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Abstract. Technique for Order Preference by Similarity to 
Ideal Solution (TOPSIS) is a popular strategy for Multi-
Attribute Decision Making (MADM).  In this paper, we 
extend the TOPSIS strategy of MADM problems in trape-
zoidal neutrosophic number environment. The attribute 
values are expressed in terms of single-valued trapezoidal 
neutrosophic numbers. The weight information of attrib-
ute is incompletely known or completely unknown. Using 

the maximum deviation strategy, we develop an optimiza-
tion model to obtain the weight of the attributes. Then we 
develop an extended TOPSIS strategy to deal with 
MADM with single-valued trapezoidal neutrosophic num-
bers. To illustrate and validate the proposed TOPSIS strat-
egy, we provide a numerical example of MADM problem. 
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1 Introduction 

Multi-attribute decision making (MADM) plays an im-
portant role in decision making sciences. MADM is a pro-
cess of finding the best alternative that has the highest de-
gree of satisfaction over the predefined conflicting attributes. 
The preference values of alternatives are generally assessed 
quantitatively and qualitatively according to the nature of 
attributes. When the preference values are imprecise, inde-
terminate or incomplete, the decision maker feels comfort to 
evaluate the alternatives in MADM in terms of fuzzy sets 
[1], intuitionistic fuzzy sets [2], hesitant fuzzy sets [3], neu-
trosophic sets [4], etc., rather than crisp sets. A large number 
of strategies has been developed for MADM problems such 
as technique for order preference by similarity to ideal solu-
tion (TOPSIS) [5], PROMETHEE [6], VIKOR [7], ELEC-
TRE [7, 8], AHP [9], etc. MADM problem has been studied 
extensively in fuzzy environment [10-14], intuitionistic 
fuzzy environment [15-22]. 

TOPSIS [5] is one of the sophisticated strategy for solving 
MADM. The main idea of TOPSIS is that the best alterna-
tive should have the shortest distance from the positive ideal 
solution (PIS) and the farthest distance from the negative 
ideal solution (NIS), simultaneously. Since its proposition, 
researchers have extended the TOPSIS strategy to deal with 
different environment. Chen [23] extended the TOPSIS 
strategy for solving multi-criteria decision making 
(MCDM) problems in fuzzy environment. Boran et al. [24] 

extended the TOPSIS strategy for MCDM problem in intu-
itionistic fuzzy environment. Zhao [25] also studied TOP-
SIS strategy for MADM under interval intuitionistic fuzzy 
environment and utilized the strategy in teaching quality 
evaluation. Xu [19] proposed TOPSIS strategy for hesitant 
fuzzy multi-attribute decision making with incomplete 
weight information.  

However fuzzy sets, intuitionistic fuzzy sets, hesitant fuzzy 
sets have some limitations to express indeterminate and in-
complete information in decision making process. Recently, 
single valued neutrosophic set (SVNS) [26] has been suc-
cessfully applied in MADM or multi-attribute group deci-
sion [27-37]. SVNS [26] and interval neutrosophic set (INS) 
[38], and other hybrid neutrosophic sets have caught atten-
tion of the researchers for developing TOPSIS strategy. 
Biswas et al. [39] developed TOPSIS strategy for multi-at-
tribute group decision making (MAGDM) for single valued 
neutrosophic environment. Sahin et al. [40] proposed an-
other TOPSIS strategy for supplier selection in neutrosophic 
environment.  Chi and Liu developed TOPSIS strategy to 
deal with interval neutrosophic sets in MADM problems. 
Zhang and Wu [41] proposed TOPSIS strategies for MCDM 
in single valued neutrosophic environment and interval neu-
trosophic set environment where the information about cri-
terion weights are incompletely known or completely un-
known. Ye [42] put forward TOPSIS strategy for MAGDM 
with single-valued neutrosophic linguistic numbers. Peng et 
al. [43] presented multi-attributive border approximation 
area comparison (MBAC), TOPSIS, and similarity measure 



approaches for neutrosophic MADM. Pramanik et al. [44] 
extended TOPSIS strategy for MADM in neutrosophic soft 
expert set environment. Different TOPSIS strategies [45-49] 
have been studied in different hybrid neutrosophic set envi-
ronment. 
 Single valued trapezoidal neutrosophic number (SVTrNN ) 
[50, 51] is another extension of single-valued neutrosophic 
sets. SVTrNN presents the situation, in which each element 
is characterized by trapezoidal number that has truth mem-
bership degree, indeterminate membership degree, and fal-
sity membership degree. Recently, Deli and Şubaş [52] pro-
posed a ranking strategy of single valued neutrosophic num-
ber and utilized this strategy in MADM problems. Biswas et 
al. [53] also proposed value and ambiguity based ranking 
strategy of single valued trapezoidal neutrosophic number 
and applied it to MADM.  
However, TOPSIS strategy of MADM has not been studied 
earlier with trapezoidal neutrosophic numbers, although 
these numbers effectively deal with uncertain information in 
MADM model. In this study, our objective is to develop an 
MADM model, where the attribute values assume the form 
of SVTrNNs and the weight information of attribute is in-
completely known or completely unknown. The existing       
TOPSIS strategy of MADM cannot handle with such situa-
tions. Therefore, we need to extend the TOPSIS strategy in 
SVTrNN environment.  
To develop the model, we consider the following sections: 
Section 2 presents a preliminaries of fuzzy sets, neutro-
sophic sets, single-valued neutrosophic sets, and single-val-
ued trapezoidal neutrosophic number IFS, SVNS. Section 3 
contains the extended TOPSIS strategy for MADM with 
SVTrNNs. Section 4 presents an illustrative example. Fi-
nally, Section 5 presents conclusion and future direction re-
search.  

2 Preliminaries 

In this section, we review some basic definitions of fuzzy 
sets, neutrosophic sets, single-valued neutrosophic sets, and 
single-valued trapezoidal neutrosophic number. 

Definition 1. [1] Let X  be a universe of discourse, then a 
fuzzy set 𝐴 is defined by 

{ , ( ) | }AA x x x X         (1) 
which is characterized by a membership function 

: [0,1]A X  , where ( )A x  is the degree of membership of 
the element x to the set A . 

Definition 2. [54,55] A generalized trapezoidal fuzzy 
number 𝐴 denoted by 𝐴 = (𝑎, 𝑏, 𝑐, 𝑑; 𝑤) is described as a 
fuzzy subset of the real number ℝ  with membership 
function 𝜇𝐴 which is defined by
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where 𝑎, 𝑏, 𝑐, 𝑑  are real number satisfying 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑 
and 𝑤 is the membership degree. 

Definition 3.[4] Let 𝑋  be a universe of discourse. An 
neutrosophic sets 𝐴 over 𝑋 is defined by 

{ , ( ), ( ), ( ) | }
A A A

A x T x I x F x x X (2) 

where ( )
A
T x , ( )

A
I x and ( )

A
F x  are real standard or non-

standard subsets of ] 0,1 [  that is (x) : X ] 0,1 [AT    , 

(x) : X ] 0,1 [AI    and (x) : X ] 0,1 [.AF    The 
membership functions satisfy the following properties: 

0 (x) (x) (x) 3 .A A AT I F      

Definition 4. [26] Let 𝑋  be a universe of discourse. A 
single-valued neutrosophic set 𝐴̃ in 𝑋 is given by 

{ , ( ), ( ), ( ) | }
A A A

A x T x I x F x x X  (3) 

where ( ) : [0,1]AT x X  , ( ) : [0,1]AI x X  and 
( ) : [0,1]AF x X   with the condition 

 0 ( ) ( ) ( ) 3A A AT x I x F x     for all x X . 
The functions  AT x ,  AI x and  AF x represent, 
respectively, the truth membership function, the 
indeterminacy membership function and the falsity 
membership function of the element x to the set .A   

Definition 5. [50, 51] Let a  is a single valued trapezoidal 
neutrosophic trapezoidal number (SVNTrN). Then its truth 
membership function is 
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Its indeterminacy membership function is 
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and its falsity membership function is 
( )
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where  0 ≤ 𝑇𝑎̃(𝑥) ≤ 1, 0 ≤ 𝐼𝑎̃(𝑥) ≤ 1, 0 ≤ 𝐹𝑎̃(𝑥) ≤ 1 and
0 ≤ 𝑇𝑎̃(𝑥) + 𝐼𝑎̃(𝑥) + 𝐹𝑎̃(𝑥) ≤ 3; 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅. Then  𝑎̃ =
([𝑎, 𝑏, 𝑐, 𝑑]; 𝑡𝑎̃ ,𝑖𝑎̃ ,𝑓𝑎̃ ,) is called a neutrosophic trapezoidal
number. 

Definition 5. [50,51] Let 𝑎̃1 = ([𝑎1, 𝑏1, 𝑐1, 𝑑1]; 𝑡𝑎̃1 ,𝑖𝑎̃1,𝑓𝑎̃1,)
and 𝑎̃2 = ([𝑎2, 𝑏2, 𝑐2, 𝑑2]; 𝑡𝑎̃2 ,𝑖𝑎̃2,𝑓𝑎̃2,) be two neutrosophic
trapezoidal fuzzy numbers and 𝜆 ≥ 0, then 
1. 𝑎̃1⊕ 𝑎̃2 = ([𝑎1 + 𝑎2, 𝑏1 + 𝑏2, 𝑐1 + 𝑐2, 𝑑1 + 𝑑2]; 𝑡𝑎̃1 +

𝑡𝑎̃2 − 𝑡𝑎̃1𝑡𝑎̃2 , 𝑖𝑎̃1 𝑖𝑎̃2 , 𝑓𝑎̃1𝑓𝑎̃2);
2. 𝑎̃1⊗ 𝑎̃2 = ([𝑎1𝑎2, 𝑏1𝑏2, 𝑐1𝑐2, 𝑑1𝑑2]; 𝑡𝑎̃1𝑡𝑎̃2 , 𝑖𝑎̃1 +

𝑖𝑎̃2 − 𝑖𝑎̃1 𝑖𝑎̃2 , 𝑓𝑎̃1 + 𝑓𝑎̃2 − 𝑓𝑎̃1 𝑓𝑎̃2);
3. 𝜆 𝑎̃1 = ([𝜆 𝑎1 , 𝜆 𝑏1, 𝜆 𝑐1, 𝜆 𝑑1]; 1 − (1 −

𝑡𝑎̃1)
𝜆
, (𝑖𝑎̃1)

𝜆
, (𝑓𝑎̃1)

𝜆
;

4. (𝑎̃)𝜆 = ([𝑎1
𝜆, 𝑏1

𝜆, 𝑐1
𝜆 , 𝑑1

𝜆]; (𝑡𝑎̃1)
𝜆
, 1 − (1 − 𝑖𝑎̃1)

𝜆
, 1 −

(1 − 𝑓𝑎̃1)
𝜆
)

Definition 6. Let 𝑎̃1  = ([𝑎1, 𝑏1, 𝑐1, 𝑑1]; 𝑡𝑎̃1 ,𝑖𝑎̃1,𝑓𝑎̃1,)  and
𝑎̃2 = ([𝑎2, 𝑏2, 𝑐2, 𝑑2]; 𝑡𝑎̃2 ,𝑖𝑎̃2,𝑓𝑎̃2,)  be two neutrosophic
trapezoidal fuzzy numbers, then the normalized Hamming 
distance between 𝑎̃1 and 𝑎̃2 is defined as follows:

𝑑(𝑎̃1, 𝑎̃2) =

1

12

(

 
 

|𝑎1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑎2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

 +|𝑏1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑏2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

+|𝑐1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑐2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

+|𝑑1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑑2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|)

 
 

 (4) 

Property 1 The normalized Hamming distance measure 
𝑑(. )  of  𝑎̃1 and 𝑎̃2 satisfies the following properties:
i. 𝑑(𝑎̃1, 𝑎̃2) ≥ 0,

ii. 𝑑(𝑎̃1, 𝑎̃2) = 𝑑(𝑎̃2, 𝑎̃1),

iii. 𝑑(𝑎̃1, 𝑎̃3) ≤ 𝑑(𝑎̃1, 𝑎̃2) + 𝑑(𝑎̃2, 𝑎̃3), where
𝑎̃3 = ([𝑎3, 𝑏3, 𝑐3, 𝑑3]; 𝑡𝑎̃3 ,𝑖𝑎̃3,𝑓𝑎̃3,) is a SVTrNN.

Proof: 
i. The distance measure 𝑑(𝑎̃1, 𝑎̃2) is obviously non-neg-

ative. If  𝑎̃1 ≈  𝑎̃2 that is for  𝑎1 = 𝑎2, 𝑏1 = 𝑏2, 𝑐1 =
𝑐2, 𝑑1 = 𝑑2, 𝑡𝑎̃1 = 𝑡𝑎̃2, 𝑖𝑎̃1 = 𝑖𝑎̃2 , and 𝑓𝑎̃1 = 𝑓𝑎̃2 we
have 𝑑(𝑎̃1, 𝑎̃1) = 0. Therefore 𝑑(𝑎̃1, 𝑎̃2) ≥ 0.

ii. The proof of straightforward.
iii. The normalized Hamming distance between 𝑎̃1 and 𝑎̃3

is defined as follows:

𝑑(𝑎̃1, 𝑎̃3)

=
1

12

(

 
 

|𝑎1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑎3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

 +|𝑏1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑏3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

+|𝑐1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑐3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

+|𝑑1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑑2(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|)

 
 

=
1

12

(

 
 
 
 
 
 
 
 
|
𝑎1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑎2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)

+𝑎2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑎3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)
|

 + |
𝑏1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑏2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)

+𝑏2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑏3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)
|

+ |
𝑐1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑐2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)

+𝑐2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑐3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)
|

+ |
𝑑1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑑2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)

+𝑑2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑑3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)
|
)

 
 
 
 
 
 
 
 

=
1

12

(

 
 
 
 
 
 
 
 

|𝑎1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑎2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

+|𝑎2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑎3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

|𝑏1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑏2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

+|𝑏2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑏3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

|𝑐1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑐2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

+|+𝑐2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑐3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

|𝑑1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑑2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

+|𝑑2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑑3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)| )

 
 
 
 
 
 
 
 

≤
1

12

(

 
 

|𝑎1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑎2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

 +|𝑏1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑏2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

+|𝑐1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑐2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|

+|𝑑1(2 + 𝑡𝑎̃1 − 𝑖𝑎̃1 − 𝑓𝑎̃1) − 𝑑2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2)|)

 
 

+
1

12

(

 
 

|𝑎2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑎3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

 +|𝑏2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑏3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

+|𝑐2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑐3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|

+|𝑑2(2 + 𝑡𝑎̃2 − 𝑖𝑎̃2 − 𝑓𝑎̃2) − 𝑑3(2 + 𝑡𝑎̃3 − 𝑖𝑎̃3 − 𝑓𝑎̃3)|)

 
 

≤ 𝑑(𝑎̃1, 𝑎̃2) + 𝑑(𝑎̃2, 𝑎̃3) . □ 

2.1 TOPSIS Strategy for MADM 

The idea behind the TOPSIS strategy [5] is to find out 
the optimal alternative that has the shortest distance from 
the positive ideal solution and the farthest distance from the 
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negative ideal solution, simultaneously. The schematic 
structure of classical TOPSIS strategy is presented in the 
following figure (see Fig. 1) 

Figure 1. A schematic structure of TOPSIS strategy 

3 TOPSIS strategy for multi-attribute decision mak-
ing with neutrosophic trapezoidal number 

In this section, we put forward a framework for determining 
the attribute weights and the ranking orders for all the 
alternatives with incomplete weight information under 
neutrosophic environment. 

Consider a MADM problem, where 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑚} is
a set of 𝑚 alternatives and 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑛} is a set of 𝑛
attributes. The attribute value of alternative 𝐴𝑖(𝑖 =
1,2, … ,𝑚) over the attribute 𝐶𝑗(𝑗 = 1,2, … , 𝑛) assumes the
form of neutrosophic trapezoidal number  𝑎̃𝑖𝑗  =
([𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗 , 𝑑𝑖𝑗]; 𝑡𝑎̃𝑖𝑗 ,𝑖𝑎̃𝑖𝑗,𝑓𝑎̃𝑖𝑗,) , where 0 ≤ 𝑡𝑎̃𝑖𝑗  ≤ 1,  0 ≤

𝑖𝑎̃𝑖𝑗 ≤ 1 , 0 ≤ 𝑓𝑎̃𝑖𝑗 ≤ 1  and 0 ≤ 𝑡𝑎̃𝑖𝑗 + 𝑖𝑎̃𝑖𝑗 + 𝑓𝑎̃𝑖𝑗 ≤ 3;
𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅. 
Here, 𝑡𝑎̃𝑖𝑗 denotes the truth membership degree, 𝑖𝑎̃𝑖𝑗 denotes
the indeterminate membership degree, and  𝑓𝑎̃𝑖𝑗  denotes the
falsity membership degree to consider the trapezoidal 
number [𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗 , 𝑑𝑖𝑗] as the rating values of 𝐴𝑖 over the
attribute 𝐶𝑗.  An MADM problem can be expressed by a
decision matrix in which the entries represent the evaluation 
information of all alternatives with respect to the attributes. 
Then we construct the following neutrosophic decision 
matrix, whose elements are SVNTrNs: 

𝐷 = (𝑎̃𝑖𝑗)𝑚×𝑛 = (

𝑎̃11 𝑎̃12 … 𝑎̃1𝑛
𝑎̃21 𝑎̃22 … 𝑎̃2𝑛
⋮ ⋮ ⋱ ⋮
𝑎̃𝑚1 𝑎̃𝑚2 … 𝑎̃𝑚𝑛

)     (5)

Due to different attribute weights, we assume that the 
weight vector of all attributes is given by 𝑤 = (𝑤1,
𝑤2, … , 𝑤𝑛)

𝑇 , where 0 ≤ 𝑤𝑗 ≤ 1, 𝑗 = 1,2, … , 𝑛  , and 𝑤𝑗  is
the weight of each attribute. The information about attribute 
weights is usually incomplete in decision making problems 
under uncertain environment. For convenience, we assume 
  be a set of the known weight information [56-59], where 
  can be constructed by the following forms, for 𝑖 ≠ 𝑗: 
Form 1. A weak ranking: {𝑤𝑖 ≥ 𝑤𝑗};
Form 2. A strict ranking: {𝑤𝑖 −𝑤𝑗 ≥ 𝛼𝑗}(𝛼𝑗 > 0);
Form 3. A ranking of difference: {𝑤𝑖 − 𝑤𝑗 ≥ 𝑤𝑘 −𝑤𝑙}, for
𝑗 ≠ 𝑘 ≠ 𝑙; 
Form 4. A ranking with multiples: {𝑤𝑖 ≥ 𝛼𝑗𝑤𝑗} (0 ≤ 𝛼𝑗 ≤
1); 
Form 5. An interval form: {𝛼𝑖 ≤  𝑤𝑖 ≤ 𝛼𝑖 + 𝜖𝑖}(0 ≤ 𝛼𝑗 ≤
𝛼𝑖 + 𝜖𝑖 ≤ 1).
Now we develop a strategy for solving the MADM 
problems, in which the information about attribute weights 
is completely unknown or partially known and the attribute 
values are expressed by SVTrNNs. 
 The following steps are considered to develop the model. 

3.1 Standardize the decision matrix 

Let  ij m n
D a


  be a neutrosophic decision matrix, where 

the SVTrNNs  1 2 3 4, , , ; , ,
ij ij ijij ij ij ij ij a a aa a a a a t i f     is the rating 

values of alternative iA  with respect to attribute jC . Now to 
eliminate the effect from different physical dimensions into 
decision making process, we should standardize the 
decision matrix  ij m n

a


based on two common types of 
attributes such as benefit type attribute and cost type 
attribute. We consider the following technique to obtain the 

Construct a decision matrix 

Normalize the decision matrix 

Calculate the weighted normalized 
decision matrix 

Determine the positive and negative 
ideal solutions 

Calculate the distance measure of each 
alternative from ideal solution 

Calculate  relative closeness co-efficients 
of the alternatives 

Rank the alternatives 
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standardized decision matrix  ij m n
R r


 , in which the 

component k

ijr  of the entry  1 2 3 4, , , ; , ,
ij ij ijij ij ij ij ij r r rr r r r r t i f     in 

the matrix R are considered as: 
1. For benefit type attribute:

1 2 3 4

, , , ; , ,
ij ij ij

ij ij ij ij

ij r r r

j j j j

a a a a
r t i f

u u u u   

  
        

      (6) 

2. For cost type attribute:

4 3 2 1, , , ; , ,
ij ij ij

j j j j

ij r r r

ij ij ij ij

u u u u
r t i f

a a a a

     
        

,     (7) 

where 4max{ | 1,2,... }j iju a i m   and 
1min{ | 1,2,... }j iju a i m   for 1,2,... .j n  

Then we obtain the following standardized decision matrix: 

 

11 12 1

21 22 2

1 2

n

n

ij m n

m m mn

r r r

r r r
R r

r r r



 
 
  
 
  
 

     (8) 

3.2 Determine the attribute weight 

To determine the attribute weights, we use maximum 
deviation strategy, which was proposed by Wang [60]. 
According to Wang [60], 
i. The attribute that has the larger deviation value among

alternatives should be assigned larger weight. 
ii.  The attribute having deviation value among alternatives

should be assigned smaller weight. 
iii. The attribute having no deviation among alternatives

should be assigned zero weight. 

Following the idea of maximum deviation method, we 
construct an optimization model to determine the optimal 
weights of attributes with SVTrNNs. The deviation of the 
alternative 𝐴𝑖  to all the other alternatives for the attribute

jC   can be defined as follows: 
𝑑𝑖𝑗(𝑤) =  ∑ 𝑑( 𝑎̃𝑖𝑗

𝑚
𝑘=1 , 𝑎̃𝑘𝑗)𝑤𝑗  , 𝑖 = 1,2, … ,𝑚; 𝑗 =

1,2, … , 𝑛 
where 
 𝑑(𝑎̃𝑖𝑗 , 𝑎̃𝑘𝑗) = 

1

12

(

 
 
 
 

|𝑎𝑖𝑗1 (2 + 𝑡𝑎̃𝑖𝑗 − 𝑖𝑎̃𝑖𝑗 − 𝑓𝑎̃𝑖𝑗) − 𝑎𝑘𝑗1 (2 + 𝑡𝑎̃𝑘𝑗 − 𝑖𝑎̃𝑘𝑗 − 𝑓𝑎̃𝑘𝑗)|

+ |𝑎𝑖𝑗2 (2 + 𝑡𝑎̃𝑖𝑗 − 𝑖𝑎̃𝑖𝑗 − 𝑓𝑎̃𝑖𝑗) − 𝑎𝑘𝑗2 (2 + 𝑡𝑎̃𝑘𝑗 − 𝑖𝑎̃𝑘𝑗 − 𝑓𝑎̃𝑘𝑗)|

+ |𝑎𝑖𝑗3 (2 + 𝑡𝑎̃𝑖𝑗 − 𝑖𝑎̃𝑖𝑗 − 𝑓𝑎̃𝑖𝑗) − 𝑎𝑘𝑗3 (2 + 𝑡𝑎̃𝑘𝑗 − 𝑖𝑎̃𝑘𝑗 − 𝑓𝑎̃𝑘𝑗)|

+ |𝑎𝑖𝑗4 (2 + 𝑡𝑎̃𝑖𝑗 − 𝑖𝑎̃𝑖𝑗 − 𝑓𝑎̃𝑖𝑗) − 𝑎𝑘𝑗4 (2 + 𝑡𝑎̃𝑘𝑗 − 𝑖𝑎̃𝑘𝑗 − 𝑓𝑎̃𝑘𝑗)|)

 
 
 
 

(9) 

 = 1
12
∑ |

𝑎𝑖𝑗𝑝 (2 + 𝑡𝑎̃𝑖𝑗 − 𝑖𝑎̃𝑖𝑗 − 𝑓𝑎̃𝑖𝑗)

−𝑎𝑘𝑗𝑝 (2 + 𝑡𝑎̃𝑘𝑗 − 𝑖𝑎̃𝑘𝑗 − 𝑓𝑎̃𝑘𝑗)
|4

𝑝=1  

denotes the neutrosophic Hamming distance between two 
SVTrNNs 𝑎̃𝑖𝑗  and 𝑎̃𝑘𝑗 .
The deviation value of all the alternatives to other 
alternatives for the attribute 𝐶𝑗 can be obtained as follows:

𝐷𝑗(𝑤) =∑𝑑𝑖𝑗(𝑤)

𝑚

𝑖=1

=∑∑𝑑(𝑎̃𝑖𝑗 , 𝑎̃𝑘𝑗)

𝑚

𝑘=1

𝑤𝑗

𝑚

𝑖=1

= ∑ ∑ (
1

12
∑ |𝑎𝑖𝑗

𝑝
(2 + 𝑡𝑎̃𝑖𝑗 − 𝑖𝑎̃𝑖𝑗 −

4
𝑝=1

𝑚
𝑘=1

𝑚
𝑖=1

𝑓𝑎̃𝑖𝑗) − 𝑎𝑘𝑗
𝑝
(2 + 𝑡𝑎̃𝑘𝑗 − 𝑖𝑎̃𝑘𝑗 − 𝑓𝑎̃𝑘𝑗)|)𝑤𝑗. (10) 

Similarly, the deviation value of all the alternatives to other 
alternatives for all the criteria can be taken as: 

𝐷(𝑤) =∑𝐷𝑗(𝑤)

𝑛

𝑗=1

=∑∑𝑑𝑖𝑗(𝑤)

𝑚

𝑖=1

𝑛

𝑗=1

= ∑ ∑ ∑ ∑ 𝑑(𝑎̃𝑖𝑗 , 𝑎̃𝑘𝑗)
𝑚
𝑘=1 𝑤𝑗

𝑚
𝑖=1

𝑚
𝑖=1

𝑛
𝑗=1

=∑ ∑ ∑ (
1

12
∑ |

𝑎𝑖𝑗
𝑝
(2 + 𝑡𝑎̃𝑖𝑗 − 𝑖𝑎̃𝑖𝑗 − 𝑓𝑎̃𝑖𝑗)

−𝑎𝑘𝑗
𝑝
(2 + 𝑡𝑎̃𝑘𝑗 − 𝑖𝑎̃𝑘𝑗 − 𝑓𝑎̃𝑘𝑗)

|4
𝑝=1 )𝑚

𝑘=1 𝑤𝑗
𝑚
𝑖=1

𝑛
𝑗=1  

If the information about the attribute weights is partially 
known or completely unknown, then we propose two 
models to obtain the attribute weights.  

3.2.1 Information about the weights of attributes is 
partially known.

In order to obtain the weight vector, we construct a non-lin-
ear programming model that maximizes all deviation values 
of attributes. The model can be presented as follows:  

 
4

1 1 1 1

1

(2 )1max
12 (2 )( 2)

subject to , 1, 0, for 1,2,.., .

ij ij ij

kj kj kj

p
n m m

ij a a a

jp
j i k p kj a a a

n

j j

j

a t i f
D w w

a t i f
M

w w w j n

   



    
  
     

  


   






(11) 
By solving the model (M-1), we obtain the optimal solution 
to be used as the weight vector. 

3.2.2 Information about the weights of attributes is un-
known. 

If the information about attribute weight is completely 
unknown, then we can establish the following programming 
model: 

 
4

1 1 1 1

2

1

(2 )1max
12 (2 )( 2)

subject to , 1, 0, for 1,2,.., .

ij ij ij

kj kj kj

p
n m m

ij a a a

jp
j i k p kj a a a

n

j j

j

a t i f
D w w

a t i f
M

w w w j n

   



    
  
     

  


   






(12) 
To solve the model (M-2), we develop the Lagrange 
function: 
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 
4

1 1 1 1

2

1

(2 )1,
12 (2 )

1
24

ij ij ij

kj kj kj

p
n m m

ij a a a

jp
j i k p kj a a a

n

j

j

a t i f
L w w

a t i f

w





   



   
 
    
 

 
  

 





(13) 

where   is a real number and denoting the Lagrange 
multiplier variable. Then the partial derivative of L  with 
respect to ( 1,2,..., )jw j n  and   are obtained as: 

4

1 1 1

(2 )
0

(2 )
ij ij ij

kj kj kj

p
m m

ij a a a

j jp
i k pj kj a a a

a t i fL
w w

w a t i f


  

       
     
 

 (14) 

2

1
1 0

n

j

j

L
w

 


  


  (15) 

It follows from Eq. (14) that 
4

1 1 1

(2 )

(2 )
ij ij ij

kj kj kj

p
m m

ij a a a

p
i k p kj a a a

j

a t i f

a t i f
w



  

   
 
    
 


 for 1,2,..., .j n  

(16) 
Putting the values of jw  in Eq.(15), we obtain 

2
4

2

1 1 1 1

(2 )

(2 )
ij ij ij

kj kj kj

p
n m m

ij a a a

p
j i k p kj a a a

a t i f

a t i f


   

    
  
     

  

  (17) 

2
4

1 1 1 1

(2 )

(2 )
ij ij ij

kj kj kj

p
n m m

ij a a a

p
j i k p kj a a a

a t i f

a t i f


   

    
    
     

  

   for 0.   

(18) 
Then combining Eq.(16) and Eq.(18), we obtain the 
following formula for determining the weight of attribute

( 1,2,..., )jC j n  : 

4

1 1 1

2
4

1 1 1 1

(2 )

(2 )

(2 )

(2 )

ij ij ij

kj kj kj

ij ij ij

kj kj kj

p
m m

ij a a a

p
i k p kj a a a

j

p
n m m

ij a a a

p
j i k p kj a a a

a t i f

a t i f
w

a t i f

a t i f

  

   

   
 
    
 

    
  
     

  



 

 .    (19) 

We make their sum into a unit by normalizing 
( 1,2,..., )jw j n and get the optimal weight of attribute
( 1,2,..., )jC j n : 

4

1 1 1

4
1

1 1 1 1

(2 )

(2 )

(2 )

(2 )

ij ij ij

kj kj kj

ij ij ij

kj kj kj

p
m m

ij a a a

p
i k p kj a a a

j

j n p
n m m

ij a a ajj

p
j i k p kj a a a

a t i f

a t i fw
w

a t i fw

a t i f

  



   

   
 
    
  
   
 
    
 






(20) 

Then we get the normalized weight vector of attributes: 

 1 2, ,..., .nw w w w  

3.3 Determine the ideal solutions 

In the normalized decision matrix  ij m n
R r


 , the 

neutrosophic trapezoidal local positive ideal solution 
(NTrPIS) and the neutrosophic trapezoidal local negative 
ideal solution (NTrNIS) are defined as follows 

 1 2, ,..., nr r r r     and  1 2, ,..., nr r r r    (21) 
where, 

 1 2 3 4, , , , , ,j j j j j j j jr r r r r t i f          

       

     

1 2 3 4max ,max ,max ,max ;

max ,min ,min

ij ij ij ij
i i i i

ij ij ij
i ii

r r r r

t i f

  
    
 
 

 (22) 

 1 2 3 4, , , , , ,j j j j j j j jr r r r r t i f          

     
       

     

1 2 3 4min ,min ,min ,min ;

min ,max ,max

ij ij ij ij
i i i i

ij ij ij
i i i

r r r r

t i f

  
  
 
 
 

 (23) 

Moreover, the trapezoidal neutrosophic global positive ideal 
solution and the trapezoidal neutrosophic global trapezoidal 
global negative ideal solution can be directly considered as 

  1,1,1,1 ,1,0,0jr    and   0,0,0,0 ,0,1,1jr   (24) 

3.4 Determine the separation measures from ideal 
solutions to each alternative 

The separation measures id   and id   of each alternative 
from the ideal solutions can be determined by Eq.(9), 
Eq.(20) and Eq.(21), respectively, as follows: 

 
1

,
n

i j ij j

j

d w d r r 





    
4

1 1

(2 )1
12 (2 )

ij ij ij

j j j

p
n ij r r r

j p
j p j r r r

r t i f
w

r t i f  


 

   
 
    
 

   for 1,2,...,i m  (25) 

 
1

,
n

i j ij j

j

d w d r r 





  
4

1 1

(2 )1
12 (2 )

ij ij ij

j j j

p
n ij r r r

j p
j p j r r r

r t i f
w

r t i f  


 

   
 
    
 

  for 1,2,...,i m   (26) 

3.5 Determine the relative closeness co-efficient 

The relative closeness co-efficient of an alternative iA  with 
respect to ideal alternative A   is defined as the following 
formula: 
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( ) i
i

i i

d
RC A

d d



 



(27) 

where 0 ( ) 1iRC A   for 1,2,... .i m  According to the 
closeness co-efficient ( )iRC A , the ranking orders of all 
alternatives and the best alternative can be selected. The 
schematic diagram of the proposed TOPSIS is presented in 
Figure-2. 

Figure 2. The schematic diagram of the proposed startegy 

4 An illustrative example 

In this section, we consider an illustrative example of med-

ical representative selection problem to demonstrate and ap-

plicability of the proposed. 

Consider a MADM problem, where a pharmacy com-

pany wants to recruit a medical representative. After initial 

scrutiny four candidates ( 1,2, 3, 4)
i
A i  have been consid-

ered for further evaluation with respect to the four attributes

(j 1,2,3,4)
j
C namely, 

1. Oral communication skill
1

( )C ;

2. Past experience
2

( )C ,

3. General aptitude
3

( )C  and

4. Self- confidence
4

( )C .

  The decision maker evaluates the ratings of alternatives 
( 1,2,..., )iA i m with respect to the attributes ( 1,2,..., )iC i n

with the decision matrix 4 4( )ijD a  (see Table 1). 
Table 1. Rating values of alternatives 

1C 2C

A1

[7,8,9,10];
0.90,0.10,0.05
 
 
 

 
 5,6,7,8 ;

0.65,0.35,0.30
 
  
 

A2 
 5,6,7,8 ;

0.65,0.35,0.30
 
  
 

 6,7,8,9 ;
0.80,0.20,0.15
 
  
 

 

A3 
 4,5,6,7 ;

0.50,0.50,0.45
 
  
 

 
 5,6,7,8 ;

0.65,0.35,0.30
 
  
 

A4 
 4,5,6,7 ;

0.50,0.50,0.45
 
  
 

 
 5,6,7,8 ;

0.65,0.35,0.30
 
  
 

3C 4C

A1 
 6,7,8,9 ;

0.80,0.20,0.15
 
  
 

 
 7,8,9,10 ;

0.90,0.10,0.05
 
  
 

 

A2 
 7,8,9,10 ;

0.90,0.10,0.05
 
  
 

 
 6,7,8,9 ;

0.80,0.20,0.15
 
  
 

 

A3 
 4,5,6,7 ;

0.50,0.50,0.45
 
  
 

 
 4,5,6,7 ;

0.50,0.50,0.45
 
  
 

 

A4 
 4,5,6,7 ;

0.50,0.50,0.45
 
  
 

 
 6,7,8,9 ;

0.80,0.20,0.15
 
  
 

 

The information of the attributes is incompletely known and 
the weight information is given as follows: 

1 2
4

3 4
1

0.20 0.30,0.05 0.20,

0.20 0.35,0.15 0.35; 1j

j

w w

w w w


    
 

   
     

 


(28) 

To determine the best alternative, we use the proposed 
strategy involving the following steps: 

Step 1. Standardize the decision matrix 

Since the selective attributes are benefit type attributes, then 
using Eq. (6), we have the following standardized decision 
matrix: 4 4( )ijR r  (see Table 2.) 

Table 2. Standardized rating values of alternatives 
1C 2C

A1

[0.7,0.8,0.9,1.0];
0.90,0.10,0.05

 
 
 

 0.5,0.6,0.7,0.8 ;
0.65,0.35,0.30

 
  
 

A2 
 0.5,0.6,0.7,0.8 ;

0.65,0.35,0.30
 
  
 

 0.6,0.7,0.8,0.9 ;
0.80,0.20,0.15

 
  
 

Construct a decision 

matix 

Standardize the 

decision matrix 

Determine the attribute 

weights 

Determine the ideal 

solutions 

Determine the separation 

measures 

Calculate the relative 

closeness 
co-efficients 

Select the best 

alternative 

Problem 

formulation 

The 

maximum 

deviation 

strategy 

TOPSIS 

strategy 

with SVTrNNs 
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A3 
 0.4,0.5,0.6,0.7 ;

0.50,0.50,0.45
 
  
 

 0.5,0.6,0.7,0.8 ;
0.65,0.35,0.30

 
  
 

A4 
 0.4,0.5,0.6,0.7 ;

0.50,0.50,0.45
 
  
 

 0.5,0.6,0.7,0.8 ;
0.65,0.35,0.30

 
  
 

3C 4C

A1 
 0.6,0.7,0.8,0.9 ;

0.80,0.20,0.15
 
  
 

 0.7,0.8,0.9,1.0 ;
0.90,0.10,0.05

 
  
 

A2 
 0.7,0.8,0.9,1.0 ;

0.90,0.10,0.05
 
  
 

 0.6,0.7,0.8,0.9 ;
0.80,0.20,0.15

 
  
 

A3 
 0.4,0.5,0.6,0.7 ;

0.50,0.50,0.45
 
  
 

 0.4,0.5,0.6,0.7 ;
0.50,0.50,0.45

 
  
 

A4 
 0.4,0.5,0.6,0.7 ;

0.50,0.50,0.45
 
  
 

 0.6,0.7,0.8,0.9 ;
0.80,0.20,0.15

 
  
 

Step 2. Determine the attribute weight 

Case 1. Weight information is incompletely known. 

 Using the model (M-1), we construct the following single-
objective programming problem: 

  1 2 3 4

4

1

max 3.2133 1.1401 3.4250 2.9700

subject to , 1, 0, for 1,2,..,4.j j

j

D w w w w w

w w w j


    



   



(29) 

Solving this model with optimization software LINGO 13, 
we get the optimal weight vector as 

 0.30,0.05,0.35,0.30 .w 

Case 2. Weight information is completely unknown. 

Following Eq.(20), we obtain the following optimal weight 
vector: 

 0.2990,0.1061,0.3186,0.2763 .w   

Step 3. Determine the ideal solutions 

Since the chosen attributes are benefit type attribute, then 
following Eq.(22) we determine the neutrosophic 
trapezoidal positive ideal solution as 

 

 

 

 

[0.7,0.8,0.9,1.0];0.90,0.10,0.05 ,

[0.6,0.7,0.8,0.9];0.80,0.20,0.15 ,

[0.7,0.8,0.9,1.0];0.90,0.10,0.05 ,

[0.7,0.8,0.9,1.0];0.90,0.10,0.05

A

 
 
 

  
 
 
 

(30) 

Similarly, using Eq.(23), we determine the neutrosophic 
trapezoidal negative ideal solution 

  

  

  

  

0.4,0.5,0.6,0.7 ;0.50,0.50,0.45 ,

0.5,0.6,0.7,0.8 ;0.65,0.35,0.30 ,

0.4,0.5,0.6,0.7 ;0.50,0.50,0.45 ,

0.4,0.5,0.6,0.7 ;0.50,0.50,0.45

A

 
 
 
 
 
 
 
 

(31) 

Step 4. Determine the separation measures from ideal 
solutions to each alternative. 

Case 1. Employing Eq.(25), we obtain the separation 
measures 

id   of each alternative ( 1,2,3,4)iA i   from A :

 1, 0.0673d A A  ,  2 , 0.1538d A A  ,  3, 0.4792d A A  , 

 4 , 0.3807.d A A   
Similarly, using Eq.(26), we obtain the separation measures 

id   of each alternative ( 1,2,3,4)iA i   from A : 

 1, 0.4119d A A  ,  2 , 0.3254d A A  ,  3, 0d A A  , 

 4 , 0.0985.d A A   

Case 2. The separation measures id   of each alternative 
( 1,2,3,4)iA i   from A : 

 1, 0.0721d A A  ,  2 , 0.1494d A A  ,  3, 0.4615d A A  , 

 4 , 0.3708.d A A   

Similarly, the separation measures id   of each alternative 
( 1,2,3,4)iA i   from A : 

 1, 0.3894d A A  ,  2 , 0.3120d A A  ,  3, 0d A A  , 

 4 , 0.0907.d A A   

Step 5. Calculate the relative closeness coefficient. 

Using Eq.(27), we calculate the relative closeness 
coefficient ( )iRC A  of  alternative ( 1,2,3,4)iA i   for Case 1 
and Case 2, respectively. We put the result in Table 3. 

Table 3. Rating values of alternatives 
RC(Ai) Case 1 Case 2 

RC(A1) 0.8596 0.8438 

RC(A2) 0.6790 0.6824 

RC(A3) 0 0 

RC(A4) 0.2056 0.1965 

Following Table 3, we rank the alternatives ( 1,2,3,4)iA i 

according to the values of relative closeness coefficient 
( )iRC A for both cases: 1 2 4 3.A A A A  Therefore 1A  is the 

best alternative. 

5 Conclusions 

TOPSIS strategy is a useful strategy for solving MADM 
problem under different environment. In this paper, we have 
investigated MADM problems with SVTrNNs. The weight 
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information of attributes have been considered to be incom-
pletely known or completely unknown. First, we have used 
Hamming distance measure to determine the distance meas-
ure of SVTrNNs. Second, we developed an optimization 
model to determine the attribute weights based on the idea 
of maximum deviation strategy. Third, we have extended 
the TOPSIS strategy for solving the MADM model with 
SVTrNNs. Finally, we have provided an illustrative exam-
ples to verify the feasibility and effectiveness of the pro-
posed model. The proposed TOPSIS strategy can be ex-
tended to multi-attribute group decision making with 
SVTrNNs and multi-attribute decision making problem 
with interval trapezoidal neutrosophic numbers. The pro-
posed TOPSIS strategy can be used in solving logistics 
center location selection [61, 62], weaver selection [63, 64], 
data mining [65], school choice [66], teacher selection [67], 
brick field selection [68-69), etc. under SVTrNN environ-
ment.  
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