trations of the visible chromophore myoglobin. In contrast,
brain and skin tissues have smaller and less-organized re-
fractile elements and variable levels of visible chromophores
(e.g., melanin). The use of light on such different tissues for
either diagnostic measurements or phototherapy may yield
dramatically different results, in part because of differences
in scattering and absorption properties and hence differ-
ences in photon paths in the tissues. Large changes in the
absorption and scattering coefficients with changes in pho-
ton wavelength can also have dramatic effects in any given
tissue.

The photon diffusion theory developed in this study re-
lates the scattering and absorption parameters L and u to
easily measured surface profiles of photons diffusely emitted
from a planar interface between a transparent medium and a
turbid tissue. These surface profiles can be measured on
living tissues (the optical properties of which may change
dramatically with excision and fixation). Once the charac-
teristic scattering and absorption parameters for a given
living tissue are obtained for the wavelength(s) to be used in
diagnosis or therapy, other relevant information can be ob-
tained according to the model. For instance, one can infer
the mean photon path length, the depth distribution of pho-
ton flux, and the average depth of the cell layers being
analyzed by a particular clinical technique.

Biological tissues contain a high density of refractile ele-
ments whose size is of the order of the wavelength of light.
Therefore individual scattering events are very frequent and
highly anisotropic (the scattering angle distribution for a
single scattering event is usually strongly skewed in the
forward direction). Thus the path length for isotropic scat-
tering L in this theory really represents an optical parameter
related to the sum of several low-angle scattering steps that
randomize the incident photon direction. We are currently
investigating how optical anisotropy might affect the
present analysis. Preliminary results, based on both Monte
Carlo simulations and stochastic theory, indicate that the
surface emission intensity I'(p) is indeed a universal function
when expressed in terms of an appropriately scaled length
variable.

In view of the mathematical approximations used to ob-
tain Eq. (10), we expected the current theory to be correct
only for values of p greater than two or three times the value
of an appropriately defined step length. Yet the data shown
in Figs. 7 and 9 suggest that the theory holds to even smaller
values of p (r £ 0.8 mm; i.e., p < 0.6). Table 1 contains
values of the diffusion parameters L and g of living forearm
skin, determined from the surface intensity distributions
shown in Fig. 7. As can be seen, the parameters for each of
three wavelengths predict light transmission similar to pub-
lished results that were obtained by in vitro studies on ex-
cised specimens.?233 Because our measurements were per-
formed on intact live skin, exact comparisons are difficult to
make. Itshould be noted, however, that an in vivo measure-
ment scheme, such as ours, yields values more appropriate to
clinical use.

For most tissues, the determination of an effective absorp-
tion parameter, u, probably does not depend significantly on
the detailed characteristics of anisotropic scattering. How-
ever, the situation may be quite different for strongly pig-
mented structures such as those found in the retinas of some
animals or in certain diseases (e.g., malignant melanoma).
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Table 1. Predictions, from in Situ Data, of Transmission through Skin, Compared with Literature Values
Determined from in Vitro Measurements in Excised Tissue

Fitted Parameters®

1/e Depth (mm)

A (nm) " L~ (mm™1) Predicted® Measured® Applied?
785 0.048 0.48 1.35 0.89 1.15
633 0.138 0.51 0.98 0.54 0.61
516 0.697 0.50 0.66 - 0.26

@ Parameters were obtained from Fig. 7 according to Eq. (12).

b Predictions were based on Monte Carlo calculations of transmission,32 usin

¢ Values were obtained from Ref. 34.
4 Values were predicted® by Kubelka-Munk theory applied to measurements of the transmission of diffuse light through thin dermal sections.

Also, for very small values of p the actual behavior of photons
in tissue may differ from that predicted by this model. We

are

currently refining the model in order to consider these

aspects of the problem, and we are assessing the significance
of anisotropic scattering centers. Attention also is being
given to the effects of possible macroscopic spatial inhomo-
geneities in the optical parameters.
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