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For a laser that fires a short pulse at time 0 into a homogeneous cloud with specified scattering and absorption pa-
rameters, this paper addresses the problem of theoretically calculating Jn (t), the nth-order backscattered power
measured at any time t > 0. The backscattered power is assumed to be measured by a small receiver, which is colo-
cated with the laser and which is fitted with a forward-looking conical baffle of adjustable opening angle. The ap-
proach taken here to calculate Jn(t) is somewhat unusual in that it is not based on the radiation-transfer equation
but rather on the premise that the laser pulse consists of propagating photons, which are scattered and absorbed
in a probabilistic manner by the cloud particles. Polarization effects have not been considered. By using straight-
forward physical arguments together with rigorous analytical techniques from the theory of random variables, an
exact formula is derived for Jn(t). For n 2 2 this formula is a well-behaved (3n-4)-dimensional integral. The
computational feasibility of this integral formula is demonstrated by using it to evaluate Jn(t)/J 1(t) for a model
cloud of isotropically scattering particles; for that case an analytical formula is obtained for n = 2, and a Monte
Carlo integration program is employed to obtain numerical results for n = 3,..., 6.

1. INTRODUCTION

In this paper we consider the following general problem: A
pulse-type laser is situated on the ground and aimed vertically
upward (see Fig. 1). The location of the laser defines the or-
igin 0 of an xyz Cartesian frame, with the xy plane coinciding
with the ground and the z axis pointing up. A cloud, com-
posed of small particles with known radiation scattering and
absorption properties, occupies the region z > b, where b is
a given nonnegative constant. (We shall see later that the
situation in which the ground is not physically present and the
cloud fills all of space can be treated as a special case.) A re-
ceiver, which is capable of measuring backscattered laser ra-
diation, is colocated with the laser. The receiver consists of
a radiation-sensitive disk of radius ro, lying in the xy plane and
centered on the origin, together with an upward-pointing.
conical baffle, whose admittance angle is 2'po(O < aO < 7r/2).
The idea is that the receiver detects backscattered laser ra-
diation from the cloud if and only if that radiation strikes the
disk at an angle less than 4to with the vertical. Assuming now
that the laser fires a pulse at time 0, we want to calculate the
quantity

Jn (t) the power, measured by the receiver at time t,
that has been scattered exactly n times by the

cloud particles (t > 0; n = 1, 2, .. ). (1)

The importance of this problem stems from the widespread
use of pulsed lasers with colocated, forward-looking receivers
(so-called monostatic lidar systems) to probe clouds. The
purpose of the probing could be either to locate some object
within the cloud or to investigate various physical properties
of the particles that constitute the cloud. In such applica-
tions, interest is usually focused on the easily calculated
quantity J1(t). But clearly, an exclusive interest in J1 (t) can
be justified only in those cases in which it can be confidently
established that Jn(t)/J 1(t) << 1 for all n > 2.

The calculation of J,, (t) presented here will be subject to
several restrictive assumptions. All these assumptions seem
reasonable for common lidar applications, but it is appropriate
to state them clearly at the outset. First, although the cloud
may contain any number of different types of scattering-
absorbing particles, we require that these particles have a
uniform random distribution inside the cloud, i.e., we require
the cloud to be well mixed. Second, we require that the re-
ceiver disk be small; more specifically, we require that ro <<
ct, a condition that evidently imposes a positive lower limit
on the observation time t. Third, we require that both the
cross-sectional area and the angular divergence of the laser
beam be entirely negligible, so that every photon in the initial
laser pulse can be regarded as traveling along the +z axis.
And finally, we shall assume that the duration A of the laser
pulse is essentially zero; however, this short-pulse assumption
is not so crucial as the others, and we shall indicate how it can
be relaxed if one wishes to use a specific pulse-shape function
with a finite time duration.

The problem of computing Jn(t) for n ' 2 is not an easy
one. It has been considered, in various guises, by several in-
vestigators using a variety of methods. Most approaches are
analytic ones based on the radiation-transfer equation';
prominent among these are the treatments by Liou and
Schotland, 2 Eloranta, 3 Weinman, 4 Carter et al.,5 and Cai and
Liou.6 Other approaches have consisted of Monte Carlo
simulations, among which are the works of Plass and Katta-
war,7 Blattner et al. ,8 and Kunkel and Weinman.9 In spite
of these many contributions, there seems to be no broad
consensus that the problem of calculating multiply scattered
lidar returns has been put to rest.

The approach taken in the present paper has several unique
aspects. Although it is not feasible to make detailed com-
parisons here with all the works just cited, the following points
should help to place our effort in context: (1) Even though
our approach is analytic, in the sense that we derive an ex-
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Fig. 1. The lidar configuration considered in this paper. The sit-
uation in which the ground is not present and the cloud fills all xyz
space can be treated as a special case of this configuration.

plicit, closed-form expression for J (t), we do not use or rely
on the radiation-transfer equation. Instead, we proceed from
the premise that the problem concerns a collection of propa-
gating photons that are stochastically scattered and absorbed
by the cloud particles. This is essentially the same premise
that underlies most Monte Carlo simulations of the multi-
ple-scattering problem (e.g., Kunkel and Weinman9), and it
seems, at least to this writer, to afford a more easily visuali-
zable picture of the relevant physical processes than does the
radiation-transfer equation. (2) Probably the most novel
feature of our treatment is its use of a somewhat esoteric
theorem in random-variable theory called the random-vari-
able transformation (RVT) theorem.'0 Application of this
theorem is what allows us to pursue the stochastically for-
mulated multiple-scattering problem in an analytic mode
rather than in a simulation mode. (3) Our final expression
for J(t) for n 2 2 is in the form of an explicit (3n - 4)-di-
mensional definite integral. By comparison, the recent work
of Cai and Liou6 gives integral forms that are (3n)-dimen-
sional. Like Cai and Liou, we shall normally evaluate these
integrals for specific parameter values by using Monte Carlo
techniques. In that connection, it is important not to confuse
the Monte Carlo evaluation of a definite integral with the
Monte Carlo simulation of a stochastic process. (4) Our
analysis ignores the important but complicating fact of ra-
diation polarization. In this respect, our analysis is not so
ambitious as some previous ones (e.g., Cai and Liou 6). We
hope to investigate ways of incorporating polarization effects
into our approach in a subsequent publication.

The plan of our work here is as follows: In Section 2 we
show that the propagation of a photon through a cloud is an
intrinsically stochastic phenomenon, and we derive expres-
sions for the fundamental propagation probabilities in terms
of the physical parameters of the cloud. In Section 3 we show
how the calculation of J(t) can be reduced, in most cases of

physical interest, to the calculation of a certain probability
function P,,. For n = 1 the function Pn can be calculated from
the fundamental propagation probabilities easily and directly;
we perform that calculation in Section 4 and thus arrive at a
formula for Ji(t). Section 5 describes the much more difficult
and circuitous calculation of Pn for arbitrary n. For this, we
first introduce an auxiliary probability function Qn, and we
then use the previously mentioned RVT theorem to write Pn
as a multidimensional integral over Qn times three Dirac delta
functions. To render the integral suitable for numerical
evaluation, we must analytically integrate out the delta
functions and transform to a set of integration variables for
which the integrand and the integration domain are both
bounded. This (purely mathematical) phase of our derivation
is unfortunately too lengthy to detail here, so we merely sketch
a few of the highlights and then state the result; a complete
account of the analysis can be found in a companion technical
publication." Our final computer-ready integral formula for
Jn(t)/J1(t) is presented in Section 6 [in Eq. (50) for n = 2 and
Eq. (51) for n 2 3]. In Section 7 we demonstrate the com-
putational feasibility of this formula by obtaining numerical
results for n = 2 through 6 for a simple model cloud of iso-
tropically scattering particles. Applications to more-realistic
cloud models will be presented in a later publication.

In our work here, we shall make frequent use of two special
mathematical functions. One, as just indicated, is the Dirac
delta function , which is defined by the pair of equations

6(x-xO)=O if x 0xO,

. f (x)6(x - xo)dx f(xo)

(2a)

(2b)

for any function f of x. The other special function that we
shall use is the inequality function I, defined by

1 if inequality is satisfied
t0 if inequality is not satisfied' '

For example, I(a < x < b) is unity if x lies between a and b and
is zero if x does not lie between a and b. The I function can
generally be written in terms of the more familiar Heaviside
step function, but for our work here the I-function notation
proves to be less cumbersome.

2. STOCHASTIC SCATTERING AND
ABSORPTION OF PHOTONS IN CLOUDS

It is not in general possible to predict with certainty the tra-
jectory of a photon traveling through a cloud of randomly lo-
cated scatterers and absorbers.'2 The best that we can hope
to do is to assign probabilities to all possible trajectories; these
in turn may be used to calculate various physically relevant
averages. In this section we want to show that for almost any
well-mixed cloud there exist two scalar constants ,B and 3,B and
a scalar function f such that the following two probability
statements are true:

exp(-Ou) = probability that a photon will move a
distance u in the cloud without being
either scattered or absorbed, (4)
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f3 8du X f(O)sin OdOdo = probability that a photon will be
scattered, in the next infinitesimal distance du, into the
solid angle sin OdOdk in the polar direction (0, 4) relative
to its present direction of travel.

(O< <5 7r;0 < <27r). (5)

Equations (4) and (5) are, for our purposes, the fundamental
laws governing the propagation of a photon in a well-mixed
cloud; they will form the physical basis for our analysis of lidar
backscattering.

To derive Eqs. (4) and (5), and to see how the quantities f3,
i3, and f are related to the physical parameters of the cloud,
we suppose that the cloud consists of a randomly uniform
mixture of various types of small particles. Let particle type
k populate the cloud with an average density of Pk particles
per unit volume. Further, let each type-k particle have, rel-
ative to the laser photons, a scattering cross section asrk, an
absorption cross section 0fa,k, and an angular scattering
function fk (0). The physical significance of aks is as follows:
As a given photon moves an infinitesimal distance du in the
cloud, it sweeps out relative to any type-k particle an infini-
tesimal scattering cylinder of length du and base area a,,k, in
the sense that any type-k particle whose center happens to lie
inside that cylinder will scatter the photon as it attempts to
travel the distance du. Since the type-k particles are dis-
tributed uniformly at random throughout the cloud, then the
probability that any particular type-k particle will have its
center inside the scattering cylinder is just the ratio of the
scattering-cylinder volume o,,,kdu to the cloud volume V,.
Thus aS,kdu/Vc is the probability that any particular type-k
particle will scatter the photon in the next du of its journey
through the cloud. Since du is infinitesimal, the probability
for more than one scattering in du is negligibly small com-
pared with the probability for a single scattering; therefore
the probability that any of the PkVC type-k particles in V, will
scatter the photon is given by the product

(PkVc) X (sk du/VC) = Pk rs,kdu.

We thus see that, if a photon is about to move an infinitesimal
distance du in the cloud, then

Pk o,,k du = probability that the photon will be
scattered in du by a type-k particle.

And of course a similar argument shows that

Pk Ca,k du = probability that the photon will be
absorbed in du by a type-k particle.

(6a)

(6b)

If we now define

As- E Pkys,k,
k

0. - Pk 1Y,k,
k

[=A + -la - Pk(ys,k + (Ta,k),
k

then it follows from Eqs. (6) and the addition law of proba-
bility theory that

B.,du = probability that the photon will

#,dd = probability that the photon will
be absorbed in the next du, (8b)

du = probability that the photon will be either
scattered or absorbed in the next du. (8c)

Equation (4) can now be easily derived from Eq. (8c) by
applying a well-known probability argument.' 3 Using Eqs.
(4) and (8c) together, it is easy to show that the mean free path
of the photon in the cloud is i-1. The constant fi is identical
to the so-called extinction coefficient of the cloud.

We assume that if a photon is absorbed by a cloud particle,
then the photon is effectively eliminated from further con-
sideration. However, if a photon is scattered by a type-k
particle, it immediately changes direction in a manner de-
termined by the angular scattering function fk according to
the following rule:

fk (0)sin Odfo probability that a photon, which has
just been scattered by a type-k par-
ticle, will have its new direction of
travel pointing in the infinitesimal
solid angle sin 0ddp, at polar angle
0 and azimuthal angle X relative to its
previous direction of travel.

(0S0• 7r;0<0 <27r). (9)

We are assuming that we are dealing with unpolarized photons
and randomly oriented scatterers, so that fk is independent
of the azimuthal scattering angle 0. The function fk clearly
must be nonnegative; furthermore, since a scattered photon
must emerge in some direction, the integral of fk over the total
solid angle must be unity; therefore fk satisfies the normali-
zation condition

X fk()sin Od0 = (2r)-1. (10)

Two commonly used simple models for light scattering are the
isotropic-scattering model, for which fk (0) = (1/470, and the
Rayleigh-scattering model, for which fk (0) = (3/167r)(1 +
cos2 0). For a spherical dielectric particle (e.g., a water
droplet), fk(0) would be the corresponding Mie-scattering
function, normalized according to Eq. (10).

From Eqs. (6a) and (9), together with the multiplication law
of probability theory, it follows that

Pk cT,,kdufk (0)sin 0dtdo = probability that a photon will be
scattered in the next du by a type-k particle into the solid
angle sin 0d~do in the polar direction (0, O) relative to its
present direction of travel (0 • 0 • 7r; 0 • 0 < 2r).

(11)

(7a) Summing this probability over all k we obtain, through the
addition law of probability theory, the probability that the

(7b) photon will be scattered in the next du into the solid angle
sin OdOdk at (0, 4) by any type of particle. But this sum over
k can be written as

(7c)

E Jpk a.,k du X fk (O)sin 0d~d,01
k

-8 Adu{E (ps as,,kl/s)fk (0) sin 0ddo.

(8a) Therefore, by simply defining the function f to be

Daniel T. Gillespie

be scattered in the next du,



1310 J. Opt. Soc. Am. A/Vol. 2, No. 8/August 1985 Daniel T. Gillespie

f(0) E (PkUs,/fls)fk(0), (12)
k

we obtain at once the result in Eq. (5).
It follows from Eq. (8a) and the factored structure of the

left-hand side of Eq. (5) that f(O)sin 0ddb may be interpreted
as the probability that a photon, having just been scattered
by an unspecified type of particle, will emerge in the solid
angle sin OdOdk in the polar direction (0, 0) relative to its
previous direction of travel. By integrating Eq. (12) over 0
and making use of Eqs. (10) and (7a), we can easily show that
the function f satisfies the same normalization condition as
the functions fk:

f f()sin OdO = (2X)-', (13)

The twofold purpose of the foregoing analysis was to pro-
vide a physical rationale for the probability statements in Eqs.
(4) and (5) and also to indicate how the parameters f, , and
f(0) contained in those equations are related to more-con-
ventional cloud parameters. We found that

AS E Pk s,k, (14a)
k

1 = E Pk((as,k + a,k), (14b)
k

f (0) O -s' E Pk y.,kfk (0) (14c)

For example, consider a cloud of spherical water droplets of
various sizes, so that the droplet radius r can be used as the
species index k. Let p(r)dr denote the average number of
droplets per unit volume with radii between r and r + dr. Let
a, (r) and (r) be the scattering and the absorption cross
sections that a droplet of radius r presents to a photon, and
let f(0; r) denote the scattering angular density function for
a droplet of radius r, normalized according to Eq. (10). Then
Eqs. (14) take the form

18= u (r)p(r)dr, (15a)

13 = [a,(r) + T.(r)]p(r)dr, (15b)

f(0) = f(0; r)s(r)p(r)dr. (15c)

However, in our work here we shall not make use of these
formulas explicitly; instead, we shall simply assume that As,
13, and f(0) are given, with 13s and any constants satisfying
0 < A < and f(0) any nonnegative function satisfying Eq.
(13).

Having opted to characterize the laser radiation as a col-
lection of photons that individually follow particlelike tra-
jectories in the cloud, it is important that we be aware of the
extent to which the wave-specific phenomenon of interference
is accounted for. Interference effects in the scattering of a
photon by an individual cloud particle can be fully incorpo-
rated through the function k (0); e.g., for scattering from a
spherical dielectric particle, interference among parts of the
electromagnetic wave that travel through different regions of
the sphere can be fully accounted for by taking fk(0) to be the
corresponding Mie-scattering function, normalized according
to Eq. (10). However, we have not taken into account inter-

ference effects between different cloud particles. This points
up again the fact that our analysis holds only for clouds whose
constituent particles are effectively uncorrelated in their
spatial locations. Fortunately, virtually all not-too-dense
aerosols satisfy this condition.

3. EXPRESSING Jn IN TERMS OF Pn

In this section we shall show how the function J,, in Eq. (1) is
related to the laser pulse-shape function p and a carefully
defined probability function P,. The latter function will be
the focus of our subsequent computational effort.

The laser pulse-shape function p is defined so that

Nop ()dr average number of photons emitted
by the laser in the infinitesimal time
interval (r, r + d-r). (16a)

We assume that p (r) is positive for 0 S -r A and zero oth-
erwise, where A is the pulse width; i.e., the laser pulse is
emitted in the time interval (0, A). We also assume that p
satisfies

(16b)|fp(t)dt = 1,Jo
so that the total number of photons in the emitted laser pulse
is No. Most of the final results for J,, (t) quoted in this paper
will be for the sharp-pulse case, in which A 0 0 and p(r) =
b(r); however, we shall not make this sharp-pulse assumption
quite yet.

We now introduce a probability function P,, which is de-
fined by the statement

P.(t, x, y)dtdxdy - probability that a photon, which is
emitted by the laser at time 0, will suffer exactly n scat-
terings in the cloud and then arrive at the ground in the
infinitesimal time interval (t, t + dt), and in the infinites-
imal area element dxdy at point (x, y), and at an angle less
than dIo with the vertical. (17)

Notice that Pn(t - , x, y)dtdxdy, for r < t, is the same
probability for a photon that is emitted at time instead of
at time 0. Thus, putting

dik Pn(t - T, x, y)dxdy = Rn(t - T), (18)

we may infer from the addition law of probability theory that,
provided that r < t,

Rn(t - r)dt = probability that a photon, which is emitted
by the laser at time T, will suffer exactly n
scatterings in the cloud and then be detected
at the receiver in the infinitesimal time in-
terval (t, t + dt)

= average fraction of the Nop(r)dr photons
emitted by the laser in ( T + d) that will
suffer exactly n scatterings in the cloud and
then be detected at the receiver in (t, t +
dt)..

Therefore, provided that t > A, the average number of pho-
tons in the laser pulse that will be scattered exactly n times
in the cloud and then be detected at the receiver in (t, t + dt)
is
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I Nop(-r)dr X R,(t - r)dt
T=O

= Nodt J drp(-r)Rn (t - r).

If each detected photon deposits an energy e in the receiver,
then multiplying this last quantity by e will give J, (t)dt, the
average n-scattered radiant energy detected at the receiver
in (t, t + dt). Thus

Jn(t) = Noe f d-rp(-r)Rn(t - r) (t > A),

or, recalling Eq. (18),

Jn(t) = Noe f dp () lsk Pn(t - ,x, y)dxdy

(t > A). (19)

Equation (19) is an exact expression for Jn in terms of p and
Pn. We shall now simplify this expression by making the
assumption that the receiver disk is so small that Pn (t, x, y),
considered as a function of x and y, is effectively constant over
the disk. In that case, we can make the approximation

Sdik Pn(t -T,x,y)dxdy -7rro2 XP(t-, r,0,0). (20a)

This approximation should be good provided the radius ro of
the disk is much smaller than the shortest distance c(t,- A)
traveled by any detected photon; thus our small-disk as-
sumption effectively imposes the requirement that

t >> ro/c + A, (20b)

or that t not be too small. Inserting approximation (20a) into
Eq. (19) gives the (approximate) result

J.(t) = (7rrO2)Noefr drp(0)P.(t - r, 0, 0)

[t >> r/c + A]. (21)

For the remainder of this paper we shall concentrate on the
sharp-pulse case, in which A Oand p(r) = b(r). For that
case we find, using Eq. (2b), that Eq. (21) simplifies to

J.(t) = (rro 2)NoEP(t, 0, 0) [t >> r/c, A 0]. (22)

The ratio of J,(t) to J,(t), which is often all that one really
requires, is then given simply by

Jn(t)/J(t) = P(t, 0, 0)/P(t, 0, 0)

calculation can easily be made directly from the definition in
Eq. (17). That definition reads, for n = 1 and x = y = 0,

Pl(t, 0, 0)dtdxdy probability that a photon, emitted by the
laser at time 0, will scatter exactly once in the cloud and
then arrive, between times t and t + dt, in the infinitesimal
area element dxdy centered on the origin. (24)

Notice that a singly scattered plhoton that returns infinitesi-
mally close to the origin will necessarily do so at a declination
angle less than any given value o0 > 0, so the baffle condition
in Eq. (17) is automatically satisfied here.

Figure 2 shows the path of a photon that leaves the laser at
time 0, scatters once in the cloud, and then returns infini-
tesimally close to the origin between times t and t + dt. In
order to arrive in that time interval, it is clear from the figure
that the scattering must take place on the z axis between z and
z + dz, where z and dz are related to t and dt by

z = ct/2 and dz = cdt/2. (25)

Assuming that z > b, the probability that the photon reaches
the point (0, 0, z) without being either scattered or absorbed
is, according to Eq. (4), exp[-#(z - b)]. The subsequent
probability that the photon will be scattered in the next dz
toward the area element dxdy at the origin is, according to Eq.
(5), 13,dz X f(7r)d 2Q, where d2Q is the solid angle subtended
at (0, 0, z) by the area element dxdy. It is seen from Fig. 2

z-AXIS

- . . ..

. . . .

. .

[t >> ro/c, A 0].

(23)

Coinaring Eqs. (21) and (22), we see that, for those cases
in which the sharp-pulse approximation is not appropriate,
we have to replace Pn (t, 0, 0) in the preceding two formulas
by SoAdTp(r)P(t-r, 0,0). In either case, the problem of
calculating J,(t) has now been reduced to the problem of
calculating Pn(t, 0, 0). Since the latter quantity is defined
probabilistically [cf. Eq. (17)], there is hope of calculating it
from the probabilistic laws in Eqs. (4) and (5). Such a cal-
culation will be our goal in Sections 4-7.

4. DIRECT CALCULATION OF P,(t, 0, 0)

The computation of Pn (t, 0, 0) for arbitrary n is, as we shall
see, a complicated and lengthy task. However, for n = 1 the

b

0

I I

* . . . . -

1 Q

ll
ll
ll
1
1
1

AREA ELEMENT dxdy
Fig. 2. Trajectory of a photon that scatters exactly once in the cloud
and then returns to the ground plane infinitesimally close to the or-
igin.
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that this solid angle is given by

d2Q= (dxdy)/z2. (26)

And finally, the probability that the photon's journey back
to dxdy will not be interrupted by a scattering or absorption
is exp[-fl(z-b)]. Now, the probability in Eq,,(24) is just the
probability that all the foregoing events transpire; therefore
the multiplication law of probability theory implies that

Pi(t, 0, 0)dtdxdy = exp[-O(z - b)] X , 8,dz X f(r)d 2Q
X exp[-3(z - b)] X I(z > b). (27)

The I function here makes explicit the fact that the proba-
bility in question will be zero if z is less than b. Substituting
for z, dz, and d2 Q from Eqs. (25) and (26) and then simpli-
fying, we conclude that

Pi(t, 0, 0) = I(ct > 2b)(c13/2)(2/ct)2

X exp[-13(ct - 2b)]f(7r). (28)

Therefore, by using Eq. (22), we obtain for Jl(t) the for-
mula

Jl(t) = I(ct > 2b)(7rr0
2)N0E2cfl,(ct)-2

X exp[-O(ct - 2b)]f(7r) [t >> ro/c, A 0]. (29)

The fact that Pl(t, 0, 0) in Eq. (28) diverges like t-2 as t 
0 may at first sight be disturbing; however, this divergence
does not lead to any unphysical behavior in J(t), because the
t- 2 in Eq. (29) gets multiplied by r0

2, and it is expressly stip-
ulated that Eq. (29) is valid only if ro/t << c.

5. CALCULATION OF P(t, x, y) FOR
ARBITRARY n

The calculation of P (t, 0, 0) for arbitrary n is considerably
longer and more circuitous than that given in the previous
section for the case n = 1. The calculation can be divided into
two phases. The first phase consists of deriving a formal
mathematical expression for Pn(t, x, y), and the second phase
consists of deducing from this formal expression a numerically
computable formula for Pn(t, 0, 0). It is worth noting that in
neither phase do we have to make any approximations, so our
final result is mathematically exact. The first phase involves
a rather interesting combination of physical and mathematical
reasoning and is detailed below in Subsection 5.A. The sec-
ond phase, which is purely mathematical, is unfortunately too
lengthy to present in detail in this article, so in Subsection 5.B
we just mention some of the highlights and then give the final
result; a complete account of the second-phase analysis may
be found in a companion publication."

A. Derivation of a Formal Expression for Pn(t, x, y)
Figure 3 illustrates the trajectory of a photon that is emitted
from the origin at time 0, scatters exactly n times in the cloud,
and then returns to the ground at some point S = (x, y, 0) (not
necessarily on the receiver's disk) and at some angle +' with
the vertical. We denote the point at which the photon's ith
scattering occurs by Si (i = 1,.. ., n). Identifying So and Sn+
with the points 0 and S respectively, we define the n + 1
vectors uo, u1, . ., by

S=(XJO)
Fig. 3. Trajectory of a photon that scatters exactly n times in the
cloud and then returns to the ground plane at the point S = (x, y, 0).
The ith scattering occurs at point S, and the vector from Si to Si+,
is denoted by ui - iui, where 6i is a vector of unit length.

Here, u denotes the magnitude of ui, and 6i denotes the unit
vector in the direction of u.

If x, y, and 2 are the Cartesian basis vectors of the main xyz
frame, then by hypothesis,

0 o = 2. (31)

For i 1 we shall parameterize 6i by its polar and azimuthal
angles Oi and i in the Cartesian frame whose basis vectors
2i, ~9, and 2 are defined according to the following recursive
scheme:

2 = , 9 = 9, 2 = 2,

2 i = 6i-l

hi = (2 X -ii)/I2 X ei1l 

i = S X 2J

(32a)

(i = 2,. .. , n). (32b)

With 2i, 'i, and 2i so defined, the unit vector 6i is then speci-
fied parametrically by

6i = j sin Oi cos 0 + 9i sin Oi sin O + 2 cos 

(i = 1,.. .,n). (33)

Since 2 = i-1, then O and /i are the canonical scattering
angles of Eq. (5) for the ith scattering. The assumed azi-
muthal symmetry of the scattering process implies that the
orientation of the xizi plane is unimportant, and we have
taken 9j 2 X i-1 solely for convenience. Notice that, be-
cause of the recursive nature of Eqs. (32) and (33), the xyz-
frame components of 6i will depend on all the angles 0, 01,
02, 2, * , Oi, i-

The angle V/ is evidently the angle between the two unit
vectors and -n, so

(30) cos lk =-2 e(n
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ui m SiSi+l = uigi (i = 0, 0. (O < ip < 7r/2). (34)
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It is clear that the trajectory of the photon in Fig. 3 is
completely defined by the n + 1 vectors u, u, ... , un.
However, these vectors do not form an algebraically inde-
pendent set, because the stipulation that the photon return
to the ground imposes the requirement that

n n
0 =2OS E ui = ui(2 es).

i=O i=O

This condition can be enforced by simply regarding the
magnitude of the vector un to be given in terms of the other
variables by the formula

n-1
Un = -(2 - n )_, E Ui (i * i)-

i=o
(35)

Therefore the trajectory of the photon in Fig. 3 can be pa-
rameterized by the 3n algebraically independents scalar
variables u0 , 01, 01, ul, 02, 9 .2.. Un-l, 0n, cn-

For the 3n trajectory variables just listed, we now introduce

a probability function Qn, which is defined through the
statement

Qn(uo, 01 ¢10 ' * * , Un-1, On, 9n)duodldl *... dun-ldOndon
- probability that a photon, which is emitted from the laser
at time 0, will scatter exactly n times in the cloud in such
a way that, for each i = 1, . .., n the free path length of the
photon just before the ith scattering is between ui-1 and
ui_1 + dui_1 and its heading just after the ith scattering is
in the polar solid angle sin idid i at (Oi, (i), after which
the photon returns freely to the ground at an angle less than
i10 with the vertical. (36)

Using Eqs. (4) and (5), along with the elementary laws of
probability theory, we can write down the following exact
expression for the foregoing probability:

Q(uo, 01, 10. .. , Un-1, 6n, 0n)duodld'01 ... dun-ldOnd¢n

= exp(3b) X exp[-3(un - b sec A)]

n ~~~~~~i-l
X lexp(f-ui-1) X I -o E j 

X f3dui- X f(0i)sin Oid Oi doi

X Igui0l > O)I(O • °i 6 7r)I(O S Xi < 27r)

X I(cos if > cos t0). (37)

To justify this expression we begin by considering the
quantity in braces, which refers specifically to the ith scat-
tering. The first factor in the braces is by Eq. (4) the proba-
bility that, just before the ith scattering, the photon travels
a distance ui-1 without being either scattered or absorbed;
since for i = 1 this probability should read expl- 3 (uo - b)]
instead of exp(-uo), we place a factor exp(fBb) outside the
i product. The second factor in the braces ensures that the
ith scattering occurs above cloud base; this factor simply re-
quires the z component of the vector OSi to be greater than
b. The next two factors are by Eq. (5) the probability that,
given the foregoing conditions, the photon is scattered in the
next dui-1 into the polar solid angle sin Oid6dki in the di-
rection (0, 0s) relative to its previous path. The last three
factors in the braces simply ensure that the variables ui-1, Oi,
and 0i are confined to their physically accessible ranges. The
product of these factors over i from 1 to n gives the probability
that all these events transpire for all n scatterings. The sec-

ond exponential outside the braces is, by Eq. (4), the proba-
bility that the photon is neither scattered nor absorbed after
the nth scattering (note from Fig. 3 that, of the total distance
Un traveled by the photon after the nth scattering, b sec if is
traveled outside the cloud). Finally, the I function at the end
of the equation imposes the requirement that the angle At be
less than 4,0.

By canceling the common differentials in Eq. (37), re-
grouping factors, and eliminating V/ through Eq. (34), we
conclude that the function Qn defined in Eq. (36) is given
by

Qn(UO0 01, 0b1 .. *. Un-1) n} 'On)

= An exp(- E ui exp(Ob[1 - ^ en)_], U1 (Oi)sin Oi]
i=O i=1

X I(-2 -en > cos 4 'o) HI - uj(2 * j) > b

X I(ui- 2 0)1(0 • i 7)I(O • i < 27r)] - (38)

If the ground were not present and the cloud covered all
space, then we would not have to worry about distances
traveled by the photon outside the cloud or scatterings oc-
curring below cloud base; in that case, a review of the above
arguments will show that Eq. (38) would still hold true, except
that the exponential factor containing b and the n I functions
containing b would be absent.

Our strategy is to calculate the function Pn from the func-
tion Qn by making use of a result from the theory of random
variables called the RVT theorem. This theorem can be
stated as follows: Suppose that the n variables X,.. .,Xn
are random with joint probability density function Q; this
means simply that Q(xl,... ,xn)dxl ... dxn gives the prob-
ability that Xi will be found to have a value in the infinitesimal
interval (xi, xi + dxi), simultaneously for all i = 1, . . ., n.
Suppose further that the m variables Y, . ., Ym are defined
by

Yi = fi(X1, * * , Xn) (39a)

where each fs is an ordinary real function of n real variables;
this means simply that the value of Yi is found by applying
the function fi to the simultaneous values found for X1, . ..
Xn. Then, according to the RVT theorem, the variables Y,
. ., Ym are random with joint probability density function

P(Y1,. * * Y.) = f dxl. ... f dXnQ(xl, -,Xn)
X [ 6y[i -fi(xl, * *, Xnx)]-

i=l
(39b)

A proof of the RVT theorem may be found in Ref. 10. To
see the relevance of this theorem to our problem here we first
observe that, since we cannot predict with certainty the fate
of a photon emitted by the laser at time 0, the variables t, x,
and y in the arguments list of the function Pn and the vari-
ables uo, 01 0, "... , , Un1, 6n, 'On in the arguments list of the
function Qn are necessarily random variables.15 Second, we
note that the two functions Pn and Qn, as defined in Eqs. (17)
and (36), are almost the joint probability density functions
for their respective variables. The qualifier here stems from
the fact that the integrals of Pn and Qn over all values of all

Daniel T. Gillespie
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their variables do not equal unity, as is required of a true
probability density function; however, a careful reading of
Eqs. (17) and (36) will reveal that integrating Pn over all values
of all its variables gives the same result as integrating Qn over
all values of all its variables, namely,

Kn probability that a photon, which is emitted from the
laser at time 0, will suffer exactly n scatterings in the
cloud and then return freely to the ground at an
angle less than fo with the vertical.

Therefore Kn -Pn is the (properly normalized) joint proba-
bility density function for the random variables t, x, y, and
Kn -'Qn is the (properly normalized) joint probability density
function for the random variables u, , ,. . , Un-, n,
bn-

Finally, we observe that these random variables must satisfy
the following three relations:

n n
E ui = ct; x, E i = x;
i=O i=O

n*E U =Y. (40a)
i=o

The first relation states that the photon's total path length
is equal to its velocity times its total travel time. The last two
relations state that the x and the y components of the vector
OS (see Fig. 3) are just the corresponding coordinates of the
point at which the photon returns to the ground. Viewed in
a slightly different way, Eqs. (40a) imply that the random
variables associated with the jbint probability density function
Kn-lPn may be defined in terms of the random variables
associated with the joint probability density function Kn-'Qn
through the formulas

nt = c- E ui;
i=O

n
x = Ui(£- ;

i=O

n
= E7U uy-e M-

i=O

Therefore the RVT theorem [see Eqs. (39)] implies that

Kn Pn (t, x, y) = duo . . d. dnex (

X Kn- Qn(-o( . ., On) 6(Otc-n E ui
i=o

X 6(X- E ui(XQ _ i+)6Y- E Ui (Y * i)- (41)
i=o i=O

Canceling the common factors Kn-1 and inserting the ex-
pression for Qn from Eq. (38), we get

pn (t,x, y) pn Jbduo ..J dun-1 f dAi

X Jo 2do, .. * * dn fJ2v don exp-: 0 ui~

i~~~~~l=

n~~~~~
X exlo - L -' (n *_] eii (2)snO

=

wherein we have eliminated some of the I functions in Eq. (38)
by appropriately restricting the integration limits.

We recall that un in Eq. (42) depends on the integration
variables through Eq. (35), and it is appropriate now to replace
un with its explicit functional form. But first we make one
simplification: Because of the presence of the delta function
involving t, we can replace the first exponential on the right-
hand side of Eq. (42) with exp(-/3ct). That done, the variable
un appears only in the arguments of the three delta functions,
and substituting therein from Eq. (35) leads to the result

Pn,(t, x, y) = .n expF(-ct) r duo... ,f dun-1

• f dMi X2 d, ... d~n X dn

x explflb[1 - ( * e)_] II {f(0i)sin 0i
i=Xci[

Io uj(z * j) > b (-2 * n > os 0)

X bt -c- l L ui[1- (z - i)(2 -en) l])

X Hy i - i)- ( -e6)( * - n) (2 * n) _'])
(43)

Equation (43) is an exact, formal expression for Pn,(t, x, y),
the formality being a consequence of the delta functions in the
integrand. Notice that there is a heavy implicit dependence
of the integrand on the integration variables, because the
quantities ( * i), (9 i), and ( -6i) for i 1 are all functions
of the 2i angular variables 0l, Al,.. ., 6i, i. Explicit forms
for those functions can be calculated recursively from Eqs.
(31)-(33), but it is not necessary to go through that here.

B. Deduction of a Computable Formula for P,(t, 0, 0)
The purely mathematical task of deducing from Eq. (43) a
computable formula for P (t, 0, 0) is unfortunately too lengthy
to detail here; therefore we shall just give a brief description
of the plan of the analysis and then state the principal results.
A complete presentation of this phase of our calculation may
be found in a companion publication."

The most immediate task facing us is to integrate out ana-
lytically the three delta functions in Eq. (43) for x = y = 0.
This task is made difficult by the circumstance that the
arguments of the delta functions are not the integration
variables themselves, as in Eq. (2b), but rather functions of
the integration variables. To overcome this difficulty, we
precede the analytical integrations with suitably chosen
transformations of both the integration variables and the delta
functions.' 6 Thus, if we transform from the n polar variables
(0n, On) to the n polar variables (0, ), the latter being mea-
sured with respect to the main xyz frame, we find that we are
able to transform the last two delta functions in Eq. (43) in
such a way that they can be eliminated by analytically inte-
grating over 0 and . The resulting (3n - 2)-dimensional
integral contains a single delta function. For n = 1 it is a
simple matter to eliminate that delta function by analytically
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integrating over the remaining variable u0; the result agrees
exactly with Eq. (28), thus providing a reassuring check on our
calculations. For n 2 2 we have to proceed differently: We
first transform from the SniSn polar variables (Un-1, On-,
'On-1) to the OSn polar variables (An, i, 7). We next subject
the integration variables u0, . . , Un,2 to the scaling trans-
formations u - vi -- ui/An. It is then possible to transform
the remaining delta function so that it can be eliminated by
analytically integrating over An. Finally, owing to the sym-
metry of the lidar backscattering problem about the z axis,
we can easily make a fourth analytical integration over the
azimuthal angle q of the vector OSn; this last integration
simply produces an overall factor of 2i7r.

As a result of these four analytic integrations, we are left
with a (3n - 4)-dimensional integral formula for Pn,(t, 0, 0)
in which the integration variables are

vo) . . . , Vn-2 01, 0b . , n-2 9On-2, +

Although analytically sound, the integral is not yet suitable
for numerical evaluation for two reasons: First, the integra-
tion domain is unbounded, since each vi runs from 0 to -.
And second, the integrand is unbounded, since it contains a
factor of (1/vn_ 1)2. Obviously, a change of integration vari-
ables is required. The not-so-obvious key to finding a viable
set of integration variables is the introduction of the set of
vectors fC}, where C0 = OSn and Ci = SiSn for i 2 1: We
first change integration variables from the angles (0i, 0k),
which measure the direction of 9i relative to the polar direc-
tion ei-1, to the angles (Os', ' which measure the direction
of 9i relative to the polar direction Ci. Then we transform
from the integration variable vi, which measures the length
of SiSi+, to the variable vi, which measures the angle between
Ci+l and the perpendicular from Sn to SiSi+l. It turns out
that when Pn (t, 0, 0) is expressed as an integral over the set
of (3n - 4) variables

Po) .. * * svn-2) 01's 01' .. * *O n-2' O n-2 ̂  00 -

both the integration domain and the integrand are bounded.
Specifically, that integral is
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P. (t, 0, 0) = 27r3,Bnc(ct)n- 3 exp(-Oct) o dOo'

fi 2 r,-2 ,ur irI2 2r
X dpo i dOi f di I d i'

X f "r/2 j=1 O J '-7r/2 J

X n-1-
X (I I(Bi, > Vb/ct))I(cos 0O' > Vb/ct)

i=l1
X exp[Ob (I + sec 00)

x(rI f(i))cos 0o' - (n 2 2), (44)

wherein it is understood that the two products in braces are
to be omitted in the case n = 2. The various quantities in the
integrand of Eq. (44) are to be calculated through the following
formulas, the geometric content of which is illustrated in Fig.
4 for the cases n = 2 through 4:

C0 = x sin 00' + 2 cos 00'

v0 = sin 0' tan v0 + cos Oo',

eO = ,

(Ci

Vi

= Ci-, - Vi-A-1,
= Ci sin Oi' tan vi + Ci cos Oi',

= 2e,, + yeiy + ieiz

(45a)

(45b)

(45c)

(45d)

(45e)

[see Eqs. (46)] (45f)

(n 3; i = 1,. . .,n-2),

Cn-1 = Cn- 2 -Vn-26n-2

Vn-1 = Cn-1,

en- = Cn -l/Cn-1,

B, = voeo,

Bi = Bi-1 + vi-i_ (n > 3;i = 1,...,n-

n-1
V=1+ E vi,

i=O

(45g)

(45h)

(45i)

(45j)

1),
(45k)

(451)

00 0
(a) s- b) =3 (e) x-4

Fig. 4. Geometric interpretation of the relations among the principal variables in Eqs. (45) and (46) for (a) n = 2, (b) n = 3, and (c) n = 4. The

photon's journey begins and ends at point O and the ith scattering occurs at point Si (i = 1,...,n). The vector vi SiSi+l has magnitude
vi and unit direction ei. All lengths have been scaled dimensionless, with OSn- Co having length 1. The direction of ei for i > 1 is measured

byangles (0,, 'i) relative to the polar axis ei- and by angles (0i', Oi') relative to the polar axis Ci -- SSn. Not shown (for reasons of graphical

clarity) are the vectors B- OSS (i = 1, n - 1) and the angles vi (i = 1, n - 2); vi is the angle between Ci+1 and the line perpendicular
to vi from Sn. The main coordinate frame is defined so that go points along the z axis and Co lies in the xz plane. The quantity V defined in
Eq. (451) is the circumference of the (generally nonplanar) figure OS, ... SnO.
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Oi = arccos(ei-. * i)

0,, = arccos(-,,-. - CO).

(45m) Using these formulas one can show that the integration
(45n) domain in Eq. (44) maps onto the unit cube in piqiwi space

and also that the Jacobian of the transformation is
The components ei,, eiy, and ei,, in Eq. (45f) are to be cal-
culated according to

[eix c,zci,x/cixy -ciylci, x ci,x[ sin Oi' cos i

eiy = czcylcixy cix c,,xy ciy sin Oi' sin i'

eiz -cixy 0 ciZ Cos i'

(i = 1, .. ., n-2), (46a)

where

(46b)

and where it is understood that, if cixy = 0, then the 3 X 3
matrix in Eq. (46a) is to be taken to be the unit matrix.

Notice that Eqs. (45d), (45e), (45f), (45k), and (46) are not
required if n = 2. The interrelated, recursive structure of the
formulas for C,, vi, and es in the above equations would ob-
viously make the derivation of explicit formulas for those
quantities quite difficult; however, explicit formulas are not
required for computational methods that utilize a digital
computer.

That the factor IIi(Ci1V) in the integrand of Eq. (44) is
bounded can be seen most easily from Fig. 4: Since V is the
circumference of OS, ... SO with OSn Co = 1, then we have
0 CJIV < 1/2 for all i. The exponent 13b(1 + sec o') in the
integrand causes no boundedness problems when 00' is near
7r/2, because the last I function in the integrand imposes the
condition that b sec o' < ct/V < ct. These remarks suffice
to demonstrate the boundedness of the integrand in Eq. (44).
It is obvious that the integration domain is bounded; however,
the dependence of the integration limits on Oi' implies that
the integration domain has a nonboxlike shape. Now, most
numerical-integration methods are easier to implement if the
integration domain is a unit cube. There are many trans-
formations that will map the integration domain of Eq. (44)
onto the (3n - 4)-dimensional unit cube. We shall use the
following one, which although not the simplest algebraically,
has the convenient property that its Jacobian is a constant:
With K defined by

O(Oo', o, 01', vb r10',.. . ,n-2 0 , Vn-2, , 'n-2 ) 7r3n 4 Ko

a(po, qo, p', q, ll, ... Pn-2, qn- 2 , Wn- 2) = 2

(48)

Therefore the integral in Eq. (44) transforms under Eqs. (47)
to

pn(t, 0, 0) = 3(n-)Ko 3l~nC(Ct)n- 3 exp(-#ct)

x f dpo f do{2 f di f dqi f dwi
n-1

X II I(Bi, > Vb/ct) I(cos o'> Vb/ct)

X exp[gb(l + sec Oo')] [11 f (0i) cos Oo' I

(n 2 2). (49)

In this, our final expression for Pn (t, 0, 0), it is understood that
the products in braces are to be omitted in the case n = 2 and
also that the integrand is to be evaluated in terms of the in-
tegration variables through the formulas listed in Eqs.
(45)-(47) (see also Fig. 4).

6. FINAL FORMULATION FOR Jn(t)/Jl(t)

In earlier sections we found that, in the sharp-pulse case and
for ct much larger than the radius of the receiver's detection
disk, J1(t) is given by the formula in Eq. (29), and the ratio
Jn(t)/Jl(t) is given byPn(t,0,0)/Pl(t,0,0). Before we divide
Eq. (49) by Eq. (28), we observe that the last I function in Eq.
(49) imposes the requirement that

ct/b > V(cos o')-' > V 2,

where the last step follows from the geometry of Fig. 4. It
follows that if the last I function in Eq. (49) is satisfied, then
so is the I function in Eq. (28). This means that we can simply
omit the I function in Eq. (28) when we divide that equation
into Eq. (49). Making the division yields, after some minor
algebraic simplifications, the following formulas for n = 2 and
n > 3, respectively:

J 2 (t) = 7r3 K0 (Wsct) ( dpo ,f dqol(B, > Vblct)

Ko io(27r - ifo)/r2 ,

we define the variables po and q0 so that

Oo' = r[1 - (1 - Kopo)'12]I

Po = 7[1/2 - qo(l - opo)/ 2].

(47a)

and
(47b)

(47c)

and we define the variables pi, q, and w for i = 1, . . , n - 2
so that

0i = 7r(1 -pi/2)

pi = 7r(1/2 -qipi/2

0i' = 27rwi

(n > 3; i = L,.-.., n -2).

(47d)

(47e)

(47f)

X I(cos 0o > Vb/ct) exp [fb(sec 0 0' - 1)]f(6)(0 2 )cos 00'

(t >> rc, A 0) (50)

Jn(t) =7r 3 (n-1 )Ko (0,t)n-1 J1 dpo Cdqo
J,(t) - 2f(70o Jo

yj fdf fdqi f dwi}
n-1

X [H I(Bit > Vb/ct) I(cos 60'> Vb/ct)

X expb (see o'-1)] f(Oi)jcos oo'{IJ

(nŽ3;t>>ro/c,n 0). (51)

ci,. = ci,.Ici, ciy = ciylci, ci,..., = ci,.Ici,
Ci,.y =_ (Ci,. 2 CiY 2)1/2/C,,



Vol. 2, No. 8/August 1985/J. Opt. Soc. Am. A 1317

As with Eq. (49), the integrands of Eqs. (50) and (51) are to
be evaluated in terms of the integration variables through the
formulas listed in Eqs. (45)-(47) (see also Fig. 4).

Equations (50) and (51) are the principal results of this
paper. Given a specific functional form for f(0) and specific
numerical values for 13, 13, b, ifo, and t, these integral formulas
can be evaluated on a digital computer using conventional
numerical methods. [We shall see in the next section that,
for b = 0 and f(0) = 1/47r, Eq. (50) can actually be evaluated
analytically.] The conditions on t and A stipulated at the end
of Eqs. (50) and (51) emphasize that these formulas for
J,,(t)/J,(t) are valid only if ct is much larger than the radius
of the receiver's disk and the emitted laser pulse is very sharp.
The sharp-pulse restriction can be removed by calculating
time-convolution integrals with the pulse-shape function, as
was described at the end of Section 3, but the small-disk re-
striction cannot be removed without making substantial
changes in our overall computational strategy.

Before attempting some illustrative calculations using Eqs.
(50) and (51), a couple of observations are in order. First, it
follows from the comment made just below the expression for
Q,, in Eq. (38) that, by omitting the exponential factor and all
n I functions in Eqs. (50) and (51), we have the solution to the
problem of a forward-looking lidar surrounded by an infinite
cloud. In that "enveloping-cloud" case, the first and the last
scatterings will still be constrained to occur forward of the
lidar by the conditions vo > 0 and 00' < if0 < 7r/2, but the n -
2 intermediate scatterings will be allowed to occur either
forward or rearward of the lidar.

Our second observation concerns the t dependence of
Jn(t)/J,(t). Notice that t in either of Eqs. (50) and (51) is
confined to the factor tn-1 in front of the integral and to the
n I functions inside the integral. In the I functions, t evi-
dently appears in such a way that increasing t will have no
effect if b = 0 but will weaken the I-function constraints and
hence increase the value of the integral if b > 0. Therefore
the integrals in Eqs. (50) and (51) are independent of t if b =
0 or if the I functions are not present, and they are increasing
functions of t if b > 0. We conclude that

For any given n 2 2, Jn(t)/Ji(t) increases with t
like tn-1, if b = 0 or if the cloud completely sur-
rounds the lidar, and increases somewhat faster
than this if b > 0. (52)

Of course, this does not imply that the total amount of mul-
tiply scattered radiation returning to the receiver becomes
infinite as t - a, because, as is seen from Eq. (29), J1(t) is
itself tending to zero as t - faster than any negative power
oft.

7. AN EXAMPLE: ISOTROPIC SCATTERING
IN A GROUND CLOUD AND AN
ENVELOPING CLOUD

As an illustrative application of Eqs. (50) and (51), let us
consider the case in which

f(0) = (4ir)-1, b = 0, (53)

which evidently corresponds to an isotropically scattering
ground cloud.

The isotropic-scattering function assumed in Eqs. (53)
would apply if the cloud particles scattered like small, mir-
ror-surfaced spheres. Although this is not an accurate model
for light scattering from common atmospheric cloud particles,
it is clearly the simplest nontrivial model possible since it has
no free parameters. From the point of view of evaluating the
integrals in Eqs. (50) and (51), the isotropic-scattering model
is attractive because it obviates the computation of the scat-
tering angles 01, . .. , 0,, and allows the product f(01) ... f(O.)
in the integrands to be replaced by the simple constant
(47r)-n.

The choice of b = 0 in Eqs. (53) likewise produces simpli-
fications in Eqs. (50) and (51): First, the exponential factors
in the integrands are reduced to unity. Second, the right-
hand sides of all the I-function inequalities become zero. The
latter circumstance neatly eliminates the t dependence from
the two integrals [cf. Eq. (52)]. Also, since the limits on the
integration variables Po and qo already ensure through Eqs.
(45)-(47) that

Bl, = o > 0, cos 00' > 0, (54)

then the first and the last I functions in the integrands of both
Eqs. (50) and (51) become unnecessary.

The conditions assumed in Eqs. (53) thus allow Eqs. (50)
and (51) to be written as

Jn(t)/Ji(t) = K(n, Vfo)(flsCt)n-', (55)

where the time-independent coefficients K(n, f'o) are given
by

K(2, o) 8 f dpo f dqocos o' (56)

and

K(n,ifPo) (4-) K Idpo fdqo

I S dP dqi I dwi}
i=l 

x os uq II(Bi+l > O)CiV--)

(n > 3). (57)

In Eqs. (56) and (57), the integrands are to be evaluated in
terms of the integration variables through the formulas in Eqs.
(45)-(47). We note that Eq. (57) becomes identical to Eq. (56)
if n is set equal to 2 and the two products over i are de-
leted.

In using Eqs. (55)-(57), it should be kept in mind that J,(t)
is given in this case by

J,(t) = NoE(7rro2/27r)c138,
3(1 8t)- 2 exp(-ct), (58)

which follows on substituting the conditions of Eqs. (53) into
Eq. (29). Also, as was discussed in Section 6, the above for-
mulas can be made to apply to an isotropically scattering
enveloping cloud by simply omitting the (n - 2) I functions
in the integrand of Eq. (57).

A. Evaluation of K(2, 4,o)
The formula for K(2, i0) in Eq. (56) is sufficiently simple that
it can be evaluated analytically. For this, it is easiest to undo
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Table 1. Calculated Values of K(n, fo) for an Isotropically Scattering Ground Cloud ab

n
if'o 2 3 4 5 6

0.00001 7.8540E - 06 (3.72 + 0.02)E - 10 - -
0.00002 1.5708E - 05 (1.401 + 0.009)E - 09 -

0.00005 3.9270E - 05 (8.06 + 0.04)E - 09

0.0001 7.8539E - 05 (3.02 + 0.02)E - 08 (1.675 ± 0.014)E - 09 (2.89 + 0.03)E - 10 (4.83 + 0.04)E - 11
0.0002 1.5707E - 04 (1.120 + 0.004)E - 07 (6.72 ± 0.06)E - 09 (1.15 + 0.01)E - 09 (1.936 ± 0.018)E - 10
0.0005 3.9267E - 04 (6.30 + 0.02)E - 07 (4.17 + 0.02)E - 08 (7.20 4 0.05)E - 09 (1.211 + 0.010)E - 09

0.001 7.8527E - 04 (2.302 + 0.005)E - 06 (1.675 + 0.009)E - 07 (2.88 + 0.02)E - 08 (4.84 + 0.04)E - 09
0.002 1.5703E - 03 (8.35 + 0.03)E - 06 (6.67 + 0.04)E - 07 (1.150 + 0.007)E - 07 (1.930 + 0.016)E - 08
0.005 3.9238E - 03 (4.52 + 0.01)E - 05 (4.17 + 0.02)E - 06 (7.19 + 0.05)E - 07 (1.207 + 0.011)E - 07

0.01 7.8414E - 03 (1.592 + 0.003)E - 04 1.658 + 0.009)E - 05 (2.88 + 0.02)E - 06 (4.83 + 0.04)E - 07
0.02 1.5657E - 02 (5.52 + 0.01)E - 04 (6.58 + 0.003)E - 05 (1.149 + 0.007)E - 05 (1.938 + 0.017)E - 06
0.05 3.8941E - 02 (2.753 + 0.005)E - 03 (4.00 + 0.02)E - 04 (7.13 + 0.04)E - 05 (1.207 + 0.010)E - 05

0.1 7.7162E - 02 (8.92 + 0.002)E - 03 (1.527 + 0.011)E - 03 (2.82 ± 0.02)E - 04 (4.79 + 0.04)E - 05
0.2 1.5108E - 01 (2.747 + 0.004)E - 02 (5.60 0.04)E - 03 (1.088 + 0.007)E - 03 (1.872 + 0.014)E - 04
0.4 2.8664E - 01 (7.72 + 0.01)E - 02 (1.865 + 0.012)E - 02 (3.90 + 0.02)E - 03 (6.88 + 0.05)E - 04
0.6 4.0244E - 01 (1.315 + 0.002)E - 01 (3.49 + 0.02)E - 02 (7.51 + 0.05)E - 03 (1.367 + 0.010)E - 03
0.8 4.9576E - 01 (1.812 + 0.002)E - 01 (5.05 + 0.03)E - 02 (1.122 + 0.007)E - 02 (2.08 + 0.02)E - 03

1.0 5.6545E - 01 (2.212 + 0.003)E - 01 (6.40 + 0.04)E - 02 (1.448 I 0.009)E - 02 (2.69 + 0.02)E - 03
1.2 6.1182E - 01 (2.488 + 0.003)E - 01 (7.32 + 0.05)E - 02 (1.68 + 0.01)E - 02 (3.14 + 0.03)E - 03
1.4 6.3657E - 01 (2.637 + 0.004)E - 01 (7.82 + 0.06)E - 02 (1.80 + 0.01)E - 02 (3.36 + 0.03)E - 03
1.5707 6.4270E - 01 (2.674 + 0.004)E - 01 (7.96 + 0.06)E - 02 (1.83 + 0.01)E - 02 (3.47 + 0.03)E - 03

The computer "E-notation" is used; e.g., 7.5E - 08 means 7.5 X 10-8.
b The figures in column 2 are from Eq. (60). The figures in columns 3 through 6 were obtained by Monte Carlo integrating Eq. (57). The stated uncertainties

represent 99% confidence limits (i.e., 2.58 standard deviations).

Table 2. Calculated Values of K(n, fo) for an Isotropically Scattering Enveloping Cloudab

n
V/0 2 3 4 5 6

0.00001 7.8540E - 06 (3.73 0.03)E - 10 - - -
0.00002 1.5708E - 05 (1.409 + 0.009)E - 09 -

0.00005 3.9270E - 05 (8.08 0.04)E - 09 -

0.0001 7.8539E - 05 (3.03 + 0.02)E - 08 (1.785 + 0.009)E - 09 (3.35 + 0.02)E - 10 (6.12 0.06)E - 11
0.0002 1.5707E - 04 (1.126 0.004)E - 07 (7.13 + 0.04)E - 09 (1.336 + 0.007)E - 09 (2.45 + 0.02)E - 10
0.0005 3.9267E - 04 (6.32 + 0.02)E - 07 (4.45 + 0.02)E - 08 (8.36 + 0.05)E - 09 (1.53 + 0.01)E - 09

0.001 7.8527E - 04 (2.317 + 0.007)E - 06 (1.79 + 0.01)E - 07 (3.35 0.02)E - 08 (6.15 + 0.05)E - 09
0.002 1.5703E - 03 (8.42 0.03)E - 06 (7.16 + 0.04)E - 07 (1.340 + 0.009)E - 07 (2.44 + 0.02)E - 08
0.005 3.9238E - 03 (4.56 + 0.01)E - 05 (4.47 + 0.02)E - 06 (8.35 + 0.05)E - 07 (1.52 + 0.01)E - 07

0.01 7.8414E - 03 (1.608 + 0.003)E - 04 1.776 + 0.009)E - 05 (3.35 + 0.02)E - 06 (6.09 + 0.05)E - 07
0.02 1.5657E - 02 (5.58 + 0.01)E - 04 (7.02 + 0.03)E - 05 (1.335 + 0.007)E - 05 (2.46 + 0.02)E - 06
0.05 3.8941E - 02 (2.792 + 0.004)E - 03 (4.28 + 0.02)E - 04 (8.30 0.04)E - 05 (1.53 + 0.01)E - 05

0.1 7.7162E - 02 (9.08 + 0.01)E - 03 (1.645 + 0.011)E - 03 (3.28 0.02)E - 04 (6.09 + 0.04)E - 05
0.2 1.5108E - 01 (2.805 + 0.004)E - 02 (6.05 0.04)E - 03 (1.273 0.007)E - 03 (2.38 + 0.02)E - 04
0.4 2.8664E - 01 (7.963 + 0.009)E - 02 (2.04 + 0.01)E - 02 (4.61 0.03)E - 03 (8.81 + 0.06)E - 04
0.6 4.0244E - 01 (1.367 + 0.002)E - 01 (3.87 0.02)E - 02 (9.05 0.05)E - 03 (1.78 + 0.01)E - 03
0.8 4.9576E - 01 (1.899 + 0.002)E - 01 (5.71 + 0.03)E - 02 (1.384 0.007)E - 02 (2.78 0.02)E - 03

1.0 5.6545E - 01 (2.335 + 0.002)E - 01 (7.30 + 0.04)E - 02 (1.806 + 0.009)E - 02 (3.68 0.03)E - 03
1.2 6.1182E - 01 (2.647 + 0.003)E - 01 (8.51 + 0.05)E - 02 (2.13 + 0.01)E - 02 (4.39 0.03)E - 03
1.4 6.3657E - 01 (2.821 + 0.003)E - 01 (9.21 + 0.06)E - 02 (2.34 + 0.01)E - 02 (4.80 + 0.03)E - 03
1.5707 6.4270E - 01 (2.865 + 0.004)E - 01 (9.36 + 0.06)E - 02 (2.37 + 0.01)E - 02 (4.91 0.04)E - 03

omitting the two i products;

a The computer "E-notation" is used; e.g., 7.5E - 08 means 7.5X 10x-8.
b The figures in column 2 are from Eq. (60). The figures in columns 3 through 6 were obtained by Monte Carlo integrating Eq. (57),

the uncertainties represent 99% confidence limits (i.e., 2.58 standard deviations).
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0the cubing transformation of Eqs. (47) and recover the inte-
gration variables 00' and vo. Since Eqs. (47b) and (47c) map
the unit square in the poqo plane onto the region (00', vo) 11
0 • 00' • if0, 00' - r/2 • vo • 7r/21 with [see Eq. (48)]

d~o'dvo = ( 2Ko/2)dpodq,

then Eq. (56) is the same as

K(2,ifo) -- o do' r dvo cos 0'.
4 Jo fo'-w/2

(59)

The v0integration is trivial, and the subsequent 0 0' integration
is easily accomplished by parts:

K(2, o) = dOo' cos -°-

= 1 o (r - 00')cos 00 'd0o'
4 Jo

= 4 [(r - 0')sin BOo' - 5 sin 0o'(-doo')I.
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Fig. 5. A plot of loglo K(n, fo) versus log 0 4o for n = 2,3,...,6 for
an isotropically scattering ground cloud. The plotted points are from
the data in Table 1, which in turn were obtained from Eq. (60) for n
= 2 and from Monte Carlo evaluations of Eq. (57) for n = 3,.. ., 6.
The solid curves are smooth interpolations through the data points.
The dashed lines over the n = 2, 4, 5, 6 curves are plots of the esti-
mated small-angle asymptotes in Eqs. (65); the n = 3 curve does not
appear to have a small-angle constant-slope asymptote, evincing in-
stead the logarithmic behavior of expression (67).

-1

-2

-3

-4

1k -5

0
- -6

-7

-8

-9

-lo ......... I.........I.........,,,,,1,,,,, I,1,

-5 -4 -3 -2 -1 0
LogXOfo I

Fig. 6. A plot of loglo K(n, ifo) versus loglo 'o for n = 2,3,.. ., 6 for
an isotropically scattering enveloping cloud. The plotted points are
from the data in Table 2, which in turn were obtained from Eq. (60)
for n 2 and from Monte Carlo evaluations of Eq. (57), without the
I functions, for n = 3,...,6. The full curves are smooth interpola-
tions through the data points. The dashed lines over then = 2,4,5,
6 curves are plots of the estimated small-angle asymptotes in ex-
pressions (66); the n = 3 curve does not appear to have a small-angle
constant-slope asymptote, evincing instead the logarithmic behavior
of expression (67).

Thus

K(2, So) = (1/4)[(7r - f'O)sin ifo + (1 - cos if)I. (60)

Numerical values of K(2, ifo) for if0 between 10-5 and r/2 rad
are tabulated in Tables 1 and 2 and plotted in Figs. 5-7.

B. Evaluation of K(n, 4'o) for n 2 3
Since the integral expression for K(n, ifo) in Eq. (57) is five-
fold, eightfold, elevenfold,... for n = 3, 4, 5,. . ., an evaluation
by numerical methods seems unavoidable. We shall use here
the Monte Carlo integration method [see, for example, Ref.
17]. Equation (57) says that K(n, ifo) is the integral of the
function

F= - cos 00(J I(Bi+i, > )C)v(n 2) (61)

over the unit cube in the space of the 3n -4 variables po, q0,
P1, qi, w1,.. , Pn-2, qn-2 Wn-2. The Monte Carlo method
of evaluating Eq. (57) is based on the fact that this integral can
also be regarded as the average of F with respect to the uni-
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Fig. 7. A log-log scale plot of K(n, fo) versus 4o for n = 2, 3,.. ., 6
for an isotropically scattering ground cloud (lower curve for each n)
and an isotropically scattering enveloping cloud (upper curve for each
n). This plot is essentially a superposition of portions of Figs. 5 and
6 for which 0 2 10.

form random distribution on that unit cube. The method is
implemented by first generating N random points uniformly
inside the (3n - 4)-dimensional unit cube in (pqw) space and
then calculating the two quantities

N
(F)N - E F(i), (F2 )N - [F(i)] 2 , (62a)

where F(i) is the value of F at the ith random point. The
central limit theorem then tells us that, provided that N is
taken sufficiently large,

K(n, ifo) (F)N + a [(F2)N -(F)N 2]1"2N-" 2
, (62b)

where the + uncertainty represents confidence limits of 68.3%
if a = 1, 95.5% if a = 2, 99.0% if a = 2.58, and 99.7% if a = 3.
Since (F)N and (F 2

)N are asymptotically independent of N,
the uncertainty in the Monte Carlo estimate decreases as
N-112 with increasing N; for integrals of dimensionality
greater than about 4 this is a faster rate of convergence with
the number of computation points that can be obtained with
classical quadrature methods.

A FORTRAN program entitled ISOSCAT1 was written to
carry out the calculations required by Eq. (61) and expressions
(62) for arbitrary input values of n(n 2 2), ifo ( < 0 < 7r/2),
and N. An additional input variable to ISOSCATI gives the

user the option of deleting the (n - 2) I functions in Eq. (61),
an action that changes the problem from an isotropically
scattering ground cloud to an isotropically scattering envel-
oping cloud. Test runs of ISOSCATI with n = 2 [for which the
product over i in Eq. (61) is simply omitted] were found to give
results in complete agreement with the formula in Eq. (60),
thus providing a limited but reassuring check on the validity
of the program.

A total of 75 runs of ISOSCATI were made for the ground-
cloud case with values of n ranging from 3 to 6 and values of
f00 ranging from 10-5 to vr/2. These runs were then repeated
for the enveloping-cloud case. The results are tabulated in
Tables 1 and 2 and are plotted with smooth ifo interpolations
in Figs. 5-7. The uncertainties quoted in the tables were
computed in accordance with expression (62b) with a = 2.58
and therefore represent 99% confidence limits. In the plots
of Figs. 5-7, these 99% confidence limits are in all cases smaller
than the size of the plotted points.

It should be mentioned that, in obtaining most of the entries
in Tables 1 and 2, program ISOSCATI employed a Monte Carlo
variance-reducing technique known as importance sampling.1 7

When successful, this technique reduces the asymptotic value
of (F 2)N without changing the asymptotic value of (F)N, thus
producing a smaller uncertainty in expression (62b) for the
same value of N. The specific action taken by ISOSCAT in
these calculations was to importance-sample the variable q0
according to a symmetric split-Cauchy distribution whenever
ifo was less than 1 rad; this action was found to increase the
efficiency of the Monte Carlo calculations by factors ranging
from 1 to 1000, depending on the values of f0 and n.

The figures cited in Tables 1 and 2 were obtained by run-
ning program ISOSCAT1 on a Sperry (Univac) 1100/83 com-
puter. As with most Monte Carlo integration programs,
ISOSCAT1 requires relatively little memory storage but a
great deal of number-crunching ability. The following re-
marks are intended to convey some idea of the computing
power utilized in obtaining the figures in Tables 1 and 2:
Each K(3, n) value was computed with N = 2 X 106 points and
required approximately 30 min of CPU time; the value for
K(4, 0.1) was computed with N = 2 X 105 points and required
approximately 5 min of CPU time; the value for K(6, 0.0001)
was computed with N = 1.1 X 106 points and required ap-
proximately 40 min of CPU time. Based on benchmark runs
of ISOSCAT1 on other computers, these CPU times would have
been larger by a factor of about 3 for running on a VAX 11/780
computer and smaller by a factor of about 1/3 for running on
a Cray X-MP computer. Since the uncertainty in a Monte
Carlo result is inversely proportional to the square root of N,
and hence also inversely proportional to the square root of the
run time, the CPU times quoted above could have been con-
siderably reduced at the expense of slightly larger uncer-
tainties or weaker confidence limits; thus, for example, if we
were willing to accept uncertainties twice as large as those
quoted above, the corresponding CPU times could have been
reduced by a factor of 1/4. We chose to be somewhat con-
servative in this regard.

C. Assessing the Results
Figure 5 is a plot of logio K(n, 0) versus loglo if0 for the iso-
tropically scattering ground-cloud data given in Table 1. Fig.
6 is a like plot for the isotropically scattering enveloping-cloud
data given in Table 2. The portions of Figs. 5 and 6 corre-
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sponding to i10 between 10 and 900 are plotted together on
log-log axes in Fig. 7: There, each n value applies to two
curves, the upper curve being for the enveloping-cloud case
and the lower curve being for the ground-cloud case.

These results show that K(n, ifo) is generally a monotoni-
cally decreasing function of n for fixed ifo and a monotonically
increasing function of if0 for fixed n. Figure 7 shows that the
difference between the enveloping-cloud and the ground-
cloud values of K(n, 4o) for n 2 3 increases smoothly with
increasing n and increasing i0, but, aside from that, the en-
veloping-cloud and the ground-cloud results are rather similar.
Notice, in particular, that the enveloping-cloud and the
ground-cloud values for K(3, io) are practically identical for
small i0.

Considerable effort was devoted to examining the behavior
of K(n, 4fo) for small if0. If sin i0 and cos if0 in Eq. (60) are
replaced by their small-angle approximations, Eq. (60) reduces
to

K(2, fo) (7r/4)fo (ifo << 1). (63a)

Therefore

log K(2, o) log(7r/4) + log ifo,

Conspicuously absent from approximations (65) and (66)
are small-angle power-law formulas for K(3, fo). In fact,
neither of the n = 3 curves in Figs. 5 and 6 can be well fitted
by a small-angle asymptote of constant slope. However, a
moderately good small-angle fit can be provided by the alge-
braic form -Cfo 2 In io, whose log-log slope, 2 + (1/ln ifo),
approaches 2 from below as fo0 . Specifically, we find that
for both the ground-cloud and the enveloping-cloud cases, our
results can be approximated by

K(3, o) -0.33 X fo2 In if0 = 0.33 X if0
2 ln(l/fo)

(10-5 d < 10-3). (67)

Of course, this formula, like the above formulas for n 2 4, must
be regarded as essentially empirical at this point. But the
conclusion that K(3, o) does not approach zero with ifo as an
integer power of io seems inescapable and constitutes a rather
surprising result. It implies, for instance, that K(3, 'o) does
not have a Taylor series expansion in 0 about ifo = 0.

Now let us examine the implications of these calculated
values of K(n, io) for the physically significant quantity
Jn(t)/Ji(t),as given in Eq. (55). For this it is convenient to
introduce the dimensionless variable

(ifo << 1) (63b)

which shows that a plot of log K(2, o) versus log '0 for 0 <<
1 will be a straight line with slope 1 and log K intercept of
log(ir/4); this line is plotted as a dashed line over the n = 2
curves in Figs. 5 and 6. More generally, if

y = axb,

z* flst/2. (68)

Physically, z* can be interpreted as the scattering altitude,
in multiples of AS-1, of singly scattered photons arriving at the
receiver at time t. We also introduce the quantity

Jn*(z*) Jn(t) -Jn(2z*// 8c), (69)

then

log y = loga + b log x, (64)

showing that a plot of log y versus log x will be a straight line
with slope b and log y intercept of log a. For the data plotted
in both Figs. 5 and 6, it was found possible to fit the small-
angle portions of the n = 4, 5, 6 curves with straight lines of
slope 2, thus implying that, for n = 4, 5, 6, K(n, f0) tends to
zero with fo like ifo2. The dashed lines over the n = 4, 5, 6
curves in Figs. 5 and 6 are the best-fit small-angle asymptotes
with slope b = 2. Equations (64) imply that the a values for
these asymptotes can be read off from their intercepts with
the line loglo if0 = 0, which line is also shown dashed in Figs.
5 and 6. In this way we have deduced the following small-
angle approximations to K(n, 0) for n = 2, 4, 5, 6:

Ground-cloud case, fo << 1:

K(2, o) 0.7854 X ifo, (65a)

K(4, fo) 0.1673 X 4/02, (65b)

K(5, o) 0.0288 X fo 2 , (65c)

K(6, o) 0.00483 X fo2. (65d)

Enveloping-cloud case, ifo << 1:

K(2, fo) 0.7854 X fo, (66a)

K(4, fo) 0.1785 X fo 2 , (66b)

K(5, fo) 0.0335 X f0
2 , (66c)

K(6, fo) 0.00613 X fo2 (66d)

which is evidently the n-scattered power measured
receiver at the instant when the scattering altitude
arriving once-scattered photons equals z* X AS-1.
bining Eqs. (69), (55), and (68), we get

at the
of co-
Com-

Jn*(z*)IJ1*(Z*) = [2n-1K(n,4,O)](Z*)n-i. (70a)

Taking logarithms of both sides gives

1og[Jn*(z*)/J*(z*)] = log[2n-'K(n, io)] + (n - 1)log z*.
(70b)

Therefore, a log-log scale plot of Jn*(z*)/J*(z*) versus z*
will be a straight line with slope (n - 1) and ordinate-axis
intercept 2n 1 K(n, io). In Fig. 8 we show such plots for the
ground-cloud case with receiver-aperture half-angles of 0.001,
0.01,0.1, and 7r/2 rad. We see from these figures that, for z*
< 1, it is always the case that J 2 * (z*) > J3 * (z*) > J4 * (z*) >
... , and it is usually the case that Jl*(z*) > J 2*(Z*)-
However, the latter inequality can be violated if 0 is suffi-
ciently large; for example, we note from Fig. 8(d) that, at ifo
= 7r/2, both J 2 *(1) and J 3*(1) exceed J,*(1). Asz* increases
above 1, the situation becomes quite complicated, with higher
orders of multiply scattered radiation rapidly overtaking the
singly scattered radiation, and also with the relative pre-
dominance of the various multiple-scattering intensities be-
coming strongly dependent on z * and ifo; for example, for if0
= 0.1 [see Fig. 8(c)], we have at z * = 4 the ordering J 6 > J 5 >

J1 > J4 > J 2 > J3. The general lesson to be learned here is
that the usual supposition (or hope) that Jn(t) >> Jn+1 (t) is
not necessarily true for times t corresponding to single-scat-
tering altitudes greater than or on the order of fB --1.
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Fig. 8. Log-log scale plots of Jn*(z*)/Ji*(z*) versus z* -ct/2 for n = 2, 3,...,6 for an isotropically scattering ground cloud with (a) qo =
0.001 rad, (b) io = 0.01 rad, (c) To = 0.1 rad, and (d) To = ir/2 rad. Physically, Jn*(z*) is the n-scattered radiation power measured at the receiver
at the moment when the scattering altitude of co-arriving singly scattered radiation equals z* X is '-. The curves are plots of Eqs. (70), using
the K(n, 4o) values from Table 1.
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8. SUMMARY

In this paper we have shown how the time-dependent lidar
multiple-backscattering problem can be rigorously analyzed
by using the theory of random variables-a theory that seems
especially well suited to this intrinsically probabilistic prob-
lem. We began by deriving the stochastic propagation laws
for a photon in a well-mixed cloud [see Eqs. (4) and (5)] and
showing how the parameters f3, #, and f contained in those
laws can be calculated in terms of the physical properties of
the cloud [see Eqs. (14) and (15)]. We next showed how Jn(t),
the nth-order backscattered power measured by the receiver
at a time t after the laser fired, may be expressed in terms of
a certain probability function Pn(t, 0, 0) [see Eqs. (21)-(23)].
Formulas for Pl(t, 0,0 ) and J 1(t) were readily computed [see
Eqs. (28) and (29)], but the problem for n 2 2 proved to be
much more difficult. After a lengthy analysis, which however
entailed no approximations, we finally obtained a tractable
expression for Pn (t, 0, 0) for general n in terms of the cloud
base height b, the receiver-aperture half-angle if0, and the
cloud parameters &S, #, and f [see Eq. (49)]. Our final formula
for Jn(t)/J 1(t) for n 2 2 is in the form of a (3n - 4)-dimen-
sional definite integral with a bounded integrand and a
bounded-integration domain [see Eqs. (50) and (51) and also
Eq. (29)].

Our derived formula for Jn(t)/J(t) ignores polarization
effects and is otherwise subject to the restrictions that the
cloud be well mixed, that the initial laser beam be narrow and
well collimated, that the receiver be very small, and that the
pulse duration be very short. A procedure was given to cir-
cumvent, if desired, the short-pulse restriction. We should
note that the small-receiver condition usually obtains in
practical applications and actually causes serious efficiency
problems for Monte Carlo simulation schemes. A noteworthy
feature of our derivation is that, although it is lengthy, it re-
quires no approximations that do not follow easily from the
aforementioned assumptions; i.e., given the above restrictions,
our formula for Jn (t)/J(t) is exact.

As an illustrative application of our formula for Jn(t)/J 1 (t),
we evaluated it for n = 2 through 6 for an idealized cloud of
isotropically scattering particles (f = constant); we considered
specifically the ground-cloud (b = 0) and the enveloping-cloud
(b = -) cases. For n = 2 an explicit analytic formula was
obtained [see Eqs. (55) and (60)]; for n = 3 through 6, nu-
merical results were obtained by performing Monte Carlo
integrations [see Eq. (55) and Figs. 5 and 6]. Particular at-
tention was given to the important case in which fo is very
small [see Eqs. (65)-(67)]. These model calculations, al-
though not applicable to naturally occurring clouds, do
demonstrate that our integral formula for Jn (t) is computa-
tionally feasible. Unfortunately, no means of verifying the
numerical results obtained here is readily at hand, so their
correctness is for now contingent solely on no mistakes having
been made in either our analysis or our computer work.
However, the author is currently developing an entirely in-
dependent computational scheme for the enveloping-cloud
case when n >> 1, which should provide a check on the cor-
rectness of the numerical results reported here. That work,
as well as applications of our present formula to more-realistic
(nonisotropic) angular scattering functions f, will be reported
on in subsequent publications.
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