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Ramanujan, Modular Equations, and Approximations to Pi or 
How to Compute One Billion Digits of Pi 

J. M. BORWEIN AND P. B. BORWEIN 
Mathematics Department, Dalhousie University, Halifax, N.S. B3H 3J5 Canada 

and 

D. H. BAILEY 
NASA Ames Research Center, Moffett Field, CA 94035 

Preface. The year 1987 was the centenary of Ramanujan's birth. He died in 1920 
Had he not died so young, his presence in modern mathematics might be more 
immediately felt. Had he lived to have access to powerful algebraic manipulation 
software, such as MACSYMA, who knows how much more spectacular his already 
astonishing career might have been. 

This article will follow up one small thread of Ramanujan's work which has 
found a modern computational context, namely, one of his approaches to approxi- 
mating pi. Our experience has been that as we have come to understand these pieces 
of Ramanujan's work, as they have become mathematically demystified, and as we 
have come to realize the intrinsic complexity of these results, we have come to 
realize how truly singular his abilities were. This article attempts to present a 
considerable amount of material and, of necessity, little is presented in detail. We 
have, however, given much more detail than Ramanujan provided. Our intention is 
that the circle of ideas will become apparent and that the finer points may be 
pursued through the indicated references. 

1. Introduction. There is a close and beautiful connection between the transfor- 
mation theory for elliptic integrals and the very rapid approximation of pi. This 
connection was first made explicit by Ramanujan in his 1914 paper "Modular 
Equations and Approximations to 7r" [26]. We might emphasize that Algorithms 1 
and 2 are not to be found in Ramanujan's work, indeed no recursive approximation 
of g" is considered, but as we shall see they are intimately related to his analysis. 
Three central examples are: 

Sum 1. (Ramanujan) 

1 8 00 (4n)! [1103 + 26390n] 
7T 9801 n=O (n!)4 3964n 

Algorithm 1. Let a0 6 - 4V2 and Yo = - 1. 
Let 

1 ( -Yn 
) 

1 + (I Yn4) 

and 

a +1 = (1 + Yn+1?)4 - 2n +3yn+I(I + yn+l + n+; 

201 
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Then 

0 < a - 1/1 < 16 - 4ne 4 

and an converges to 1/ST quartically (that is, with order four). 

Algorithm 2. Let so = 5(V5 - 2) and a0 -1/2. 
Let 

25 
n+l~ (z + x/z + Sn 

where 

x:= 5/Sn -1 y := (x - 1)2 + 7 

and 

Z:= [2-x(+ Y 24x3)] 

Let 

aln+1 snan -5 { + Vsn(sn - 2sn + 5) ) 
Then 

0 < - - < 16 5 ne-5n., 
7T 

and an converges to 1/ST quintically (that is, with order five). 
Each additional term in Sum 1 adds roughly eight digits, each additional iteration 

of Algorithm 1 quadruples the number of correct digits, while each additional 
iteration of Algorithm 2 quintuples the number of correct digits. Thus a mere 
thirteen iterations of Algorithm 2 provide in excess of one billion decimal digits of 
pi. In general, for us, pth-order convergence of a sequence {tan) to a means that an 
tends to a and that 

laxn+1- al < Claxn - aP 

for some constant C > 0. Algorithm 1 is arguably the most efficient algorithm 
currently known for the extended precision calculation of pi. While the rates of 
convergence are impressive, it is the subtle and thoroughly nontransparent nature of 
these results and the beauty of the underlying mathematics that intrigue us most. 

Watson [37], commenting on certain formulae of Ramanuj an, talks of 

a thrill which is indistinguishable from the thrill which I feel when I enter the 
Sagrestia Nuovo of the Capella Medici and see before me the austere beauty of 
the four statues representing "Day," "Night," "Evening," and "Dawn" which 
Michelangelo has set over the tomb of Giuliano de'Medici and Lorenzo 
de 'Medici. 

Sum 1 is directly due to Ramanujan and appears in [26]. It rests on a modular 
identity of order 58 and, like much of Ramanujan's work, appears without proof 
and with only scanty motivation. The first complete derivation we know of appears 
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in [11]. Algorithms 1 and 2 are based on modular identities of orders 4 and 5, 
respectively. The underlying quintic modular identity in Algorithm 2 (the relation 
for sn) is also due to Ramanujan, though the first proof is due to Berndt and will 
appear in [7]. 

One intention in writing this article is to explain the genesis of Sum 1 and of 
Algorithms 1 and 2. It is not possible to give a short self-contained account without 
assuming an unusual degree of familiarity with modular function theory. Also, parts 
of the derivation involve considerable algebraic calculation and may most easily be 
done with the aid of a symbol manipulation package (MACSYMA, MAPLE, 
REDUCE, etc.). We hope however to give a taste of methods involved. The full 
details are available in [11]. 

A second intention is very briefly to describe the role of these and related 
approximations in the recent extended precision calculations of pi. In part this 
entails a short discussion of the complexity and implementation of such calcula- 
tions. This centers on a discussion of multiplication by fast Fourier transform 
methods. Of considerable related interest is the fact that these algorithms for ST are 
provably close to the theoretical optimum. 

2. The State of Our Current Ignorance. Pi is almost certainly the most natural of 
the transcendental numbers, arising as the circumference of a circle of unit diame- 
ter. Thus, it is not surprising that its properties have been studied for some 
twenty-five hundred years. What is surprising is how little we actually know. 

We know that ST is irrational, and have known this since Lambert's proof of 1771 
(see [5]). We have known that g is transcendental since Lindemann's proof of 1882 
[23]. We also know that 7T is not a Liouville number. Mahler proved this in 1953. An 
irrational number 1 is Liouville if, for any n, there exist integers p and q so that 

P 1 
0 < - -< 

q qn 

Liouville showed these numbers are all transcendental. In fact we know that 

p 1 
> 14.65 (2.1) 

for p, q integral with q sufficiently large. This irrationality estimate, due to 
Chudnovsky and Chudnovsky [16] is certainly not best possible. It is likely that 
14.65 should be replaced by 2 + - for any E > 0. Almost all transcendental numbers 
satisfy such an inequality. We know a few related results for the rate of algebraic 
approximation. The results may be pursued in [4] and [11]. 

We know that e ' is transcendental. This follows by noting that es = (1 1)-i and 
applying the Gelfond-Schneider theorem [4]. We know that ST + log 2 + V2log 3 is 
transcendental. This result is a consequence of the work that won Baker a Fields 
Medal in 1970. And we know a few more than the first two hundred million digits 
of the decimal expansion for 7T (Kanada, see Section 3). 

The state of our ignorance is more profound. We do not know whether such basic 
constants as ST + e, 7r/e, or log ST are irrational, let alone transcendental. The best 
we can say about these three particular constants is that they cannot satisfy any 
polynomial of degree eight or less with integer coefficients of average size less than 
109 [3]. This is a consequence of some recent computations employing the 
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Ferguson-Forcade algorithm [17]. We don't know anything of consequence about 
the single continued fraction of pi, except (numerically) the first 17 million terms, 
which Gosper computed in 1985 using Sum 1. Likewise, apart from listing the first 
many millions of digits of Tr, we know virtually nothing about the decimal expan- 
sion of 7T. It is possible, albeit not a good bet, that all but finitely many of the 
decimal digits of pi are in fact O's and l's. Carl Sagan's recent novel Contact rests on 
a similar possibility. Questions concerning the normality of or the distribution of 
digits of particular transcendentals such as X appear completely beyond the scope 
of current mathematical techniques. The evidence from analysis of the first thirty 
million digits is that they are very uniformly distributed [2]. The next one hundred 
and seventy million digits apparently contain no surprises. 

In part we perhaps settle for computing digits of 7r because there is little else we 
can currently do. We would be amiss, however, if we did not emphasize that the 
extended precision calculation of pi has substantial application as a test of the 
"global integrity" of a supercomputer. The extended precision calculations de- 
scribed in Section 3 uncovered hardware errors which had to be corrected before 
those calculations could be successfully run. Such calculations, implemented as in 
Section 4, are apparently now used routinely to check supercomputers before they 
leave the factory. A large-scale calculation of pi is entirely unforgiving; it soaks into 
all parts of the machine and a single bit awry leaves detectable consequences. 

3. Matters Computational 

I am ashamed to tell you to how many figures I carried these calculations, having 
no other business at the time. 

Isaac Newton 

Newton's embarrassment at having computed 15 digits, which he did using the 
arcsinlike formula 

3 F 1 1 1 1 

4 + 12 5 2 28 27 72 1 29 

= 4+ 24f -x2 dx, 

is indicative both of the spirit in which people calculate digits and the fact that a 
surprising number of people have succumbed to the temptation [5]. 

The history of efforts to determine an accurate value for the constant we now 
know as X is almost as long as the history of civilization itself. By 2000 B.C. both the 
Babylonians and the Egyptians knew ST to nearly two decimal places. The Babyloni- 
ans used, among others, the value 3 1/8 and the Egyptians used 3 13/81. Not all 
ancient societies were as accurate, however-nearly 1500 years later the Hebrews 
were perhaps still content to use the value 3, as the following quote suggests. 

Also, he made a molten sea of ten cubits from brim to brim, round in compass, 
and five cubits the height thereof; and a line of thirty cubits did compass it round 
about. 

Old Testament, 1 Kings 7:23 

Despite the long pedigree of the problem, all nonempirical calculations have 
employed, up to minor variations, only three techniques. 
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i) The first technique due to Archimedes of Syracuse (287-212 B.C.) is, recur- 
sively, to calculate the length of circumscribed and inscribed regular 6 * 2'-gons 
about a circle of diameter 1. Call these quantities an and b, respectively. Then 
a0 := 2r3, bo = 3 and, as Gauss's teacher Pfaff discovered in 1800, 

an+l- a nb h and bn+?1 an+lbn 
an +n 

Archimedes, with n = 4, obtained 

34 < 7r <3. 

While hardly better than estimates one could get with a ruler, this is the first method 
that can be used to generate an arbitrary number of digits, and to a nonnumerical 
mathematician perhaps the problem ends here. Variations on this theme provided 
the basis for virtually all calculations of ST for the next 1800 years, culminating with 
a 34 digit calculation due to Ludolph van Ceulen (1540-1610). This demands 
polygons with about 260 sides and so is extraordinarily time consuming. 

ii) Calculus provides the basis for the second technique. The underlying method 
relies on Gregory's series of 1671 

x dt x3 x5 
arctanx= f 2 = x + 5 Ix < 1 

coupled with a formula which allows small x to be used, like 

-~=4 arctan( -)-arctan(9) 
4 (5 )(239) 

This particular formula is due to Machin and was employed by him to compute 100 
digits of g in 1706. Variations on this second theme are the basis of all the 
calculations done until the 1970's including William Shanks' monumental hand- 
calculation of 527 digits. In the introduction to his book [32], which presents this 
calculation, Shanks writes: 

Towards the close of the year 1850 the Author first formed the design of rectifying 
the circle to upwards of 300 places of decimals. He was fully aware at that time, 
that the accomplishment of his purpose would add little or nothing to his fame as a 
Mathematician though it might as a Computer; nor would it be productive of 
anything in the shape of pecuniary recompense. 

Shanks actually attempted to hand-calculate 707 digits but a mistake crept in at 
the 527th digit. This went unnoticed until 1945, when D. Ferguson, in one of the 
last "nondigital" calculations, computed 530 digits. Even with machine calculations 
mistakes occur, so most record-setting calculations are done twice-by sufficiently 
different methods. 

The advent of computers has greatly increased the scope and decreased the toil of 
such calculations. Metropolis, Reitwieser, and von Neumann computed and ana- 
lyzed 2037 digits using Machin's formula on ENIAC in 1949. In 1961, Dan Shanks 
and Wrench calculated 100,000 digits on an IBM 7090 [31]. By 1973, still using 
Machin-like arctan expansions, the million digit mark was passed by Guillard and 
Bouyer on a CDC 7600. 
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iii) The third technique, based on the transformation theory of elliptic integrals, 
provides the algorithms for the most recent set of computations. The most recent 
records are due separately to Gosper, Bailey, and Kanada. Gosper in 1985 calcu- 
lated over 17 million digits (in fact over 17 million terms of the continued fraction) 
using a carefully orchestrated evaluation of Sum 1. 

Bailey in January 1986 computed over 29 million digits using Algorithm 1 on a 
Cray 2 [2]. Kanada, using a related quadratic algorithm (due in basis to Gauss and 
made explicit by Brent [12] and Salamin [27]) and using Algorithm 1 for a check, 
verified 33,554,000 digits. This employed a HITACHI S-810/20, took roughly eight 
hours, and was completed in September of 1986. In January 1987 Kanada extended 
his computation to 227 decimal places of r and the hundred million digit mark had 
been passed. The calculation took roughly a day and a half on a NEC SX2 machine. 
Kanada's most recent feat (Jan. 1988) was to compute 201,326,000 digits, which 
required only six hours on a new Hitachi S-820 supercomputer. Within the next few 
years many hundreds of millions of digits will no doubt have been similarly 
computed. Further discussion of the history of the computation of pi may be found 
in [5] and [9]. 

4. Complexity Concerns. One of the interesting morals from theoretical com- 
puter science is that many familiar algorithms are far from optimal. In order to be 
more precise we introduce the notion of bit complexity. Bit complexity counts the 
number of single operations required to complete an algorithm. The single-digit 
operations we count are +, -, X. (We could, if we wished, introduce storage and 
logical comparison into the count. This, however, doesn't affect the order of growth 
of the algorithms in which we are interested.) This is a good measure of time on a 
serial machine. Thus, addition of two n-digit integers by the usual method has bit 
complexity 0(n), and straightforward uniqueness considerations show this to be 
asymptotically best possible. 

Multiplication is a different story. Usual multiplication of two n-digit integers 
has bit complexity 0(n2) and no better. However, it is possible to multiply two 
n-digit integers with complexity 0(n (log n)(log log n)). This result is due to 
Schonhage and Strassen and dates from 1971 [29]. It provides the best bound known 
for multiplication. No multiplication can have speed better than 0(n). Unhappily, 
more exact results aren't available. 

The original observation that a faster than 0(n2) multiplication is possible was 
due to Karatsuba in 1962. Observe that 

(a + blOn)(c + dlon) = ac + [(a - b)(c - d) - ac - bdIlOn + bd102n, 
and thus multiplication of two 2n-digit integers can be reduced to three multiplica- 
tions of n-digit integers and a few extra additions. (Of course multiplication by 10" 
is just a shift of the decimal point.) If one now proceeds recursively one produces a 
multiplication with bit complexity 

0(n log2 3) 

Note that 1og23 = 1.58... < 2. 
We denote by M(n) the bit complexity of multiplying two n-digit integers 

together by any method that is at least as fast as usual multiplication. 
The trick to implementing high precision arithmetic is to get the multiplication 

right. Division and root extraction piggyback off multiplication using Newton's 
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method. One may use the iteration 

Xk+1 = 2Xk ky 

to compute l/y and the iteration 

Xk?1 =(Xk + ) 
2 Xk 

to compute Vyi. One may also compute 1/ jy from 

xk(3 -yX2) 
Xk+1' 2 

and so avoid divisions in the computation of Jy. Not only do these iterations 
converge quadratically but, because Newton's method is self-correcting (a slight 
perturbation in Xk does not change the limit), it is possible at the kth stage to work 
only to precision 2k. If division and root extraction are so implemented, they both 
have bit complexity O(M(n)), in the sense that n-digit input produces n-digit 
accuracy in a time bounded by a constant times the speed of multiplication. This 
extends in the obvious way to the solution of any algebraic equation, with the 
startling conclusion that every algebraic number can be computed (to n-digit 
accuracy) with bit complexity O(M(n)). Writing down n-digits of F/ or 3ff is (up 
to a constant) no more complicated than multiplication. 

The Schonhage-Strassen multiplication is hard to implement. However, a multi- 
plication with complexity O((log n)2+"n) based on an ordinary complex (floating 
point) fast Fourier transform is reasonably straightforward. This is Kanada's 
approach, and the recent records all rely critically on some variations of this 
technique. 

To see how the fast Fourier transform may be used to accelerate multiplication, 
let x = (x0, xl, x2,..., xn-1) and y = (yo, Yi, Y2 .' . y,n -) be the representations 
of two high-precision numbers in some radix b. The radix b is usually selected to be 
some power of 2 or 10 whose square is less than the largest integer exactly 
representable as an ordinary floating-point number on the computer being used. 
Then, except for releasing each "carry," the product z := (z0, Zl, Z2,**, Z2n-1) of x 
and y may be written as 

zo = xoyo 
z1 = xoYl + xlyo 
Z2 = XOY2 + Xlyl + X2yO 

Zn-1 = XOYn-1 + XlYn-2 + .+Xn_1Yo 

Z2n-3 = Xn-lYn-2 + Xn-2Yn-I 
Z2n-2 = Xn-lYn-1 

Z2n-1 = 0. 

Now consider x and y to have n zeros appended, so that x, y, and z all have 
length N = 2n. Then a key observation may be made: the product sequence z is 

This content downloaded from 142.167.15.123 on Wed, 7 May 2014 10:17:47 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


208 J. M. BORWEIN, P. B. BORWEIN, AND D. H. BAILEY [March 

precisely the discrete convolution C(x, y): 
N-1 

Zk = Ck(X, y) = E XjYk-j 
j=O 

where the subscript k - j is to be interpreted as k - j + N if k - j is negative. 
Now a well-known result of Fourier analysis may be applied. Let F(x) denote 

the discrete Fourier transform of the sequence x, and let F- (x) denote the inverse 
discrete Fourier transform of x: 

N-1 
Fk (X) : x1e2ITiJk/N 

j=O 

1 N-1 
F71 (x) xe 

Nj=0 

Then the "convolution theorem," whose proof is a straightforward exercise, states 
that 

F[C(x, y)] = F(x)F(y) 

or, expressed another way, 

C(x, y) = F-1[F(x)F(y)]. 

Thus the entire multiplication pyramid z can be obtained by performing two 
forward discrete Fourier transforms, one vector complex multiplication and one 
inverse transform, each of length N = 2n. Once the real parts of the resulting 
complex numbers have been rounded to the nearest integer, the final multiprecision 
product may be obtained by merely releasing the carries modulo b. This may be 
done by starting at the end of the z vector and working backward, as in elementary 
school arithmetic, or by applying other schemes suitable for vector processing on 
more sophisticated computers. 

A straightforward implementation of the above procedure would not result in 
any computational savings-in fact, it would be several times more costly than the 
usual "schoolboy" scheme. The reason this scheme is used is that the discrete 
Fourier transform may be computed much more rapidly using some variation of the 
well-known "fast Fourier transform" (FFT) algorithm [13]. In particular, if N = 2', 
then the discrete Fourier transform may be evaluated in only 5m2m arithmetic 
operations using an FFT. Direct application of the definition of the discrete Fourier 
transform would require 22m+3 floating-point arithmetic operations, even if it is 
assumed that all powers of e-2,i/N have been precalculated. 

This is the basic scheme for high-speed multiprecision multiplication. Many 
details of efficient implementations have been omitted. For example, it is possible to 
take advantage of the fact that the input sequences x and y and the output 
sequence z are all purely real numbers, and thereby sharply reduce the operation 
count. Also, it is possible to dispense with complex numbers altogether in favor of 
performing computations in fields of integers modulo large prime numbers. Inter- 
ested readers are referred to [2], [8], [13], and [22]. 

When the costs of all the constituent operations, using the best known tech- 
niques, are totalled both Algorithms 1 and 2 compute n digits of IT with bit 
complexity O( M(n )log n), and use O(log n) full precision operations. 
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The bit complexity for Sum 1, or for v using any of the arctan expansions, is 
between 0((log n)2M(n)) and 0(nM(n)) depending on implementation. In each 
case, one is required to sum 0(n) terms of the appropriate series. Done naively, one 
obtains the latter bound. If the calculation is carefully orchestrated so that the terms 
are grouped to grow evenly in size (as rational numbers) then one can achieve the 
former bound, but with no corresponding reduction in the number of operations. 

The Archimedean iteration of section 2 converges like 1/4" so in excess of n 
iterations are needed for n-digit accuracy, and the bit complexity is 0(nM(n)). 

Almost any familiar transcendental number such as e, y, '(3), or Catalan's 
constant (presuming the last three to be nonalgebraic) can be computed with bit 
complexity O((log n)M(n)) or O((log n)2M(n)). None of these numbers is known 
to be computable essentially any faster than this. In light of the previous observa- 
tion that algebraic numbers are all computable with bit complexity O(M(n)), a 
proof that X cannot be computed with this speed would imply the transcendence of 
ST. It would, in fact, imply more, as there are transcendental numbers which have 
complexity O(M(n)). An example is 0.10100100001.... 

It is also reasonable to speculate that computing the nth digit of ST is not very 
much easier than computing all the first n digits. We think it very probable that 
computing the nth digit of ST cannot be 0(n). 

5. The Miracle of Theta Functions 

When I was a student, abelian functions were, as an effect of the Jacobian 
tradition, considered the uncontested summit of mathematics, and each of us was 
ambitious to make progress in this field. And now? The younger generation 
hardly knows abelian functions. 

Felix Klein [21] 

Felix Klein's lament from a hundred years ago has an uncomfortable timelessness 
to it. Sadly, it is now possible never to see what Bochner referred to as " the miracle 
of the theta functions" in an entire university mathematics program. A small piece 
of this miracle is required here [6], [11], [28]. First some standard notations. The 
complete elliptic integrals of the first and second kind, respectively, 

K(k) = 
k d 

2 knt (5.1) 
"0 l -k k2sin2t 

and 

E(k) f 1 -k2sin2t dt. (5.2) 

The second integral arises in the rectification of the ellipse, hence the name elliptic 
integrals. The complementary modulus is 

k' = 1-k2 
and the complementary integrals K' and E' are defined by 

K'(k) = K(k') and E'(k) = E(k'). 

The first remarkable identity is Legendre's relation namely 
E7( 

E(k)K'(k) + E'(k)K(k) - K(k)K'(k) = - (5.3) 2 
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(for 0 < k < 1), which is pivotal in relating these quantities to pi. We also need to 
define two Jacobian theta functions 

00 

(2 (q) = E q(n+1/2)2 (5.4) 
n = -oo 

and 
00 

e3 ( q) q (5.5) 
n =- oo 

These are in fact specializations with (t = 0) of the general theta functions. More 
generally 

00 

(3 (t5 q) = E qn 2eim t (im t > O) 
n =-oo 

with similar extensions of e2. In Jacobi's approach these general theta functions 
provide the basic building blocks for elliptic functions, as functions of t (see [11], 
[39]). 

The complete elliptic integrals and the special theta functions are related as 
follows. For IqI < 1 

K(k) -(2(q) (5.6) 
23 

and 

E(k) = (k )2[K(k) + k ? jk (5.7) 

where 

k k(q) = 2( )= k'(q) = 3(q) (5.8) 

and 

q = e-irK'(k)/K(k). (5.9) 

The modular function X is defined by 

X(t) X= (q) = k2(q) r [2(q) (5.10) 

where 
iqrt q := e 

We wish to make a few comments about modular functions in general before 
restricting our attention to the particular modular function X. Modular functions are 
functions which are meromorphic in H, the upper half of the complex plane, and 
which are invariant under a group of linear fractional transformations, G, in the 
sense that 

f (g(z)) =f (z) Vg e G. 
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[Additional growth conditions on f at certain points of the associated fundamental 
region (see below) are also demanded.] We restrict G to be a subgroup of the 
modular group F where F is the set of all transformations w of the form 

at + b 
w(t) =ct + d 

with a, b, c, d integers and ad - bc = 1. Observe that F is a group under composi- 
tion. A fundamental region FG is a set in H with the property that any element in H 
is uniquely the image of some element in FG under the action of G. Thus the 
behaviour of a modular function is uniquely determined by its behaviour on a 
fundamental region. 

Modular functions are, in a sense, an extension of elliptic (or doubly periodic) 
functions-functions such as sn which are invariant under linear transformations 
and which arise naturally in the inversion of elliptic integrals. 

The definitions we have given above are not complete. We will be more precise in 
our discussion of X. One might bear in mind that much of the theory for X holds in 
considerably greater generality. 

The fundamental region F we associate with X is the set of complex numbers 

F:= {im t ? 0} n [{Iretl < 1 and 

12t + 11 > 1} U {ret =-1} U {12t + 11 = 1}]. 

The X-group (or theta-subgroup) is the set of linear fractional transformations w 
satisfying 

at + b 
ct+ d 

where a, b, c, d are integers and ad - bc = 1, while in addition a and d are odd 
and b and c are even. Thus the corresponding matrices are unimodular. What 
makes X a X-modular function is the fact that X is meromorphic in {im t > 0) and 
that 

X(w(t)) X= (t) 

for all w in the X-group, plus the fact that X tends to a definite limit (possibly 
infinite) as t tends to a vertex of the fundamental region (one of the three points 
(0, -1), (0,0 ), (i, oo)). Here we only allow convergence from within the fundamental 
region. 

Now some of the miracle of modular functions can be described. Largely because 
every point in the upper half plane is the image of a point in F under an element of 
the X-group, one can deduce that any X-modular function that is bounded on F is 
constant. Slightly further into the theory, but relying on the above, is the result that 
any two modular functions are algebraically related, and resting on this, but further 
again into the field, is the following remarkable result. Recall that q is given by 
(5.9). 

THEOREM 1. Let z be a primitive pth root of unity for p an odd prime. Consider the 
pth order modular equation for X as defined by 

WpJ (x, X) = (x - Xo)(x - X1) .. (x - Xp), (5.11) 
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where 

Xi:= X(ziq1/P) < p 

and 

Ap = X(qP). 

Then the function Wp is a polynomial in x and X (independent of q), which has integer 
coefficients and is of degree p + 1 in both x and X. 

The modular equation for X usually has a simpler form in the associated 
variables u = x1/8 and v -= X/8. In this form the 5th-order modular equation is 
given by 

Q5(u, v) = u6 -V6 + 5u2v2(u2 - v2) + 4uv(1- U4V4). (5.12) 

In particular 

E2(qP) 2 62(q) 
_ = v2 and u 

E)3(qP) (3(q) 

are related by an algebraic equation of degree p + 1. 
The miracle is not over. The pth-order multiplier (for A) is defined by 

MP(k(q), k(qP)) K(=(q ) (5.13) K(k( q)) [o03(q) 

and turns out to be a rational function of k(qP) and k(q). 
One is now in possession of a pth-order algorithm for K/n7, namely: Let 

ki:= k(qP'). Then 

2K(k0) - Mp;1(kO, k1)Mp7'(k1, k2)Mp;1(k2, k3) 

This is an entirely algebraic algorithm. One needs to know the pth-order modular 
equation for X to compute ki+1 from ki and one needs to know the rational 
multiplier Mp. The speed of convergence (O(cP'), for some c < 1) is easily deduced 
from (5.13) and (5.9). 

The function X(t) is 1-1 on F and has a well-defined inverse, XA1, with branch 
points only at 0, 1 and x. This can be used to provide a one line proof of the " big" 
Picard theorem that a nonconstant entire function misses at most one value (as does 
exp). Indeed, suppose g is an entire function and that it is never zero or one; then 
exp(X-1(g(z))) is a bounded entire function and is hence constant. 

Littlewood suggested that, at the right point in history, the above would have 
been a strong candidate for a 'one line doctoral thesis'. 

6. Ramanujan's Solvable Modular Equations. Hardy [19] commenting on 
Ramanujan's work on elliptic and modular functions says 

It is here that both the profundity and limitations of Ramanujan 's knowledge 
stand out most sharply. 

We present only one of Ramanujan's modular equations. 
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THEOREM 2. 

583 ( q) = 1 + r4"5 + r2/5, (6.1) 
)3 (q) 

where for i = 1 and 2 

ri = x(y y2 4x3) 

with 

583(q 5) _1( ) 
X := and y := (x - 1)2 + 7. 

This is a slightly rewritten form of entry 12(iii) of Chapter 19 of Ramanujan's 
Second Notebook (see [7], where Berndt's proofs may be studied). One can think of 
Ramanujan's quintic modular equation as an equation in the multiplier Mp of 
(5.13). The initial surprise is that it is solvable. The quintic modular relation for A, 
W5, and the related equation for A18, 25, are both nonsolvable. The Galois group of 
the sixth-degree equation Q (see (5.12)) over Q(v) is As and is nonsolvable. Indeed 
both Hermite and Kronecker showed, in the middle of the last century, that the 
solution of a general quintic may be effected in terms of the solution of the 
5th-order modular equation (5.12) and the roots may thus be given in terms of 
the theta functions. 

In fact, in general, the Galois group for Wp of (5.11) has order p( p + 1)( p - 1) 
and is never solvable for p > 5. The group is quite easy to compute, it is generated 
by two permutations. If 

q := eizt then - T + 2 and T (2+ 1) 

are both elements of the A-group and induce permutations on the Ai of Theorem 1. 
For any fixed p, one can use the q-expansion of (5.10) to compute the effect of 
these transformations on the Ai, and can thus easily write down the Galois group. 

While Wp is not solvable over Q(A), it is solvable over Q(A, A0). Note that A0 is 
a root of Wp. It is of degree p + 1 because Wp is irreducible. Thus the Galois group 
for Wp over Q(A, A0) has order p(p - 1). For p = 5, 7, and 11 this gives groups of 
order 20, 42, and 110, respectively, which are obviously solvable and, in fact, for 
general primes, the construction always produces a solvable group. 

From (5.8) and (5.10) one sees that Ramanujan's modular equation can be 
rewritten to give A5 solvable in terms of A0 and A. Thus, we can hope to find an 
explicit solvable relation for Ap in terms of A and A0. For p = 3, Wp is of degree 4 
and is, of course, solvable. For p = 7, Ramanujan again helps us out, by providing a 
solvable seventh-order modular identity for the closely related eta function defined 
by 

00 

(q) := qq2 11 (1 - q 2) 
n=1 

The first interesting prime for which an explicit solvable form is not known is the 
"endecadic" (p = 11) case. We consider only prime values because for nonprime 
values the modular equation factors. 
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This leads to the interesting problem of mechanically constructing these equa- 
tions. In principle, and to some extent in practice, this is a purely computational 
problem. Modular equations can be computed fairly easily from (5.11) and even 
more easily in the associated variables u and v. Because one knows a priori bounds 
on the size of the (integer) coefficients of the equations one can perform these 
calculations exactly. The coefficients of the equation, in the variables u and v, grow 
at most like 2n. (See [11].) Computing the solvable forms and the associated 
computational problems are a little more intricate-though still in principle entirely 
mechanical. A word of caution however: in the variables u and v the endecadic 
modular equation has largest coefficient 165, a three digit integer. The endecadic 
modular equation for the intimately related function J (Klein's absolute invariant) 
has coefficients as large as 

27090964785531389931563200281035226311929052227303 x 29231952011253. 
It is, therefore, one thing to solve these equations, it is entirely another matter to 
present them with the economy of Ramanujan. 

The paucity of Ramanujan's background in complex analysis and group theory 
leaves open to speculation Ramanujan's methods. The proofs given by Berndt are 
difficult. In the seventh-order case, Berndt was aided by MACSYMA-a sophisti- 
cated algebraic manipulation package. Berndt comments after giving the proof of 
various seventh-order modular identities: 

Of course, the proof that we have given is quite unsatisfactory because it is a 
verification that could not have been achieved without knowledge of the result. 
Ramanujan obviously possessed a more natural, transparent, and ingenious 
proof. 

7. Modular Equations and Pi. We wish to connect the modular equations of 
Theorem 1 to pi. This we contrive via the function alpha defined by: 

E'(k) _____ 

where 
k k (q) and q -= e-. 

This allows one to rewrite Legendre's equation (5.3) in a one,sided form without the 
conjugate variable as 

- = K [E- (v - a(r)) K] (7.2) 

We have suppressed, and will continue to suppress, the k variable. With (5.6) and 
(5.7) at hand we can write a q-expansion for a, namely, 

00 

1 E n (-q) n= -oo 

IT E ( q) n 

n= -oo (7q 
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and we can see that as r tends to infinity q = e-'IW tends to zero and a(r) tends to 
1/7. In fact 

a(r) 1 ( 1) - e (7.4) 

The key now is iteratively to calculate a. This is the content of the next theorem. 

THEOREM 3. Let ko = k(q), k= k(qP) and Mp = Mp(ko, kl) as in (5.13). 
Then 

ar 
- k42 

= M2 kpk, 
a(p) =r) ) 

r __--_1 
2 Pkpk1~ 

where represents the full derivative of Mp with respect to ko. In particular, a is 
algebraic for rational arguments. 

We know that K(k1) is related via MP to K(k) and we know that E(k) is 
related via differentiation to K. (See (5.7) and (5.13).) Note that q -* qP corre- 
sponds to r - p2r. Thus from (7.2) some relation like that of the above theorem 
must exist. The actual derivation requires some careful algebraic manipulation. (See 
[11], where it has also been made entirely explicit for p = 2, 3, 4, 5, and 7, and 
where numerous algebraic values are determined for a(r).) In the case p := 5 we 
can specialize with some considerable knowledge of quintic modular equations to 
get: 

THEOREM 4. Let s*= 1/M5(ko, k1). Then 

a(25r) = s2a(r) - [(s2 5+ ?s(s2 - 2s + 5)] 

This couples with Ramanujan's quintic modular equation to provide a derivation of 
Algorithm 2. 

Algorithm 1 results from specializing Theorem 3 with p = 4 and coupling it with 
a quartic modular equation. The quartic equation in question is just two steps of the 
corresponding quadratic equation which is Legendre's form of the arithmetic 
geometric mean iteration, namely: 

21i 
k1?k 1 l +k 

An algebraic pth-order algorithm for 'r is derived from coupling Theorem 3 with 
a pth-order modular equation. The substantial details which are skirted here are 
available in [11]. 

8. Ramanujan's sum. This amazing sum, 
1 V 00 (4n)! [1103 + 26390n1 
IT 9801 n_o (n!)4 3964" 

is a specialization (N = 58) of the following result, which gives reciprocal series for 
'r in terms of our function alpha and related modular quantities. 
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THEOREM 5. 

4 n (4n2)n(4)n 2n+1(8 
(n!)3 XN (8.1) 

where, 

4kN (k) -' 
2 12 + g-12 

-1 

N (1 + k2 )2 2 

with 

a(N)x-j 1N 12 -12N 
= 1?kN 12 4 29 

I gN] +kn ( 12 -2 

and 

kN k(e4 )N g?, - (k' )2/(2kN). 

Here (c)" is the rising factorial: (C) := c(c + 1)(c + 2) ... (c + n-1). 

Some of the ingredients for the proof of Theorem 5, which are detailed in [11], 
are the following. Our first step is to write (7.2) as a sum after replacing the E by K 
and dK/dk using (5.7). One then uses an identity of Clausen's which allows one to 
write the square of a hypergeometric function 2F1 in terms of a generalized 
hypergeometric 3F2, namely, for all k one has 

(1 + k2)[ 1 =3F2( - - -11: (g12 ?g12)) 

/1\ )(3\(1 ( 2 2n 
- 0 4 4 n~J~j 2 ng12 +g-12) 

n=O (ln (1)n n! 

Here g is related to k by 

4k(k')2 [g12 + g-12 -1 

(1 + k2)2 2 j 

as required in Theorem 5. We have actually done more than just use Clausen's 
identity, we have also transformed it once using a standard hypergeometric substitu- 
tion due to Kummer. Incidentally, Clausen was a nineteenth-century mathematician 
who, among other things, computed 250 digits of iT in 1847 using Machin's formula. 
The desired formula (8.1) is obtained on combining these pieces. 

Even with Theorem 5, our work is not complete. We still have to compute 

k5s = k(e-X5) and a58 = a(58). 

In fact 

2 (V2?9 + 5) 
58s 2 
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is a well-known invariant related to the fundamental solution to Pell's equation for 
29 and it turns out that 

a58 = 2 ) (99v2i9 - 444)(99F2 - 70 - 13v2_). 

One can, in principle, and for N = 58, probably in practice, solve for kN by directly 
solving the Nth-order equation 

WN(kN, 1 - kN) = 0. 

For N = 58, given that Ramanujan [26] and Weber [38] have calculated g58 for us, 
verification by this method is somewhat easier though it still requires a tractable 
form of W58. Actually, more sophisticated number-theoretic technliques exist for 
computing kN (these numbers are called singular moduli). A description of such 
techniques, including a reconstruction of how Ramanujan might have computed the 
various singular moduli he presents in [26]; is presented by Watson in a long series 
of papers commencing with [36]; and some more recent derivations are given in [11] 
and [30]. An inspection of Theorem 5 shows that all the constants in Series 1 are 
determined from g58. Knowing a is equivalent to determining that the number 1103 
is correct. 

It is less clear how one explicitly calculates a58 in algebraic form, except by brute 
force, and a considerable amount of brute force is required; but a numerical 
calculation to any reasonable accuracy is easily obtained from (7.3) and 1103 
appears! The reader is encouraged to try this to, say, 16 digits. This presumably is 
what Ramanujan observed. Ironically, when Gosper computed 17 million digits of S 
using Sum 1, he had no mathematical proof that Sum 1 actually converged to 1/n. 
He compared ten million digits of the calculation to a previous calculation of 
Kanada et al. This verification that Sum 1 is correct to ten million places also 
provided the first complete proof that a58 is as advertised above. A nice touch-that 
the calculation of the sum should prove itself as it goes. 

Roughly this works as follows. One knows enough about the exact algebraic 
nature of the components of dn(N) and XN to know that if the purported sum (of 
positive terms) were incorrect, that before one reached 3 million digits, this sum 
must have ceased to agree with 1/n. Notice that the components of Sum 1 are 
related to the solution of an equation of degree 58, but virtually no irrationality 
remains in the final packaging. Once again, there are very good number-theoretic 
reasons, presumably unknown to Ramanujan, why this must be so (58 is at least a 
good candidate number for such a reduction). Ramanujan's insight into this 
marvellous simplification remains obscure. 

Ramanujan [26] gives 14 other series for 1/n, some others almost as spectacular 
as Sum 1-and one can indeed derive some even more spectacular related series.* 
He gives almost no explanation as to their genesis, saying only that there are 
"corresponding theories" to the standard theory (as sketched in section 5) from 
which they follow. Hardy, quoting Mordell, observed that "it is unfortunate that 
Ramanujan has not developed the corresponding theories." By methods analogous 

*(Added in proof) Many related series due to Borwein and Borwein and to Chudnovsky and 
Chudnovsky appear in papers in Ramanujan Revisited, Academic Press, 1988. 
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to those used above, all his series can be derived from the classical theory [11]. 
Again it is unclear what passage Ramanujan took to them, but it must in some part 
have diverged from ours. 

We conclude by writing down another extraordinary series of Ramanujan's, 
which also derives from the same general body of theory, 

1 0T013n42n?+5 
X= nO n 212n+4 

This series is composed of fractions whose numerators grow like 26n and whose 
denominators are exactly 16- 212n. In particular this can be used to calculate the 
second block of n binary digits of 7r without calculating the first n binary digits. 
This beautiful observation, due to Holloway, results, disappointingly, in no intrinsic 
reduction in complexity. 

9. Sources. References [7], [11], [19], [26], [36], and [37] relate directly to Ra- 
manujan's work. References [2], [8], [9], [10], [12], [22], [24], [27], [29], and [31] 
discuss the computational concerns of the paper. 

Material on modular functions and special functions may be pursued in [1], [6], 
[9], [14], [15], [18], [20], [28], [34], [38], and [39]. Some of the number-theoretic 
concerns are touched on in [3], [6], [9], [11], [16], [23], and [35]. 

Finally, details of all derivations are given in [11]. 

REFERENCES 

1. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1964. 
2. D. H. Bailey, The Computation of ST to 29,360,000 decimal digits using Borweins' quartically 

convergent algorithm, Math. Comput., 50 (1988) 283-96. 
3. __ , Numerical results on the transcendence of constants involving 7T, e, and Euler's constant, 

Math. Comput., 50 (1988) 275-81. 
4. A. Baker, Transcendental Number Theory, Cambridge Univ. Press, London, 1975. 
5. P. Beckmann, A History of Pi, 4th ed., Golem Press, Boulder, CO, 1977. 
6. R. Bellman, A Brief Introduction to Theta Functions, Holt, Reinhart and Winston, New York, 

1961. 
7. B. C. Berndt, Modular Equations of Degrees 3, 5, and 7 and Associated Theta Functions Identities, 

chapter 19 of Ramanujan's Second Notebook, Springer-to be published. 
8. A. Borodin and I. Munro, The Computational Complexity of Algebraic and Numeric Problems, 

American Elsevier, New York, 1975. 
9. J. M. Borwein and P. B. Borwein, The arithmetic-geometric mean and fast computation of 

elementary functions, SIAM Rev., 26 (1984), 351-365. 
10. , An explicit cubic iteration for pi, BIT, 26 (1986) 123-126. 
11. , Pi and the AGM-A Study in Analytic Number Theory and Computational Complexity, 

Wiley, N.Y., 1987. 
12. R. P. Brent, Fast multiple-precision evaluation of elementary functions, J. ACM, 23 (1976) 

242-251. 
13. E. 0. Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, N.J., 1974. 
14. A. Cayley, An Elementary Treatise on Elliptic Functions, Bell and Sons, 1885; reprint Dover, 1961. 
15. A. Cayley, A memoir on the transformation of elliptic functions, Phil. Trans. T., 164 (1874) 

397-456. 
16. D. V. Chudnovsky and G. V. Chudnovsky, Pade and Rational Approximation to Systems of 

Functions and Their Arithmetic Applications, Lecture Notes in Mathematics 1052, Springer, Berlin, 
1984. 

17. H. R. P. Ferguson and R. W. Forcade, Generalization of the Euclidean algorithm for real numbers 
to all dimensions higher than two, Bull. AMS, 1 (1979) 912-914. 

18. C. F. Gauss, Werke, Gottingen 1866-1933, Bd 3, pp. 361-403. 

This content downloaded from 142.167.15.123 on Wed, 7 May 2014 10:17:47 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1989] RAMANUJAN, MODULAR EQUATIONS, AND APPROXIMATIONS TO PI 219 

19. G. H. Hardy, Ramanujan, Cambridge Univ. Press, London, 1940. 
20. L. V. King, On The Direct Numerical Calculation of Elliptic Functions and Integrals, Cambridge 

Univ. Press, 1924. 
21. F. Klein, Development of Mathematics in the 19th Century, 1928, Trans Math Sci. Press, R. 

Hermann ed., Brookline, MA, 1979. 
22. D. Knuth, The Art of Computer Programming, vol. 2: Seminumerical Algorithms, Addison-Wesley, 

Reading, MA, 1981. 
23. F. Lindemann, Uber die Zahl ir, Math. Ann., 20 (1882) 213-225. 
24. G. Miel, On calculations past and present: the Archimedean algorithm, Amer. Math. Monthly, 90 

(1983) 17-35. 
25. D. J. Newman, Rational Approximation Versus Fast Computer Methods, in Lectures on Approxi- 

mation and Value Distribution, Presses de l'Universite de Montreal, 1982, pp. 149-174. 
26. S. Ramanujan, Modular equations and approximations to i7, Quart. J. Math, 45 (1914) 350-72. 
27. E. Salamin, Computation of ir using arithmetic-geometric mean, Math. Comput., 30 (1976) 

565-570. 
28. B. Schoenberg, Elliptic Modular Functions, Springer, Berlin, 1976. 
29. A. Schonhage and V. Strassen, Schnelle Multiplikation Grosser Zahlen, Computing, 7 (1971) 

281-292. 
30. D. Shanks, Dihedral quartic approximations and series for i7, J. Number Theory, 14 (1982) 

397-423. 
31. D. Shanks and J. W. Wrench, Calculation of ir to 100,000 decimals, Math Comput., 16 (1962) 

76-79. 
32. W. Shanks, Contributions to Mathematics Comprising Chiefly of the Rectification of the Circle to 

607 Places of Decimals, G. Bell, London, 1853. 
33. Y. Tamura and Y. Kanada, Calculation of ir to 4,196,393 decimals based on Gauss-Legendre 

algorithm, preprint (1983). 
34. J. Tannery and J. Molk, Fonctions Elliptiques, vols. 1 and 2, 1893; reprint Chelsea, New York, 

1972. 
35. S. Wagon, Is ir normal?, The Math Intelligencer, 7 (1985) 65-67. 
36. G. N. Watson, Some singular moduli (1), Quart. J. Math., 3 (1932) 81-98. 
37. _ _, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 

(1936) 55-80. 
38. H. Weber, Lehrbuch der Algebra, Vol. 3, 1908; reprint Chelsea, New York, 1980. 
39. E. T. Whittaker and G. N. Watson, A Course of Modem Analysis, 4th ed, Cambridge Univ. Press, 

London, 1927. 

This content downloaded from 142.167.15.123 on Wed, 7 May 2014 10:17:47 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 201
	p. 202
	p. 203
	p. 204
	p. 205
	p. 206
	p. 207
	p. 208
	p. 209
	p. 210
	p. 211
	p. 212
	p. 213
	p. 214
	p. 215
	p. 216
	p. 217
	p. 218
	p. 219

	Issue Table of Contents
	The American Mathematical Monthly, Vol. 96, No. 3 (Mar., 1989), pp. 201-282
	Front Matter [pp. ]
	Ramanujan, Modular Equations, and Approximations to Pi or How to Compute One Billion Digits of Pi [pp. 201-219]
	Equations in Division Rings--A Survey [pp. 220-232]
	Letters to the Editor [pp. 232]
	Unsolved Problems
	The Missing Boundary of the Blaschke Diagram [pp. 233-237]

	Notes
	A Geometrically Inspired Proof of the Singular Value Decomposition [pp. 238-239]
	Sum Zero (mod n), Size n Subsets of Integers [pp. 240-242]
	On Open Maps [pp. 242-243]
	On a Conjecture of R. J. Simpson About Exact Covering Congruences [pp. 243]

	The Teaching of Mathematics
	A Note on Taylor's Theorem [pp. 244-247]
	Material Implication Revisited [pp. 247-250]
	A Pictorial Proof of Uniform Continuity [pp. 250-251]
	On the Differentiation Formula for <tex-math>$\sin\theta$</tex-math> [pp. 252]

	Problems and Solutions
	Elementary Problems: E3313-E3318 [pp. 253-254]
	Solutions of Elementary Problems
	E3023 [pp. 254-258]
	E3162 [pp. 258-259]
	E3189 [pp. 259-260]
	E3194 [pp. 260]
	E3205 [pp. 261]
	E3209 [pp. 261-262]
	E3226 [pp. 262-263]
	E3230 [pp. 263-264]

	Advanced Problems: 6595-6597 [pp. 264-265]
	Solutions of Advanced Problems
	6544 [pp. 265-266]
	6545 [pp. 266-268]


	Reviews
	Review: untitled [pp. 269-272]
	Review: untitled [pp. 273-274]

	Telegraphic Reviews [pp. 275-282]
	Back Matter [pp. ]



