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ABSTRACT

A large number of terrain images were taken at Aberdeen Proving Grounds, some containing ground
vehicles. Is it possible to screen the images for possible targets in a short amount of time using the fractal
dimension to detect texture variations? The fractal dimension is determined using the wavelet transform
for these visual images. The vehicles are positioned within the grass and in different locations. Since it
has been established that natural terrain exhibits a statistical 1/f self-similarity property and the
psychophysical perception of roughness can be quantified by the same self-similarity, fractal dimension
estimates should vary only at texture boundaries and breaks in the tree and grass patterns. Breaks in the
patterns are found using contour plots of the dimension estimates and are considered as perceptual texture
variations. Variation in the dimension estimate is considered more important than the accuracy of the
actual dimension number. Accurate variation estimates are found even with low resolution images.
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2. FRACTAL DIMENSION

There are two classes of self-similar fractals. One class of fractals is deterministically self-similar, meaning
they are copies of themselves on different scales. Examples are the Cantor set and the Sierpinski triangle.
The second class of fractals contains ones that are similar in a statistical sense.

Mandelbrot defmed a fractal as a set whose Hausdorff-Besicovitch dimension strictly exceeds the
topological dimension. This defmition of dimension has no application to fmite sets. There have been
many other defmitions applied to the dimension to incorporate the idea of self-similar sets but their
relationships are not always clear. For example, the Minkowski dimension is an upper bound for the
Hausdorff dimension and the Box dimension is an upper bound for the Minkowski dimension. But when
fmite sampling occurs, these inequalities may no longer hold.2 To avoid these difficulties, we will turn to a
statistical defmition of a fractal defmed below.'

We defme a statistically self-similar fractal function, y(t) as:

y(t)=ay(at) witha>O. (2.1)

The equality is defined in terms of second order finite-dimensional statistics. The function y(t) is a zero-
mean Gaussian. It has been shown that these fractals are successful at modeling a number of natural
phenomenon like texture variation in natural terrain.' These fractal textures and signals can be classified
and segmented using both fractal dimension and lacunarity.4'5 Functions of this form are considered 1/f
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processes if their power spectrum is proportional to wj2'1 wiien the Hurst coefficient, H, is 0.5 this
function is ordinary Brownian motion. H is assumed to range from 0 to 1.
The fractal dimension, D, is given by H:

D=2-H for signals
D=3-H for images

We assume the discrete functions that follow are ofthe form (2.1) and have a dimension given by the Hurst
coefficient.

Visual luminance images are not as easily represented by fractal functions as Synthetic Aperture Radar
(SAR) imagery. It is easier to apply the fractal dimension parameter to SAR imagery, which can be made
range independent, to segment the image. Lincoln Laboratory has shown the fractal dimension to be one
of five optimal cue features in SAR imagery.'3 For visual images, the dimension values of the terrain will
change based on viewing distance. The fractal dimension of these images also changes based on sky
luminance, wind, and a number of other atmospheric parameters all of which have to be taken into account.
This paper assumes all images were taken at about the same range, at the same viewing orientation, and
with identical lighting and atmospheric conditions and instead focuses on detennining variances in D using
the wavelet transform. Provided a calibration image is provided, there does not appear to be any problems
making these assumptions.

There are many methods to determine D, and many defmitions of the dimension itself. We have reviewed
the box dimension (Kohnogov), the Minkowski Cover, Hurst and Fourier Analysis, and the wavelet
decomposition. We developed a fuzzy c-means and genetic algorithm approach to improve the box cover.
The problems with these approaches are computation time, resolution and quantization effects. The
genetic algorithm was the worst in terms of computation time, taking about a day to determine the
dimension of a test 256x256 fractional Brownian texture. There are a number of papers comparing D
estimation methods and their merits, although they all suffer terribly from resolution issues and
computation time.2'4'6'7'8 The wavelet method is appealing because of its speed and the additional
information it can provide. Moreover, Wornell suggests that for functions of the form (2. 1), the wavelet-
based analysis is statistically optimal.'

3. WAVELET DETERMiNATION OF D

The fractal dimension of signals and images are easily determined using the wavelet transform. This
method of determining fractal dimension is fast and straightforward. Speed is very important since we are
interested in sorting through large numbers of images. Various test signals and images were generated and
used to test the ability of the wavelet transform to recapture fractal dimension variation (or the dimension
itself, provided the resolution is reasonable). The synthesized signals and textures vary in fractal
dimension and resolution. There were many calculations performed on these signals and only a few are
displayed in the paper. Instead, the wavelet transform is applied to images of ground vehicles in natural
terrain primarily composed of grass and trees.

The wavelet transform of a 1-dimensional (topological) signal is determined via":

a =h0(l—2n)ar'
(3.1)d' = h1(1— 2n)ar1

where the h0 are the low-pass filter coefficients, the h1 are the high-pass filter coefficients and m is the

resolution level which goes from 1 to M and corresponds to a signal length of 1 to 2rn-1
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For images the transform is defmed by:

a. =k(l—2i)ho(k—2j)a71

dh7. = h (1 — 2i)k (k — 2j)a71

dv = h0 (1 —2i)h (k — 2j)a'

dd. = k(l—2i)h(k—2j)a1 (3.2)

These are the average, horizontal detail, vertical detail, and diagonal detail coefficients respectively. We
do not derive the filter coefficients. Instead we choose an existing wavelet which is orthogonal and has
minimal support. Orthogonality allows us to use Womell's decorrelation theorem.' Minimal support
avoids boundary effects and experimentally was found to be more effective in the determination of D.
Flandrin has shown that the number of vanishing moments, R, ofthe wavelet must satisfy R � H, where
H is the Hurst coefficient . A larger number of vanishing moments provides a lower correlation between
the wavelet coefficients.3 We tested a number of wavelets including Coiflets, Symlets, and Biorthogonal
wavelets with various supports, but based on the size of the support and initial results, we chose to use
Daubechies' 4-tap filter coefficients.

The value of the dimension of a discrete signal is determined from the energy of the detail coefficients.
For the fractals defmed in (2.1), the majority of the information is contained in the detail coefficients
instead of approximation coefficients.

In 1989, Mallat showed that given a random process as defmed in (2.1), the fractal dimension can be
calculated using the wavelet transform.8 Moreover it is believed that the wavelet transform is the optimal
method ofanalysis for processes ofthe form (2.1) because the wavelet transform breaks down the signal on
a logarithmic scale and decorrelates coefificients.' Mallat showed:

22H2

where cr, is the energy of the detail coefficients. More recently, Wornell has shown that the fractal
dimension can be derived using the variance of the detail coefficients instead of the energy of the detail
coefficients.'

Variance(d )=a 2-m(2H÷1) +

where a2 is considered constant and a is the spectral density of white noise in the function. Broadband
noise certainly alters the estimate of the fractal dimension, but we assume our images are noise free and seta=0. Doing this allows us to avoid the Maximum Likelihood Approach outlined by Wornell.' Since the
functions we will analyze have zero mean, we fmd the difference between Womell's dimension and
Mallat's dimension defmition to be:

.5(—1+
log(2N )/

—1))
log2

SPJE Vol. 2825 / 111

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/17/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



which goes to zero for large N. N is the number of samples of discrete y(n). Since Mallat's approach is
slightly faster, we chose to just determine the energy ofthe detail coefficients. This approach is tested on a
number of artificially generated fractal signals and textures with zero mean and dimension D. The fractal
functions that follow were generated using the midpoint method discussed by Russ and use the parameter
H and a Gaussian random number generator.2'7 There are a number of other methods to generate fractal
functions, and we tested many ofthe ones given by Russ and found similar results.2

4. APPLICATIONS

We used the approach by Mallat to determine the fractal dimension of test functions with different
dimensions and resolutions via the energy ratios of the wavelet coefficients. The new MATLAB Wavelet
Toolbox scripts'0 were used to perform the decompositions defmed by (3.1) and (3.2). The algorithmgave
an accurate measure of D provided the signal had sufficient length. Below is an example of the typical
trend ofthe fractal dimension estimate found by generating a signal with dimension 1.9 using the midpoint
method with 4097 points. The wavelet transform using the Daubechies 4-tap filter coefficients was taken
of a successively contracting window of the original signal. A new dimension estimate was computed after
removing the last 32 points of the prior signal. Since the signal is statistically similar everywhere, we do
not expect the dimension estimate to change when parts of the signal are cut off. Figure 1 is a typical plot
of the dimension estimates, where the y-axis is the fractal dimension estimates and the x-axis is the amount
of the signal that was removed.
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Figure 1: Fractal dimension estimate of D=l.9 fractal signal

Figure 1 was generated using the mean of the wavelet energy ratios of the first four wavelet levels. It was
found that the above behavior was typical for all midpoint generated signals. More interesting were the
dimension estimates of each ratio as the window was contracted. They varied as shown in Figure 2 below.
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Figure 2: Three wavelet energy ratios estimating fractal dimension

The first ratio typically gave a higher estimate ofthe dimension, the second ratio a lower estimate, and the
third ratio was usually the closest to the modeled dimension. The third ratio estimate is below the first and
above the third in Figure 2. As can be seen, resolution of images less than 512x480 will be a problem. So
we do not expect to have numerically accurate dimension estimates for all the ratios since our images are
only 5 12x480, and we subdivide these images even smaller.

Since we did not expect the images of the trees and grass to be homogeneous, we were not as concerned
about the actual dimension number as we were about the variance of the dimension estimate over parts of
the image. A mixed fractal was generated using H=O.1 for the first part of the signal at H=O.6 for the rest
of the signal. The entire signal is shown on the left in Figure 3, consisting of 4097 points, and the
dimension estimates are shown on the right. The 128 dimension estimates were determined at three ratio
levels with a contracting window as above. Once the window reached half the size of the signal, the
dimension estimates jumped up, as hoped. With mixed fractals, the three ratios departed from each other
more noticeably. Notice the entire signal has zero mean, but the two halves do not, causing a problem in
the estimator. In Figure 3, the first ratio is the highest estimate on the left, and the third ratio is the lowest.

6C

4.2 Analysis of Tank Images

The results from our one-dimension cases were easily expanded to two dimensions. Similar test images
were created using the midpoint method and tested with similar results. The most significant concern
about the algorithm was its performance on low resolution tank images. A number of tank images were
taken with a resolution of 512x480 pixels at Aberdeen Proving Ground. The pixels range from 0 to 255
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grayscale and vary linearly with luminance. The images were originally in PCX format and were
converted to TIF and then read into a MATLAB matrix where all the computation were done.

Because of the lack of resolution, and the reality that the images are certainly not homogenous, we do not
expect a single number, a regional fractal dimension, to determine the location of a tank. Even with the
addition of lacunarity, the ability of this cue feature to extract the non-natural object is doubted. Instead,
since even at varying resolution levels, the trends in the fractal dimension ratio estimates usually stay the
same, more information is contained in the variance of the fractal dimension based on position than on the
actual number. The images are divided into sixteen sub-images, each 128x 120 pixels. Each image is
decomposed several times and three dimension estimates are determined using the energy of the detail
wavelet coefficients at four levels. The diagonal, as well as horizontal and vertical details are used. This
gives nine cues for each of the 16 sub-images. Three tank images and their corresponding 16 sub-image
windows are displayed in Figures 4 through 6.
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The resulting dimension estimates were plotted as surfaces consisting of 16 points, each point
corresponding to the center of a sub-image. These surfaces were projected as interpolated contours on the
actual images as seen in Figure 7. Figure 7 shows the first tank sub-images with the contour plot of the
third ratio of the diagonal detail coefficients on the left and the third ratio of the horizontal details on the
right. The actual tank gets cut in half by our windowing method, but the ratio estimates still vary
significantly for the target windows. For the image on the right, notice the variance of the dimension
estimates at the grass-tree boundary and the symmetry.
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Figure 7: Contour plots over the 16 sub-images oftank 1.
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Figure 8 shows the first three ratio contour plots. The corners of each contour plot represent the center of
the subimage, as seen when comparing the diagonal ratio 3 below to the contours in Figure 7. Notice that
not all ratios provide meaningful information. For the images analyzed, ratio 3 seemed to give the most
reliable information.
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Figure 8: All contour plots of the 16 sub-images of Tank 1.

Figure 9 shows the diagonal ratio 3 dimension estimates for the second tank sub-images. The tank in this
image is covered by grass and hidden by the texture boundary, but the variance in the dimension is still
substantial at the target location.
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Figure 9: Contour plot over 16 sub-images ofTank 2.
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Figure 1 0 shows all dimension estimates for the second tank image. Again, the third ratio estimates seem
to give more information, and the texture boundary is clearly seen in the dimension variation.
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Figure 10: All contour piots of 16 sub-images ofTank 2.

The fmal tank image is seen below in Figure 1 1 with the third diagonal dimension. There is a larger
amount of haze in this image in addition to three texture variations and a smaller target, but the target
subirriage still has a larger dimension variance. Figure 12 goes on to show the large number of dimension
variances on the target sub-image windows.
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Figure 11: Contour plot of 16 sub-images over Tank3.
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Figure 12: All contour piots of 16 sub-images oflank 3

5. CONCLUSIONS

The wavelet transform was performed on several images and the trends in the energy ratios of the detail
coefficients were compared. The horizontal and vertical details were examined along with the diagonal
details. Even with the low resolution of the images, significant variations in the dimension estimates were
found in the sub-images containing the M1A1 tank. The nine contour plots of each image provided
information about the tank location most of the time. This is seen as very positive since the resolution of
the images was so low. This approach to examining images can be used to screen out no-tank terrain
images. Further discussion of the resolution effects and the windowing method are needed, along with an
automated method of weighting the contour plots to give a positive or negative tank-presence result (neural
net.) The actual performance of this approach based on false positives and false negatives needs to be
studied as well. Initial comparisons of our results with that of others shows similar accuracy with much
higher calculation speeds. Since the fractal dimension can quantify the perception of roughness of fractal
textures, and the Human Visual System uses Gabor wavelets, a comparison of the Gabor wavelet is needed
as another next step.
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