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Arbitrary scattering of an electromagnetic zero-order
Bessel beam by a dielectric sphere

F. G. Mitri

Los Alamos National Laboratory, MPA-11, Sensors & Electrochemical Devices, Acoustics & Sensors Technology Team,
MS D429, Los Alamos, New Mexico 87545, USA (mitri@lanl.gov)

Received November 29, 2010; revised February 1, 2011; accepted February 2, 2011;
posted February 4, 2011 (Doc. ID 138883); published March 1, 2011

Arbitrary electromagnetic (EM) scattering of a zero-order Bessel beam by a homogeneous water sphere in air is in-
vestigated. The radial components of the electric and magnetic scattering fields are expressed using a partial wave
series involving the beam-shape coefficients, scattering coefficients of the sphere, and half-conical angle of the
wavenumber components of the beam. The 3D scattering directivity plots in the far-field region are evaluated using
a numerical integration procedure. It is shown here that shifting the sphere off the axis of wave propagation breaks
the symmetry in the directivity patterns. Moreover, the scattering strongly depends on the half-cone angle of the
beam. This investigation could provide a useful test of finite element codes for the evaluation of EM scattering and

radiation forces, which are important in optical tweezers and related particle manipulation applications.
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Just as such early works on the axial scattering of an in-
finite plane EM wave [1-4] and the on- and off-axial
scattering of a Gaussian beam [5,6] incident upon a
homogeneous sphere were made available in the litera-
ture, rigorous analytical solutions for on- and off-axial
scattering of an EM zero-order Bessel beam (ZOBB)
by a (homogeneous) spherical particle seem to be non-
existent. The fundamental Bessel EM eigenbeam pos-
sesses some advantages over conventional Gaussian
(or other) beams [7,8]. Thus, it provides an impetus to
investigate its EM scattering properties by a homoge-
neous water sphere in air.

Based on the studies presented in [6,9], the radial
components of the (steady-state) scattered electric and
magnetic fields can be expressed, respectively, as
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where k = koe"1/2, ky = w/c, where o and ¢ are the angu-
lar frequency and speed of the EM wave in vacuum, ¢ = 0
is the dielectric constant of the medium, a is the radius of
the sphere, r is the distance to a point in space, 553) (\)is
the spherical Riccati—-Hankel function of the first kind,
Y (0, ¢) are the spherical harmonics, and a,,, and b,,,
are the coupled scattering/beam-shape coefficients given
by [6,9]:
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where y,,(.), is the spherical Riccati-Bessel function of
the first kind, the prime denotes a derivative with respect
to the argument, the parameter 7 is the relative refractive
index of the medium of wave propagation (which is gen-
erally complex), and the beam-shape coefficients A,,,
and B,,, are given, respectively, by
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where the superscript * denotes a complex conjugate,
and E"(r = a,0,¢) and H™(r = a,0, ¢) are the radial
(scalar) components of the incident electric and mag-
netic fields evaluated at the radius of the sphere.

As noted in Egs. (5) and (6), the incident electric and
magnetic fields need to be determined to properly solve
for the scattering problem. One may use the scalar wave
theory [10], which provides fairly good results only if the
size of the central spot of the beam is much larger than
the wavelength [i.e., k(= ksinpf) <k, where g is the
half-cone angle of the beam]. However, it has been shown
[11] that the vector nature of electromagnetic (EM)
wave propagation introduces significant corrections
and should be used instead for a complete analysis of cir-
cularly symmetric beams, such as the ZOBB. Therefore,
the radial components of the incident electric and
magnetic fields are expressed in terms of the Cartesian
coordinates, respectively, as [12,13]
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The parameter E, = ikA,, k, = kcosf, R = /2% + ¢* is
the radial distance to a point in the transverse plane
(x,y), and Jg (-) is the cylindrical Bessel function of
the first kind of the zeroth, and first orders, respectively.
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Fig. 1. (Color online) Magnitude of the far-field scattering
form functions of a plane EM wave (i.e., § = 0°) incident upon
a water sphere for the scattered electric [(a)-(c)] and magnetic
[(d)—()] far fields. The plots in (a), (d) correspond to ka = 1.5;
(b), (e) to ka = 5; and (c), (f) to ka = 12, respectively.
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Fig. 2. (Color online) Magnitude of the far-field scattering
form functions for a zero-order Bessel EM beam with
p =55° for the scattered electric [(a)-(c)] and magnetic
[(d)—-(f)] far fields. The plots in (a), (d) correspond to
ka = 1.5, (b), (e) to ka = 5; and (c), (f) to ka = 12, respectively.
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It is common to investigate the scattered electric and
magnetic fields in the far-field region, though Egs. (1) and
(2) can be used to compute the scattered fields at any
distance  from the sphere. In the far field (kr — ),
the expression for the scattered field is further simplified
because

wy(q) = sin(q —nx/2),
& (q) — - exp(iq).

In that limit, a scattering form function for the electric
field may be defined as
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Upon the substitution of Egs. (3) and (4) into Egs. (15)
and (16) using Egs. (5)-(13), the magnitude (or phase) of
the scattering electric and magnetic form functions
can be evaluated by plotting the on- and off-axial 3D
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Fig. 3. (Color online) The same as in Fig. 3; however, the
sphere is shifted off the axis of the incident beam in both
the x and y directions such that the offset (in arbitrary units)
is (x,y) — offset = (0.75;0.75).
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directivity patterns. Calculation of the beam-shape coef-
ficients requires determining the surface integral in
Egs. (5) and (6). The integrals are evaluated by quadra-
ture based on a Riemann sum in the MATLAB software
package. It is important to emphasize that dense grids
(sampled here at 22> uniformly distributed points) are re-
quired in both the € and ¢ directions to obtain proper
convergence of the numerical integrations. In the simula-
tions, the value of the parameters are £y = ¢ = 1, and the
(complex) refractive index of refraction of the medium is
=133 +5x 107% [14].

To validate and verify the accuracy of the computa-
tions, a test for a linearly polarized (in the x direction)
plane EM wave has been performed to compute the
beam-shape coefficients for the electric field using Eq.
(5) and we compared the results with the exact known
solution. The same can be done for the magnetic field
using Eq. (6); however, it has not been reported here
for brevity. After some arithmetic manipulation based
on the expression for the radial component of the inci-
dent electric field of a plane EM wave given by (7.75)
in [15] and its comparison with (Al) in [9], the beam-
shape coefficients can be identified and determined as
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puted beam-shape coefficients using (5) have been com-
pared to those obtained from the exact form as given by
Eq. (17). The relative numerical error was about ~107".
Also, computations for the magnitude of Egs. (15) and
(16) are performed for the axial scattering of a plane
EM wave by a homogeneous sphere by setting f = 0°
with £y = e =1 in Egs. (8)-(13).

The results are shown in Figs. 1(a)-1(f) for the radial
components of the scattered electric and magnetic fields,
respectively. As observed, the magnitude of the scatter-
ing by the sphere along the axis vanishes. This is some-
what expected because both radial components of the
electric and magnetic fields depend on the associated Le-
gendre function of the first order P (cos®) {see (7.75)
and (7.77) in [15]} that vanishes for 6 =0 and 0 = +=x.
The arrows in Fig. 1 (and others) on the left-hand side
of each panel indicate the direction of the incident waves
@ = n).

The case of a ZOBB EM beam incident upon a water
sphere is represented in Fig. 2, which shows a compar-
ison between the 3D scattering directivity patterns for
the magnitude of the electric and magnetic far-field form
functions as given in Egs. (15) and (16). The plots corre-
spond to the scattering far fields by a sphere centered on
the axis of the ZOBB. One notices the significant differ-
ences as compared to the plane wave result (i.e., Fig. 1).
Moreover, the 3D scattering directivity patterns show
spatial symmetry with respect to the center of the sphere.

This is not the case when the water sphere is shifted off
the axis of the EM ZOBB. For this example, the sphere
is shifted in both the x and y directions, such that the
offset in arbitrary units is (x,y) - offset = (0.75;0.75).
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Fig. 4. (Color online) Magnitude of the far-field scattering
form functions for the scattered electric [(a)-(c)] and magnetic
[(d)—()] far fields from a homogeneous water sphere placed off
axially [(x,y) — offset = (0.75;0.75)] with respect to the axis of
an incident zero-order Bessel EM beam at ka = 12 for various
values of the half-cone angle g. In (a), (d) g = 15° in (b),
(e) p=40° and in (c), (f) p = 75° respectively.

It is obvious that the 3D scattering directivity patterns
for the off-axial scattering of the electric and magnetic
far fields displayed in Fig. 3 show significant differences
from the axial case displayed in Fig. 2.

Further calculations for the off-axial far-field electric
and magnetic scattering are performed to investigate
the effect of varying the half-cone angle f on the 3D scat-
tering directivity patterns. The results are displayed in
Fig. 4, in which the off-axial scattering directivity pat-
terns in the far field are sensitive to the variations of the
half-cone angle f. In contrast to the case of the plane
waves, both the axial and off-axial scattering from an
EM ZOBB are strongly affected by the value of the
half-cone angle S.
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