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SUMMARY 

The P-value is a random variable derived from the distribution of the test statistic used to analyze a 
data set and to test a null hypothesis. Under the null hypothesis, the P-value based on a continuous 
test statistic has a uniform distribution over the interval [0,1], regardless of the sample size of 
the experiment. In contrast, the distribution of the P-value under the alternative hypothesis is a 
function of both sample size and the true value or range of true values of the tested parameter. 
The characteristics, such as mean and percentiles, of the P-value distribution can give valuable 
insight into how the P-value behaves for a variety of parameter values and sample sizes. Potential 
applications of the P-value distribution under the alternative hypothesis to the design, analysis, 
and interpretation of results of clinical trials are considered. 

1. Introduction 
The P-value is one of the most routinely used statistical measures of uncertainty, yet statisticians 
may in some situations (Goodman, 1992) disagree on its appropriate use and on its interpretation as 
a measure of evidence. The P-value is derived from the perspective of a test of hypothesis in which 
a test statistic is calculated from results of a given set of data and, under the assumption that the 
null hypothesis is true, the distribution of the test statistic is used to obtain the tail probability of 
observing that result or a more extreme result. Thus, the P-value is a measure of evidence against 
the null hypothesis. Because the P-value is based upon analysis of random variables, it itself is a 
random variable whose distribution, for continuous test statistics, is well known to be uniform over 
the interval [0, 1] under the null hypothesis. It is because of this fact that a cutoff for a P-value 
at, say 0.05, is used to control the chances that, for any given experiment, one of twenty P-values 
could be 0.05 or less, even when the null hypothesis is true. This concept, in the Neyman-Pearson 
theory of hypothesis testing, is known as the Type I error rate, which is a preexperiment error 
rate that determines the rejection region and is intended to control the overall frequency of making 
erroneous rejections of the null hypothesis. 

It is of interest that the distribution of the P-value, when the null hypothesis is true, is uniform 
over [0,1] regardless of the sample size of an experiment, so there is no way to distinguish P-values 
derived from large studies from those derived from small samples, nor from studies well powered 
to detect a posited alternative hypothesis from those underpowered to detect that same posited 
alternative value. Other statistical measures, such as confidence intervals, may serve this purpose 

* The views expressed in the article are not necessarily those of the U.S. Food and Drug Admini- 
stration. 
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12 Biometrics, March 1997 

in part, but there seems to be no direct relationship between the two concepts for illustrating the 
point of this article. 

The magnitude of the P-value is, for most investigators, important to the interpretation and 
conclusions inferred from planned experiments and observational data. Since the P-value is a mea- 
sure of evidence against the null hypothesis, it is informative to explore the magnitude of the 
P-value when the alternative hypothesis is true. This is the goal of this article. Under the alterna- 
tive hypothesis, the distribution of the P-value becomes a function of the study sample size and the 
given value of the parameter (call it 6) in the alternative hypothesis. Moreover, in contrast to the 
P-value's uniform distribution when the null hypothesis holds (i.e., 6 = 0), the density of the 
P-value under any alternative hypothesis is markedly skewed, and this is especially the case as the 
sample size of the experiment increases, reflecting the increasing power of a study to detect (i.e., 
produce a P-value less than a prespecified level a, 0 < a < 1) any prespecified difference 6. In 
Section 2 the P-value density and distribution functions will be derived for a fixed point alternative 
6. In Section 3 we show how the behavior of the P-value distribution depends on both the sample 
size for the experiment and the magnitude of the tested parameter 6 in the alternative hypothesis. 
We shall explore the relationship of the power of the test statistic to the distribution of the P-value 
under the alternative hypothesis. An application will be presented in Section 5. Section 6 will be 
devoted to the situation where the value of 6 is uncertain and the uncertainty can be quantified by 
a probability distribution on 6. Concluding discussions follow. 

2. Distribution of the P-Value for a Specified Parameter Value 
As motivation, we begin by considering a one-sample experiment in which the response variable 
Y follows a Gaussian distribution with a mean parameter ,u and a standard deviation a. The 
comparative two sample experiment will be considered in Section 4. Let yn be the sample mean of 
n independent observations of Y for the purpose of testing the hypothesis Ho: , = 0 versus H1: 
,u > 0 at a significance level ae. The ae level is a preexperiment Type I error rate used to control the 
probability that the observed P-value in the experiment of making an error rejection of Ho when 
in fact Ho is true is a or less. 

The P-value is calculated from the distribution of the test statistic T = \?yn/o. We assume for 
simplicity that uf is given. In many applications, the assumption of known uf or distribution of Y 
is not necessary if samples are sufficiently large, because by replacing u2 with the sample variance 
the statistic T is approximately standard Gaussian under Ho. The one-sided P-value for testing 
Ho against H1 is derived by calculating the probability of the observed value or more extreme of 
the test T and has the value 

p 1- 1(t), (2.1) 

where t is the realization of T and 1> is the standard Gaussian distribution function with density 
?. For a given ,u, T has a Gaussian distribution with mean ,u/o/ and variance one. Let 6 = ,lo'. 
As shown in (A. 1) in the Appendix, for a given 6 and n, the density of the P-value is 

g9(p) = ?(Zp - v?6)/O(Zp), 0 < p < 1, (2.2) 

where Zp is the (1 - p)th percentile of the standard Gaussian distribution. The Zp is the value of 
the standard Gaussian random variable beyond which the tail probability is p. The distribution 
function of the P-value, given 6 and n, is 

G6(p) j (x) dx = 1- (Zp - ?6), 0 < p <1. 

The expected value Eb(P) of the P-value is given by (A.2) in the Appendix and the variance 
var6(P) can be derived similarly. Clearly, G6 (p), E6 (P), and var6 (P) depend on 6 and n. 

3. Relationship of Sample Size and Power at a Specified 
Parameter Value to P-Value Distribution 
For planned experiments designed to test the hypotheses Ho versus H1 described in Section 2, the 
sample size n is usually determined to detect an anticipated magnitude, u = ,* > 0, with power 
1 - 3. The determination of sample size of the experiment is based on the well-known relation 
between n and u*, 

- { (ZOG ? Z;3) /a* }2, (3 .1 ) 

where Zv, is the (1 -v)th percentile of the standard Gaussian distribution. 
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Behavior of the P- Value 13 

Consider an experiment designed to reject Ho at a = 0.05 and with power 90% when the expected 
effect size, say ,u* = o/3. Based on (3.1), the sample size required is approximately 80. The density 
function of the P-value for this sample size and the alternative value 6 = 1/3 is illustrated in Figure 
1 as well as the densities for a variety of n. In Figure 2 the densities for a variety of assumed 6 
given the sample size n = 80 are presented. The corresponding cumulative distribution functions 
of P are depicted in Figures 3 and 4. Both the density function and the cumulative distribution 
function of the P-value are increasingly steep as the sample size n or the magnitude of 6 increases. 
It is seen from Tables 1 and 2 that as either 6 or n decreases, the expected value and the standard 
deviation increase and the percentiles shift towards one. 

Note that the P-value distribution for the sample mean test is a function of V/E6 (see equation 
(2.2)). Thus, if the true magnitude of ,u is as anticipated (i.e., 6 = ,*/lf) and the sample size n 
is determined based on equation (3.1), then the distribution function and the characteristics (e.g., 
mean and percentiles) of the P-value for the sample mean test depend only on the power level 1- 3 
via the value of V/E6 when a is fixed. From Figure 5 and Table 3, one can see that as the power 
level increases, the mean and variance of the P-value become smaller, the percentiles shift towards 
zero, and the distribution function is steeper in shape. The information in Table 3 provides useful 
guidance to trial designers in selecting the power level for study. Table 3 illustrates that for a study 
planned with 90% power against any alternative, the probability is 50% that the P-value one will 
observe with a sample size chosen to maintain the power is no greater than 0.001, and it would be 
a rare occurrence (i.e., 5% chance) to observe a P-value greater than 0.10. 

Two further observations are made here. First, the power characteristic of the sample mean test 
T for Ho versus H1 is closely tied to the P-value distribution. For a fixed effect size 6, the power 
of T can be written as 

Q(6) = pr{T > ZO, I 6} 
= pr{P < a I 6} 
= G6a(o). 

That is, the power of T at a fixed effect size 6 can be read from the P-value distribution G6 (p) 
at p = a. For example, from Table 1, for n= 15 and 6 = 1/3, the 25th percentile of the P-value 
distribution is about 0.025 [i.e., G1/3(0.025) 0.25]; therefore, the power of the sample mean test 
T performed at a 2.5% level of significance is only 25% at 6 1/3 when n = 15. 

Secondly, if the a-level sample mean test T has power 1 - at 6 6*, that is, pr(T > Zc, 6 
6*) 1 1-, then 
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Figure 1. Density of the P-value for various ni at 6 =1/3. 
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Figure 2. Density of the P-value at various 6 for n = 80. 

1- a = pr(T - V6* > -ZO I 6 = 6*) 
=pr(P <3 06 6*), 

since Z,Q - V/iW* =-Z1. This means that the type II error rate 3 of the ae-level sample mean test 
T at a fixed point alternative 6 = 6* is the (1 - a)th percentile of the P-value distribution. As seen 
in Tables 1 and 2, the 95th percentile reflects the Type II error rate (which is exactly equal to one 
minus power in the last column) of the 5%-level test T under each specified scenario. 

4. Two Sample Scenario 
We now consider the two-sample situation in which the target parameter is the difference in the 
mean of the response variable of interest between the two sample groups. Suppose that the response 
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Figure 3. Cumulative distribution function of the P-value for various n at 6 1/ 
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Figure 4. Cumulative distribution function of the P-value at various 6 for n= 80. 

variable Y follows a probability distribution F1 with mean ,Al and variance oc2 in group 1 and a 
probability distribution F2 with mean ,A2 and variance o22 in group 2, where F1 and F2 belong to the 
same family. The variance parameter oQ? may be a function of the mean parameter pi (i = 1, 2). An 
example is that Y is a binary outcome following a Bernoulli distribution with mean ir and variance 
7r(I -7r), where ir = pr(Y = 1). 

Let Yl and Y2 be the sample means of ml and m2 independent observations of Y from group 1 
and group 2, respectively, for the purpose of testing the hypothesis 

Ho: pi1 = A2 versus HI: pi > A2 

at a significance level ae. The test statistic often employed is given by 

T (YI - Y2)/(1 /m 2 /M2) 

where 8Q is a consistent estimator of ov? from group i (i = 1, 2), that is, &Q converges to oQ? in prob- 
ability as mi tends to infinity. When ml and m2 are sufficiently large, the test T is asymptotically 
normal with mean 

(tl- /2)/(/ml ? /M2) 

and variance one. 
To use the formulas developed in the previous section, we need to define n and 6. Let 

n = mlm2/(ml + m2), 

that is, 2n is the harmonic mean of ml and m2. Let 

Table 1 
Characteristics of the P-value distribution for various sample sizes n 

and the corresponding power at 6 = 1/3 when a = 0.05 

Percentile 

n Mean S.D. 5th 10th 25th 50th 75th 90th 95th Power at 6 
15 0.181 0.207 0.002 0.005 0.025 0.098 0.269 0.496 0.638 0.36 
30 0.098 0.148 0.0003 0.0009 0.006 0.034 0.125 0.293 0.428 0.57 
60 0.034 0.077 <0.0001 <0.0001 0.0006 0.005 0.028 0.097 0.174 0.83 
80 0.018 0.050 <0.0001 <0.0001 <0.0001 0.001 0.011 0.045 0.100 0.90 
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Table 2 
Characteristics of the P-value distribution for various values of 6 and the 

corresponding power at various values of 6 for n = 80 and a = 0.05 

Percentile 
6 Mean S.D. 5th 10th 25th 50th 75th 90th 95th Power at 6 

0.125 0.215 0.225 0.003 0.008 0.037 0.132 0.329 0.565 0.701 0.30 
0.25 0.057 0.107 <.0001 0.0002 0.002 0.013 0.059 0.170 0.277 0.72 
0.33 0.018 0.050 <.0001 <.0001 0.0001 0.001 0.011 0.045 0.100 0.90 

-x = {fA1 + (1 - A) f2 
6 = (il - /2)/U, 

where A = m2/(ml +m2). Then for the given A 11, 2, l4, and o22, T is asymptotically normal with 
mean +/WE and variance one. When the two groups have the same variance, cx is the common value 
of the standard deviation. If ml = m2 = m, then n = (1/2)m. By following this convention, all 
the formulas in the previous sections are applicable to the two-sample scenario. 

5. An Application 
The P-value distribution under an alternative hypothesis has several applications. In the context 
of meta-analysis of several studies or analysis of a multicenter study, the P-value distribution 
may be used to explore the variability of the evidence as measured by the P-value against the 
null hypothesis when the same alternative parameter value is assumed for each of several studies 
or centers. This idea can also be applied to examine heterogeneity of observed treatment effects 
across subpopulations. 

For the purpose of illustration, we select the example of meta-analysis taken by Fleiss (1993) in 
which the results of seven randomized studies of the effect of aspirin (versus placebo) in preventing 
death after a myocardial infarction were reviewed (see Table 4). The alternative hypothesis of 
interest is that the relative risk is greater than one, indicating that aspirin reduces mortality risk. 

As noted by Fleiss, the observed relative risks for the first five studies appear homogeneous, 
varying over the narrow interval from 1.21 to 1.43. The log relative risk is approximately normally 
distributed for sufficiently large group sample sizes. Thus, applying the formulas of Section 4, the 

Pr (P <= p) 

0. 
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Figure 5. Cumulative distribution function of the P-value at various ~3 chosen to detect a spec- 
ified value of 6 at a 0.05 and with sample size determined using equation (3.1). 
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Behavior of the P- Value 17 

Table 3 

Characteristics of the P-value distribution at various power levels chosen for detecting any 
specified value of 6 at a = 0.05 and with sample size determined using equation (3.1) 

Power Percentile 
(%) Mean S.D. 5th 10th 25th 5th 75th 90th 95th 
95 0.010 0.035 <0.0001 <0.0001 <0.0001 0.0005 0.004 0.022 0.050 
90 0.018 0.050 <0.0001 <0.0001 0.0001 0.001 0.011 0.045 0.100 
85 0.029 0.069 <0.0001 <0.0001 0.0004 0.004 0.022 0.080 0.150 
80 0.039 0.085 <0.0001 <0.0001 0.0008 0.006 0.035 0.114 0.200 
75 0.051 0.099 <0.0001 0.0002 0.001 0.010 0.050 0.150 0.250 
70 0.063 0.113 <0.0001 0.0003 0.002 0.015 0.067 0.187 0.300 

estimated value of 6 ranges from 0.07 to 0.10 (see Table 4). Assuming that the expected effect size 
6 is 0.07 for each of the seven studies, we generate Figure 6 by accounting for the sample size of 
each study to illustrate the relative position of the observed P-value for each study in contrast to 
the 50th and 95th percentiles of the P-value distribution that would be expected for the respective 
sample sizes. Note that the 50th and 95th percentiles vary because of the different study sample 
size. The shaded region in this plot (we call it "Phyp plot") is the region of P < 0.05. This plot can 
be used to identify the study results where the observed P-values are improbable if the assumption 
is correct that each study has a common effect 6. From Figure 6, the observed P-value of the 
AMIS study stands far above the 95th percentile. This suggests the heterogeneity in the relative 
risk between the AMIS study and the first five studies. 

Numerically, the relative risk observed in the ISIS-2 study also appears different from those of the 
first five studies. However, from Figure 6, the P-value for that study is well within the percentiles 
expected for a study of that sample size. The ISIS-2 gives an estimate of 0.04 for 6. Assuming that 
6 = 0.04 for all studies, Figure 7 still suggests the heterogeneity in the relative risk between the 
AMIS study and the remaining studies. 

One further remark is in order. An appealing feature of the Phyp plot method as compared with 
more complicated procedures for quantifying interstudy heterogeneity, such as chi-square tests for 
heterogeneity, is simplicity. The Phyp plot summarizes the result of a clinical trial in a single P- 
value statistic taking values between zero and one, and also provides percentile bounds that allow 
one to judge whether the observed P-value is in the expected range. The use of tests for outliers 
runs into the complication that no common underlying distribution exists independently of sample 
sizes of the studies or centers. 

6. Distribution of the P-Value When the Tested Parameter 
Follows a Probability Distribution 
In practice, the true value of 6 is often not known with certainty and may vary from study to study. 
It is therefore appealing to view the effect size parameter 6 as a random variable distributed over 

Table 4 
Results of seven placebo-controlled randomized studies of the effect 

of aspirin in preventing death after myocardial infarction 

Aspirin Placebo One-sided 

Study mI P1 m2 P2 n log(rr) 6 p-value 

MRC-1 615 0.0797 624 0.1074 310 0.2983 0.095 .047 
CDP 758 0.0580 771 0.0830 382 0.3584 0.097 .029 
MRC-2 832 0.1226 850 0.1482 420 0.1896 0.075 .063 
GASP 317 0.1009 309 0.1230 156 0.1980 0.070 .191 
PARIS 810 0.1049 406 0.1281 270 0.1998 0.074 .113 
AMIS 2267 0.1085 2257 0.0970 1130 -0.1120 -0.038 .898 
ISIS-2 8587 0.1828 8600 0.2000 4297 0.0899 0.044 .002 

pl, death rate of the aspirin group; P2, death rate of the placebo group; ml, sample size of the aspirin 
group; m2, sample size of the placebo group; rr = relative risk = P2/P1; n = mlm2/(ml + m2). 
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Figure 6. Phyp plot for the meta-analysis example (assuming 6 = 0.07). 

a certain fixed range. We choose normal, uniform, and lognormal distributions for the effect size 6 
to study the distribution of the P-value. The mathematical derivation is given in the Appendix. 

In what follows let p range over the interval [0, 1]. When 6 is normally distributed with mean 
and variance w2, the density of the P-value is 

g(p) = [w(n + -2)1/2]-l 

x exp{-2 [((/W)2 - (V-Zp + (/W2)2/(n + -2)] } (6.1) 

The distribution function of the P-value is 

G(p) 1- - \/'l)/(W2n + 1)1/2}. (6.2) 

If 6 is uniformly distributed over the interval [a, b], the marginal density function of the P-value is 

p 
AMIS 

0.9 

0.8- 

0.7 

0.6- P95 

0.5 

0.4- 

0.3 

P50 
0.2 * 

0.1 * 

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 

N 
Figure 7. Phyp plot for the meta-analysis example (assuming 6 = 0.04). 
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Behavior of the P- Value 19 

g(p) = (27r/n)1/2exp(O.5Z2){(Vib - Zp) - 4(Va - Zp) -(b-a), 

and the distribution function is 

G(p) = I/- (b-a)}1 4 - \?a) - - (v/-b)} dv. 

For the lognormal case where log(6) is Gaussian with mean 0 and variance v2, the marginal density 
of the P-value is 

9(p) j / (Zp - VU+O)q)(u)/q(Zp) du, 

derived by use of the transformation u = (log(6) - 0)/v. The corresponding distribution function 
is given by 

G(p) b(V/ievU+O - Zp),(u) du. 

The mean and variance of the P-value for each of these assumed distributions of the parameter 6 
are derived in the Appendix. The average power function can be obtained similarly. 

For the purpose of exploring how the distribution of the P-value, its first two moments, and 
percentiles change as the distribution of 6 changes, we assign values to the parameters of the 
6-distribution so that the expectation of 6 is 1/3. The following scenarios are considered: 

1. 6 is fixed at 1/3. 
2. 6 is uniformly distributed on the interval [0, 2/3]; thus, 6 has mean 1/3 and variance 1/27. 
3. 6 is Gaussian with mean 1/3 and variance 1/27. 
4. 6 is lognormal with mean 1/3 and variance 1/27. 
5. 6 is uniform on [-2/3,4/3] with mean 1/3 and variance 1/3. 
6. 6 is Gaussian with mean 1/3 and variance 1/3. 
7. 6 is lognormal with mean 1/3 and variance 1/3. 

It can be seen from Figure 8 and Table 5 that the degree of uncertainty about the true value of 6 
affects the distribution of the P-value. The larger the variability of 6, the larger the expected value, 
the spread, and the percentiles of the P-value will be. The distributional characteristics of the P- 
value also depend on the distribution of 6. For instance, the P-value distribution obtained from an 
asymmetric 6-distribution (e.g., lognormal) can be quite different from that based on a symmetric 
one. The last column of Table 5 suggests that when 6 for the potential medical environments 
of the trial is roughly uniformly distributed over the interval [0, 2/3] for a "randomly" selected 
trial with a sample size of 80, the 5%-level sample mean test has an expected power of 72%. The 
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Figure 8. Cumulative distribution function of the P-value when the alternative 6 follows various 
known distributions for n = 80. 
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Table 5 
Characteristics of the P-value distribution when the alternative 6 follows various 

known distributions and average power over the 6-distribution for n = 80 and a = 0.05 

Percentile 6 Average 
distribution Mean S.D. 5th 10th 25th 50th 75th 90th 95th power 

1/3 .018 .050 <.0001 <.0001 .0001 .001 .011 .045 .100 .90 
U(0,2/3) .095 .196 <.0001 <.0001 <.0001 .001 .072 .364 .587 .72 
N(1/3,1/27) .090 .204 <.0001 <.0001 <.0001 .001 .051 .334 .615 .75 
LN(1/3,1/27) .064 .141 <.0001 <.0001 <.0001 .003 .050 .214 .377 .75 
U(-2/3,4/3) .333 .437 <.0001 <.0001 <.0001 .001 .932 >.999 >.999 .57 
N(1/3,1/3) .289 .411 <.0001 <.0001 <.0001 .001 .714 >.999 >.999 .60 
LN(1/3,1/3) .174 .248 <.0001 <.0001 .0002 .041 .270 .586 .750 .52 

U, uniform; N, normal; LN, lognormal. 

concept of the expected power here is equivalent to "pretrial prediction" of a positive test decision 
in a Bayesian framework (Spiegelhalter, Freedman, and Parmer, 1994). The concept of expected 
power may be useful in the planning phase of a clinical trial. 

8. Discussion 
Several authors have recognized that distinguishing among a set of P-values generated from an 
unknown subset of true null hypotheses and an unknown subset of false null (or true alternative) 
hypotheses is a challenging effort. Schweder and Spjotvoll (1982) present a graphical procedure, 
called a P-value plot, which gives an overall view of the test statistics where it is possible to estimate 
the number of hypotheses that ought to be rejected. Parker and Rothenberg (1988) consider a 
similar problem, but present an approach that uses a mixture of several distributions to model the 
set of P-values (or test statistics) to characterize the expected P-value outcomes when multiple 
statistical tests have been carried out. Their approach is intended to distinguish P-values generated 
from false positive tests from those generated from true positive tests. The approach models one 
set of distributions for P-values consistent with a failure to reject the null hypothesis, while the 
other distributions in the mixture represent results inconsistent with the null hypothesis. 

While all these authors use the fact that the distribution of the P-value from a statistical test 
performed on a true null hypothesis is uniform between 0 and 1 and that for a statistical test of a 
false null hypothesis the P-value would tend to be near 0, none of these authors take account of the 
sample size from which the P-value is generated nor the relationship of the P-value to the power 
of the test at a specific parameter value in the alternative hypothesis space. An exception is the 
work of Dempster and Schatzoff (1965) who considered the "expected significance level" defined as 
the expected value of the P-value when a particular alternative is true. They proposed estimation 
techniques based on Monte Carlo simulation. We believe the knowledge of the assumed alternative 
6 and the sample size of a given experiment are both necessary when looking into the problem of 
the distribution of the P-value under the alternative more closely. We also believe that, because 
the P-value is a random variable taking values in the interval [0, 1], one can judge the consistency 
of the observed P-values of a set of studies against a common alternative hypothesis relative to the 
expected P-value (or percentiles) of each study when each study's sample size is properly accounted 
for. 

One final remark concerns the fact that the P-value distribution under the alternative hypothesis 
depends on the distribution of the test statistic T used. In this paper, we consider the case that 
T is approximately normal, which is reasonable for many practical applications. Future work is 
needed to deal with the nonnormal cases. 
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RESUME 

Le degre de signification p est une variable aleatoire deduite de la distribution de la statistique 
utilisee pour analyser des donnees et tester une hypothese nulle. Sous cette hypothese nulle p, 
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base sur une statistique de test continue, a une distribution uniforme sur [0, 1], independamment 
de la taille de 1'echantillon. A contrario la distribution de p sous l'hypothese alternative depend 
a la fois de la taille de l'echantillon et de la vraie valeur ou de l'etendue des vraies valeurs du 
parametre test'. Les caracteristiques, telles que la moyenne et les percentiles, de la distribution des 
valeurs de p peuvent apporter des eclaircissements appreciables sur le comportement des valeurs 
de p pour divers valeurs des parametres et des tailles d'echantillons. Des applications potentielles 
de la distribution du degre de signification p sous l'hypothese alternative sont considerees pour la 
conception, l'analyse et l'interpretation des resultats d'essais cliniques. 
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APPENDIX 

At first a fixed effect size 6 is considered. The test statistic T is assumed to follow a standard normal 
distribution under the null hypothesis and a normal distribution with density W, mean n, 
and unit variance under the alternative hypothesis. The P-value is a one-to-one transformation 
of the test statistic, P = 1-4(T). By using dT/dP =-{(4-'1(1 - P))}-1, the density of the 
P-value for fixed 6 is 

96 (p) = 06V (ZP) /O(ZP) X (A. 1) 

where Zp is the (1 - p)th percentile of the standard normal distribution. Note that in principle the 
arguments up to here are general and do not depend on a specific assumption of the distributional 
form of the test statistic (as long as the distributions under the null and alternative hypotheses 
are completely specified). By using v Zp and dp =-?(v) dv, the expectation of the P-value for 
a fixed 6 is given by 

E8(P) f/p?)(Zp - ;6)10(Zp)dp 
00 (A.2) 

- 4 @( v)(v V?6) dv. 

The second moment can be similarly obtained. 
Consider that 6 is a random variable with density h(6). The marginal density of the P-value is 

then given by 

g(p) g 8(p) h(6) db. 

With a normal 6 with mean ( and variance w2, the transformation 6' = b(n + 1/w2)1/2 leads 
to equation (6.1). G(p) given in (6.2) is derived using v = Zp and u = v(w2n + 1)-1/2. Using 
6' = b(n + 1/w2)1/2 and u = (v - (V/W)(W2n + 1)-1/2, we obtain 

E(P) j / (-v(w2n + 1)1/2 - v() (v) dv, (A.3) 
0-o 
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E(P2) = j [(-v(w2n + 1)1/2- (]20(v) dv. (A.4) 

Likewise, for 6 being uniformly distributed on [a, b], 

E(P) = -(b -a)}1 J @(-v) {4(v - V/-a) - - (v- b) } dv. (A.5) 

For log(6) - N(O, v2), 

E(P) = j j @(-v - VnegU+9)q(v)q(u) dudv. (A.6) 

The second moment of the P-value can be similarly derived. 
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