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Abstract

The human food chain begins with upwards of 1,000 species of bacteria
that inhabit the intestinal tracts of poultry and livestock. These intestinal
denizens are responsible for the health and safety of a major protein source
for humans. The use of antibiotics to treat animal diseases was followed by the
surprising discovery that antibiotics enhanced food animal growth, and both
led to six decades of antibiotic use that has shaped food animal management
practices. Perhaps the greatest impact of antibiotic feeding in food animals
has been as a selective force in the evolution of their intestinal bacteria,
particularly by increasing the prevalence and diversity of antibiotic resistance
genes. Future antibiotic use will likely be limited to prudent applications
in both human and veterinary medicine. Improved knowledge of antibiotic
effects, particularly of growth-promoting antibiotics, will help overcome the
challenges of managing animal health and food safety.
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THE ANIMAL INTESTINAL MICROBIOME

Animals are vehicles for the single-celled organisms that inhabit their bodies. Animals, including
humans, have over 1014 cells, of which only about 10% are animal cells. The vast majority are
microbial cells residing primarily within the gastrointestinal (GI) tract (132). These microbial
cells encompass all domains of life: Bacteria, Archaea, and Eukaryota (anaerobic fungi, yeast,
and protozoa). A healthy intestinal microbial community is in a dynamic equilibrium with itself,
with the host, and with abiotic components of the environment. The abiotic components are
the physical and chemical ingredients of their microhabitats—dietary substances, bacterial viruses
(phages), host and microbial cell products, osmolality differences, variable viscosity, low oxygen
concentrations and redox potentials, and pH (5.5 to 6.9). The bacteria are the dominant microbial
population in the gut and will be the focus of this review.

Gut commensal bacteria are the coevolved partners of their animal hosts and harbor competitive
fitness (niche) adaptation traits to benefit their own survival. They share general characteristics
that allow them to succeed in the complex gut environment. These traits are considered useful
for identifying and studying microbes most likely to be key contributors to GI microecology.
Indigenous microbes in the GI tract (as summarized by Savage, 132)

1. can grow anaerobically,
2. are always found in normal adults,
3. colonize particular areas of the tract,
4. colonize their microhabitats during succession in infant animals,
5. maintain stable population levels in climax communities in normal adults, and
6. may associate intimately with the mucosal epithelium in the area colonized.

Bacteria indigenous to avian and mammalian GI tracts contribute to the health and well-being
of the host animal (60, 64, 85, 98, 154). The relationship is, on balance, a mutualism (win-win, for
both partners), and host health is affected when that microbiota is either perturbed or eliminated.
Investigations comparing germfree or ex-germfree with conventional animals, antibiotic-treated
with untreated animals, and developing neonates with mature adults have revealed the importance
of the intestinal microbiota to the host’s physiology, metabolism, nutrition, immunology, and
ability to resist pathogens (34, 61, 106, 133, 147) (see sidebar, Contributions of the Gastrointestinal
Microbiota to Host Health).
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CONTRIBUTIONS OF THE GASTROINTESTINAL MICROBIOTA TO HOST
HEALTH

1. Directly affect intestinal health, functions, and products: microbiota-associated
characteristics,1 cross feed butyrate (72, 82, 90, 145), degrade mucin (33, 89), affect intestinal
gene expression (26), influence intestinal morphology (134)

2. Facilitate maturation and functioning of innate and adaptive immune system (2, 49, 110,
148, 150)

3. Affect host physiology and nutrition: generate short-chain fatty acids used by host (63),
metabolize bile acids (steroids) (14), supply microbial proteins for ruminants (29)

4. Biotransform diet components: metabolize plant polysaccharides (45); remove toxic dietary
compounds, such as oxalate (37) and mimosine (57)

5. Provide first line of defense against microbial pathogens: colonization resistance (112, 121,
143, 150)

6. Affect distal host tissues: pulmonary, central nervous system (perhaps behavior) through
chemical and immunological signaling (30, 54, 150)

Intestinal microbial habitats are diversified vertically (longitudinal axis, mouth to anus) and
horizontally (radial axis, lumen to mucosal epithelium) (52, 53, 87, 125, 132, 162, 164). The
differences in host physiology of these compartments yield distinct bacterial communities.
Firmicutes, Bacteroidetes, and Proteobacteria constitute much of the bacterial community of animal
ceca, large intestines, and feces (5, 31, 36, 39, 65, 73, 80, 84, 88, 162), whereas the Firmicutes
dominate the small intestines (ilea) of swine and chickens (36, 87, 125, 162, 164). The host
animal initiates mechanical and chemical digestion in the proximal GI tract, absorbing nutrients
from food (and microbial products in ruminants) in the small intestine. The microbiota of the
large intestine breaks down complex molecules such as plant cell walls to release and ferment
small molecules. Hindgut-fermenting animals, including pigs, derive as much as 10–30% of their
maintenance energy requirement from microbial production of short-chain fermentation acids
in the cecum and proximal colon (63). Based on the human large intestine microbiota, members
of the phylum Bacteroidetes predominantly encode the machinery to break down the complex,
fibrous molecules (94). Although fecal samples are practical for describing intestinal bacterial
activities, it should be kept in mind that feces are a derived composite of upstream intestinal
compartments, with a bias toward the heavily populated lower GI compartments. Additionally
important, yet more challenging, to study are the microhabitats on or near mucosal epithelial
surfaces that foster the most intimate interactions between microbes and host cells.

ANTIMICROBIALS IN UNITED STATES ANIMAL AGRICULTURE

An important tool for maintaining health and improving productivity of farm animals has been in-
feed antibiotics. In the United States, the Food and Drug Administration establishes guidelines for

1Microbiota-associated characteristics (MACs) are differences in intestinal biochemical properties between conventional
animals and animals with modified or not-yet-developed microbiotas (27, 28, 61, 100). They include short-chain fatty acid
production, mucin breakdown, cholesterol-to-coprostanol conversion, dehydroxylation of bile acids, and degradation of
glycosphingolipids. MACs can be useful barometers of intestinal microbiota activities.
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REGULATING AGRICULTURAL ANTIBIOTICS IN THE UNITED STATES

Legislated efforts and voluntary recommendations to restrict or ban antimicrobial growth promoters from agri-
culture have centered on concerns that the widespread use of growth promoting antimicrobials created animal
reservoirs of antibiotic resistance that could spread to humans. Indeed, the World Health Organization has defined
antibiotics of high medical importance, and protecting the efficacy of these is of particular interest (160). The US
FDA Center for Veterinary Medicine recently reviewed key reports and scientific literature describing the impacts
of antibiotic use on antibiotic-resistant intestinal bacteria and on the exchange of antibiotic resistant bacteria among
humans and farm animals. The analysis led to recommendations for the judicious use of medically important an-
timicrobial drugs in food-producing animals (44). Judicious or prudent use will require veterinarian oversight for
prophylactic and therapeutic treatments. Administering medically important antimicrobials for growth promotion
constitutes an injudicious use and is not recommended. Non-medically important antimicrobials outside of the
FDA’s guidance, such as quinoxaline antibiotics (carbadox) and perhaps certain ionophores (salinomycin) would
presumably remain categorized as judicious for growth-enhancing uses. The FDA document currently contains
recommendations and it is unclear whether or when these recommendations will become legal requirements.

the judicious use of antimicrobials in animal management (44; see sidebar Regulating Agricultural
Antibiotics in the United States). Various antimicrobials have been approved as dietary additives
for acute therapy, prophylactic therapy, and performance enhancement (nontherapeutic) purposes
for chickens, turkeys, swine, and beef cattle (Table 1). Acute therapy is treating sick animals with
diagnosed disease for a limited time. For prophylactic therapy, antibiotics are administered to
healthy animals at management stress points to prevent disease development and transmission.
For example, for treatment of shipping fever respiratory disease following transportation stress,
cattle with clinical signs receive injections of antibiotics (acute therapy) whereas neighboring
animals without signs receive diets containing broad-spectrum antibiotics (prophylactic therapy,
350 mg chlortetracycline per animal per day) (11, 55).

The third use of antibiotics in agriculture is for enhancing performance, which is also known as
improving feed efficiency (weight gain/weight of food consumed/specific time period). Animals are
given diets containing antimicrobials at concentrations lower than those used for therapy, resulting
in subtherapeutic doses. Chlortetracycline, for example, is approved at 10–50 g per ton of feed
for growing pigs (44 to 110 lbs), 8- to 40-fold less than doses approved to treat enteric diseases
(11). Unlike therapeutic antibiotic uses, there is generally no time limit for growth-promotion
applications. In practice, however, growth-enhancing benefits of antimicrobials decline in adult
animals, and so they are not often fed antibiotic-containing diets for performance. Importantly,
all antibiotics have withdrawal times before the animals go to market, to eliminate drug residues
in meat products.

HISTORY OF GROWTH-PROMOTING ANTIMICROBIAL
USE IN LIVESTOCK AND POULTRY

Because of the development of large-scale production of antibiotics for controlling human infec-
tions during World War II, antibiotics became sufficiently economical for use in farm animals. In
the mid-to-late 1940s, different research labs examined the effects of antibiotics administered to
food animals (25, 70, 103). One of the first applications of antibiotics in animals was the treatment
of bovine mastitis with penicillin in the mid-1940s (55).

300 Allen · Stanton

Changes may still occur before final publication online and in print

A
nn

u.
 R

ev
. M

ic
ro

bi
ol

. 2
01

4.
68

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 M
em

or
ia

l U
ni

ve
rs

ity
 o

f 
N

ew
fo

un
dl

an
d 

on
 0

8/
01

/1
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



MI68CH16-Stanton ARI 2 June 2014 14:47

Table 1 Antimicrobials historically approved by the U.S. Food and Drug Administration as dietary additives for chickens,
turkeys, cattle, and swine in the United Statesa,b

Antimicrobial Uses/therapiesc

Clopidol, narasin, nicarbazin, robenidine,
salinomycin, semduramicin

Prevent coccidiosis (C)

Decoquinate Prevent coccidiosis (C, BC)
Diclazuril, halifusinone, zoalene Prevent coccidiosis (C, T)
Amprolium Prevent coccidiosis (C, T, BC, DC)
Lasalocid Prevent coccidiosis (C, T, BC), increase rate of weight gain/feed efficiency (BC)
Clopidol Prevent leucocytozoonosis (Leucocytozoon smithii ) (T)
Bacitracin (BMD)
Bacitracin (Zn)

Increase rate of weight gain/feed efficiency (C, T, S)
Increase egg production (C)
Aid to prevent/control enteritis (C,T)
Treat chronic respiratory diseases (air sacculitis) and blue comb (C)
Control swine dysentery, clostridial enteritis (S)
Reduction in feedlot liver abscesses (BC)
Increase rate of weight gain/feed efficiency (C, T, S, BC)

Bambermycin Increase rate of weight gain/feed efficiency (C, T, S, BC)
Carbadox Increase rate of weight gain/feed efficiency (S)

Control swine dysentery (Brachyspira hyodysenteriae), enteritis (salmonellosis) (S)
Chlortetracyclined Increase rate of weight gain/feed efficiency (C, T, S, BC)

Control infectious synovitis (mycoplasma) (C, T)
Control respiratory diseases: air sacculitis (C), shipping fever (BC), Pasteurella
pneumonia (S)

Reduce mortality of Escherichia coli infections (C)
Control hexamitiasis and blue comb (T)
Control of anaplasmosis: Anaplasma marginale infections (BC)
Reduce mortality of Salmonella enterica Typhimurium infections (T)
Decrease incidence of jowl abscesses (Group E Streptococcus), leptospirosis (S)
Treatment and control of bacterial enteropathies: Lawsonia intracellularis (S), E. coli
(BC, S)

Florfenicol Control respiratory diseases (S)
Laidlomycin Increase rate of weight gain/feed efficiency (BC)
Lincomycin Increase rate of weight gain/feed efficiency (C, S)

Treat and control swine dysentery (B. hyodysenteriae) (S), Lawsonia proliferative ileitis
Reduce severity of mycoplasma pneumonia (S)

Monensin Prevent coccidiosis (C, T, BC)
Increase rate of weight gain/feed efficiency (BC)
Increase milk production efficiency (DC)

Neomycin/oxytetracyclinee Increase rate of weight gain/feed efficiency (C, T, S)
Control infectious synovitis, fowl cholera, and chronic respiratory diseases, air
sacculitis (Mycoplasma and E. coli ) (C)

Control hexamitiasis (Hexamita meleagridis) and infectious synovitis (Mycoplasma
synoviae) (T)

Treat bacterial enteritis, bacterial pneumonia
Control colibacillosis (E. coli ) (S, BC)
Control and treat leptospirosis (S)
Increase rate of weight gain/feed efficiency (BC)
Reduce liver abscesses (BC)

(Continued )
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Table 1 (Continued )

Antimicrobial Uses/therapiesc

Penicillin Increase rate of weight gain/feed efficiency (C, T, S)
Roxarsonef Increase rate of weight gain/feed efficiency (C, T)

Treat swine dysentery (B. hyodysenteriae) (S)
Sulfadimethoxine/ormetoprim Prevent coccidiosis (C, T)

Aid to prevent infectious coryza (Haemophilus gallinarum), colibacillosis (E. coli ), fowl
cholera (Pasteurella multocida) (C, T)

Tiamulin Control of swine dysentery (B. hyodysenteriae), proliferative ileitis (L. intracellularis) (S)
Tilmicosin Control of respiratory diseases (S, BC, BD)
Tylosin Increase rate of weight gain/feed efficiency (C, S)

Aid in control of chronic respiratory diseases (C)
Control of swine dysentery (B. hyodysenteriae) and proliferative ileitis
(L. intracellularis) (S)

Reduce liver abscesses (BC)
Tylosin/sulfamethazine Lower incidence and severity of atrophic rhinitis (Bordetella bronchiseptica) (S)

Prevent swine dysentery (B. hyodysenteriae)
Control bacterial pneumonias (P. multocida, Arcanobacterium pyogenes)
Reduce incidence of jowl abscesses (Group E Streptococcus)

Virginiamycin Increase rate of weight gain/feed efficiency (not used in egg layers) (C, T, S, BC)
Prevent necrotic enteritis (Clostridium perfringens) (C)
Control and treatment of swine dysentery (B. hyodysenteriae) (S)
Reduce liver abscesses (BC)

aAbbreviations: BC, beef cattle; BMD, bacitracin methylene disalicylate; C, chickens; DC, dairy cattle; S, swine; T, turkeys.
bAdapted from Feed Additive Compendium 2012 (11). The list is limited to compounds whose spectrum of activity targets microbes; i.e., they have
antibacterial or antiprotozoal (e.g., coccidian) properties.
cApproved use (amounts and duration) of any drug depends on animal species, body weight (growth stage), age, combination with other drugs,
application, and restrictions (withdrawal times before shipping to market).
dNot approved for use in poultry egg production; oxytetracycline is approved for similar but fewer applications than chlortetracycline.
eMost of the antimicrobials in the table are approved for use in combinations of two or three antimicrobials with different activity spectra and for different
applications. For example, tylosin plus sulfamethazine is an approved combination to treat various swine diseases.
f Roxarsone is an organo-arsenic compound with currently suspended use due to detection by the Food and Drug Administration of high levels of
inorganic arsenic in broiler chicken feed.

Antibiotic enhancement of the nutritional value of animal feeds emerged from research to
supplement plant-based diets with microbial products (55, 70). Plant products in feed (soy and corn)
were an important accommodation for the war effort to avoid expensive animal protein additives
(e.g., fish meal). Plant-based diets, however, lacked essential B vitamins and methionine. Jukes and
colleagues (70) at Lederle Laboratories discovered that culture biomass and end products recovered
from large-scale production of chlortetracycline (Aureomycin) by Streptomyces aureofaciens were
as effective as animal liver extracts for enhancing the growth of chicks deficient in vitamin B12.
Following a report that streptomycin or sulfathiazole (Sulfasuxidine) enhanced the growth rate
of chick poults (103), purified aureomycin and penicillin were found to have growth-enhancing
effects on chicks and pigs (70, 91).

The commercial benefits of enhancing animal feed efficiency led to a flood of patent applica-
tions for antibiotics for that purpose. Noteworthy applications include chlortetracycline mash by
American Cyanamid (69); penicillin by Merck (108); oxytetracycline by Pfizer (116); kanamycin
by Bristol (19); spiramycin by Rhone-Poulenc (126); tetracycline, sulfonamide, and penicillin
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combination by American Cyanamid (58); and quinoxaline dioxides (carbadox, Mecadox) by
Pfizer (117). Ionophore antibiotics were found to increase the feed efficiency of foregut animals
(sheep, goats, beef cattle) and led to a patent for monensin, dianemycin, and nigericin by Eli Lilly
and Company (123). A valuable resource for locating agricultural antibiotic patent information
is the Espacenet website (http://worldwide.espacenet.com/advancedSearch?locale=en_EP).

THE ANTIBIOTIC GROWTH EFFECT

Daily feeding of performance-enhancing antibiotics to farm animals was rapidly and broadly
implemented, creating steady economic returns for pharmaceutical companies and savings in feed
costs for animal producers. Despite the benefits, the precise mechanism of growth promotion
has remained elusive. Proposed mechanisms for the antibiotic growth effect (AGE) as mediated
through the intestinal microbiomes of the animals include (a) reduction of growth-depressing
microbial metabolites, (b) reduction of microbes competing for host nutrients, (c) inhibition of
subclinical infections, and (d ) enhanced uptake of nutrients through thinning of the intestinal walls.
Numerous studies of performance-enhancing antibiotic effects on animal intestine functions and
intestinal microbiomes have been performed (35, 48, 135). The first three of the proposed AGE
mechanisms have support from microbiological studies.

Some early studies of the AGE effect included animals afflicted with respiratory and digestive
diseases of unknown etiology (13, 25). Consequently, it is possible that performance antibiotics
suppressed subclinical infections in those studies and may continue to do so today under sub-
optimal management conditions. Subclinical infections are immunologically and metabolically
costly to hatchling or postweaning food animals. Some of the growth-enhancing effects of the
ionophore salinomycin in poultry might be due to suppression of subclinical infections of Clostrid-
ium perfringens in the intestinal tract (41, 67). C. perfringens strains can cause necrotic enteritis in
poultry.

Support for the AGE mechanisms of reduction of growth-depressing microbial metabolites
and reduction of microbes competing for host nutrients comes from in vitro and in vivo studies
of the ionophore class of antibiotics that is used to treat poultry coccidiosis and enhance per-
formance in ruminants. Beef cattle in feedlots are given dietary ionophore antibiotics, such as
monensin, lasalocid, and laidlomycin, to increase feed efficiency by as much as 10%. Ionophores
are inhibitory (but not exclusively) for certain gram-positive species (Firmicutes). They accumu-
late in the cytoplasmic membranes of sensitive bacteria, dissipating ion gradients and uncoupling
ATP hydrolysis from functions essential for cell growth and survival. On a macro level, monensin
and other ionophores affect key bacterial populations involved in rumen metabolism, specifically
increasing energy available to the animal by shifting reducing equivalents from methane and ac-
etate production toward propionate, a gluconeogenic volatile fatty acid. They affect producers of
lactic acid and thus can subdue damaging effects of acidosis. They inhibit amino acid–fermenting
bacteria, which deprive the host animal of an important dietary nitrogen source. The combined
actions of the manipulation of fermentation stoichiometry, lactate suppression, and protein flow
in ruminants through effects on the microbiota provide explanations for the AGE of ionophores
(24, 129, 155).

Another AGE possibility is that antibiotics inhibit microbes that metabolize bile acids. Bile
acids (steroids) are essential for host lipid metabolism (fat absorption) and are chemically modified
by numerous hindgut bacteria (14, 42). Bile acid deconjugation in chicken ileal homogenates was
reduced by performance-enhancing antibiotics (42). More recently bile acids have been found to
be involved in endocrine and metabolic signaling (22). The possible influence on these activities
from bile acid modification by intestinal microbes is yet to be determined.
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Antibiotic growth effects have not been detected in germfree poultry and swine and are de-
tectably greater for animals under poor management conditions (28, 153). AGE is associated
with multiple antibiotic classes (Table 1). Although these observations point more toward di-
rect antibiotic effects on microbial populations, effects on host tissues are worth considering.
Niewold (105) has proposed a nonantibiotic, anti-inflammatory mechanism for AGE, namely that
performance-enhancing antibiotics accumulate in (intestinal) inflammatory cells and directly in-
hibit host-damaging inflammatory responses. Collateral effects on host tissues and organs have
been noted for sulfonamides and erythromycins, and immunomodulatory effects have been re-
ported for macrolides, lincosamides, β-lactams, and tetracyclines (7, 111).

ANTIBIOTIC RESISTANCE IN FOOD-PRODUCING ANIMALS

Arguably, the greatest impact of antibiotic use on the intestinal microbiotas of food animals has
been as a selective force driving the evolution of both antibiotic-resistant bacteria and bacterial
subspecies. Antibiotic resistance, however, did not originate as a product of agricultural antibiotic
use. Antibiotic resistance is an ancient bacterial trait, existing in soil bacteria (the soil resistome)
and carried on plasmids (e.g., serine β-lactamases) millions of years before the dawn of agriculture
(3, 6, 95). Phylogenetic analyses led Aminov & Mackie (8) to conclude there are multiple resistance
lineages for the naturally occurring antibiotics erythromycin, vancomycin, and certain β-lactams
and tetracyclines. Environmental bacteria are the closest progenitor sources of antibiotic resistance
genes now found in veterinary and human clinics and prevalent in food animals (8).

Similar to antibiotic-resistant clinical isolates that rapidly appeared in humans (8), antibiotic-
resistant bacteria quickly appeared in farm animals receiving antibiotics (35, 136). Streptomycin-
resistant coliform bacteria in turkeys fed that antibiotic were reported in 1951 (35). Chickens were
found to carry chlortetracycline-resistant Enterococcus faecalis strains soon after they were fed that
antibiotic (40).

The taxonomic diversity and prevalence of antibiotic-resistant bacteria in and around farm
animals fed antibiotics also increased. H.W. Smith estimated that a majority of Escherichia coli in
British swine herds had become tetracycline-resistant after 18 years of antibiotic feeding (136).
Tetracycline-resistant lactobacilli and enterococci were found in pigs on farms feeding tetracycline
(47). In a retrospective analysis of 1,729 E. coli isolates collected from humans, cattle, chickens, and
pigs between 1962 and 2002, Tadesse and colleagues (146) detected significant increases in resis-
tance to 11 of 15 tested antibiotics, including resistances to ampicillin, tetracycline, kanamycin,
and sulfonamides. Increases in gentamicin, kanamycin, and trimethoprim/sulfamethoxazole re-
sistances were more common in E. coli from animals than in E. coli from humans. A recent tem-
poral analysis of agricultural soils in the Netherlands revealed that levels of resistance genes
rose over time from the preantibiotic era (1940s) to 2010 (74). Human Enterobacteriaceae from
culture collections predating the antibiotic era contain conjugative plasmids lacking resistance
genes, an indication that now-ubiquitous resistance gene transfer cassettes had not yet evolved
(62).

ANTIBIOTICS AND THE EVOLUTION OF ANIMAL
INTESTINAL MICROBIOMES

The effect of an antibiotic on a bacterial population or community is dependent on the concen-
tration of the antibiotic. Therapeutic doses of antibiotics are defined for the animals being treated
and are designed to achieve concentrations that are inhibitory to bacterial targets. However,
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subinhibitory antibiotic concentrations are often experienced by bacteria, either intentionally in
subtherapeutic (growth-promoting) uses of antibiotics or unintentionally based on the antibiotic’s
inability to penetrate biofilms or infiltrate microhabitats. It is unclear which and how many
commensal bacteria experience subinhibitory antibiotic concentrations because of the technical
challenges of sampling remote gut microhabitats and of detecting low amounts of compound.
However, it is likely that antibiotics administered at any level result in subinhibitory concentrations
somewhere in the body (12). Indeed, an important early observation was made by famed micro-
biologist H.W. Smith in comparing antibiotic use to treat disease with antibiotic use for growth
performance: “There is no essential difference between the emergence of resistant strains of bac-
teria as the result of the use of antibiotics in the treatment of clinical disease and as a result of their
use as feed [performance] additives. . . When antibiotics are used in the treatment of clinical disease
the pressure is high but of short duration and when they are used as feed additives the pressure is
lower but of longer duration” (136). The antibiotic revolution unleashed an antibiotic resistance
evolution.

Both phylogenetic analyses of antibiotic resistance genes and analyses of bacterial genome con-
tents point to horizontal gene transfer events (Figure 1) as the basis for the widespread and rapid
distribution of antibiotic resistance genes among host-associated (especially intestinal) bacteria (8,
115, 157). The conduit mechanisms for resistance gene transfer among studied intestinal bacte-
ria are largely plasmids and integrative and conjugative elements (115, 130, 161). Subinhibitory
concentrations of antibiotics have been shown to induce the transfer of antibiotic resistance genes
carried on these elements, such as transfers of erythromycin in Lactobacillus plantarum (43) and
tetracycline in Bacteroides thetaiotaomicron (137).

Horizontal gene transfer is not limited to exchanges among strains of bacterial species. In-
tergeneric transfers of antibiotic resistance elements have been experimentally demonstrated in
turkeys (118) and in swine (18). Species from several genera of gram-positive bacteria in chicken
litter were found to carry class I integrons, genetic elements traditionally associated with antibiotic
resistance in gram-negative Enterobacteriaceae spp. (104). Postulated taxonomic barriers to hori-
zontal gene transfer among intestinal bacteria seem to have been overcome or reduced or never to
have existed. This could be due to high population densities of diverse bacteria in close proximity,
including exchanges between cross-feeding metabolic synergists.

Other mediators of horizontal gene transfer are bacteriophages (phages) and gene transfer
agents (GTAs). The results of metagenomic studies in swine and mice suggest that certain oral
antibiotics increase phage activities in the gut (5, 102). Ampicillin, penicillin, ciprofloxacin, and
carbadox are among those antibiotics shown to modulate phage activities, including the transfer
of antibiotic resistance genes. In Streptococcus spp., β-lactam antibiotics were shown to weaken
the cell wall and increase susceptibility to lysis by exogenous phages (152). Ciprofloxacin induces
prophages in Clostridium difficile (99), and carbadox induces prophages in E. coli (77), Salmonella
enterica (15), and a prophage-like GTA in Brachyspira hyodysenteriae (141). A notorious consequence
of prophage and GTA induction is gene transfer, which promotes both the transfer of antibiotic
resistance genes and pathogen evolution (20, 141).

In addition to the instant effects on gene transfer, subinhibitory antibiotic concentrations have
evolutionary effects on bacterial populations. This is due to increased mutation rates and nonlethal
selective pressure for beneficial mutations (10). The consequences of this can be diversification of
bacterial populations (50) and selection for multidrug resistance (46, 68, 76), both of which have
been established in laboratory experiments with Pseudomonas aeruginosa.

Additionally, a largely unstudied bacterial diversity at the subspecies level seems to exist
within intestinal microbiomes, undetectable by high-throughput DNA sequencing techniques.
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Gene expression

Plasmid

Prophage
induction

Antibiotic resistance genes

Therapeutic doseTherapeutic dose Subinhibitory concentration

a

b

Gram-positive cells

Gram-negative cell

Chromosome

Figure 1
Effects of subinhibitory antibiotic concentrations on intestinal bacteria. Bacteria ( yellow rectangles represent
gram-positive cells with purple chromosome; tan rectangle represents a gram-negative cell) living in various
microhabitats of intestinal ecosystems are likely exposed to subinhibitory antibiotic concentrations (light
pink) even when antibiotics are administered at therapeutic doses (dark pink). (a) Subinhibitory
concentrations of antibiotics select for antibiotic resistance genes (orange), stimulate horizontal gene transfer
(e.g., green plasmid), and induce gene expression (blue). (b) Prophage induction (red ) is another effect of
subinhibitory antibiotic concentrations. Phages mediate bacterial evolution by transferring fitness genes and
promote nutrient turnover by lysing host bacteria in the intestinal ecosystem.

Subspecies diversity is enhanced through horizontal gene transfer, enabling bacteria to adapt to
their existing environment and to invade other environments (157). Intestinal bacteria ranging
from commensals (Megasphaera elsdenii, 139) to pathogens (S. enterica, 114; and C. perfringens, 75)
have shown subspecies differences extending to antibiotic resistance profiles. Evolution through
recombination of antibiotic resistance genes (mosaicism) also contributes to intestinal subspecies
diversity (17, 140, 151).
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PERSISTENCE OF ANTIBIOTIC RESISTANCE

Antibiotic-resistant bacteria exist and stably persist in the environment, including in animal intesti-
nal ecosystems. Even animals on farms where antibiotic use has been curtailed continue to harbor
common antibiotic resistance genes (1, 88, 142). Numerous explanations have been provided for
this persistence of resistance (9, 131, 138). Among these are bacterial subspecies diversity, cose-
lection of clusters of fitness genes, and stimulation of horizontal gene transfer by subinhibitory
antibiotic concentrations. The persistence of resistance in commensal bacteria creates a reservoir
for both bacterial pathogens of animals and human foodborne pathogens originating from animals
to acquire resistance genes under selective pressure (46, 157). Furthermore, antibiotic-resistant
bacteria from farm animals are shed into the environment (66). The environment provides an op-
portunity for bacteria from disparate sources to comingle, mixing agricultural and anthropogenic
sources of resistance genes in watersheds, for example (119). The persistence and dissemination
of resistance genes in the environment complicates efforts to determine the direction of antibiotic
resistance dissemination (animals to humans or vice versa).

COLLATERAL EFFECTS OF ANTIBIOTICS ON GUT BACTERIA

A healthy microbiota is critical to host health, and microbiota contributions can be influenced
by antibiotic exposure (56, 101, 106, 113). Antibiotic disruption of commensal microbiomes can
remove a protective barrier, leaving the host susceptible to colonization by pathogens and especially
ingested pathogens (112, 143, 144, 150, 158, 159). Well-known examples of antibiotic-impaired
colonization resistance are the cephalosporin-induced C. difficile infections and the streptomycin-
treated mouse model for Salmonella enterica Chronic C. difficile infections respond to colonic
microbiome repopulation with fecal bacteria taken from healthy donors (109, 127, 128). The
human commensal species susceptible to antibiotics and antagonistic to C. difficile have not as yet
been identified, although members of the Lachnospiraceae family could play a role (124). Unlike
C. difficile in humans, the mouse intestinal microbiota is intentionally disrupted by streptomycin
to create an S. enterica serovar Typhimurium infection model (121). In this model, volatile fatty
acids (acetic, propionic, butyric, valeric acids) were identified as inhibitory to Salmonella spp. at
cecal pH values (120). Neither the species that protect nor the mechanisms that cause colonization
resistance are well studied. In general terms, either direct effects (intermicrobial competition for
habitats or niches or suppression by chemical/molecular weapons), indirect effects (host immune
suppression or activation of immune responses), or a combination of both could be involved (81).

In addition to imbalances in the gut microbial community, subinhibitory antibiotic concentra-
tions evoke a wide variety of unintended effects on bacteria themselves that expand well beyond
those of antibiotic resistance gene transfer and evolution. These effects have long been appreciated
at least morphologically, and over the years they have been further defined. Gene expression
experiments revealed that most antibiotics, including rifampicin, erythromycin, and tetracycline,
at subinhibitory concentrations, modulate bacterial gene expression (32, 51, 86). Additionally,
virulence genes are among those that are commonly found to be upregulated by subinhibitory
antibiotic concentrations in pathogenic bacteria. This has been shown with tetracycline and
quinolones in S. enterica serovar Typhimurium (16, 163) and tobramycin and tetracycline in
P. aeruginosa (86).

A NEW ERA OF ANTIBIOTIC USE

Antimicrobial use in agricultural animals has been driven by farm management practices. Con-
cerns about the collateral effects of antibiotics, particularly surrounding antibiotic resistance gene
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evolution, spread, and persistence, have been mounting for decades. Restrictions on antibiotics
used for performance enhancement in food animals have been implemented in some countries
and have been recommended in the United States (44). Judicious antibiotic use encompasses both
an awareness of collateral effects and a cost-benefit analysis of antibiotic uses by veterinary and
medical practitioners (83). Antibiotic alternatives in farm management deserve greater scientific
scrutiny so as to preserve our ability to treat infectious bacterial diseases (4, 23), and national strate-
gies to discover, develop, and adopt effective antibiotic alternatives for agriculture and human use
should be encouraged (83, 138).

Little progress has been made in understanding AGE mechanisms at the microbiota level,
particularly in hindgut-fermenting animals. This is likely due to the complexity of the intestinal
microbiome as well as the research challenge of linking (statistically significant) animal perfor-
mance measurements with retrospective and dynamic intestinal microbiota effects. The advent
of -omics technologies for analyzing total DNAs, RNAs, proteins, metabolites, and bacteria will
provide a better glimpse of microbiota activities at localized intestinal sites. For example, a high-
throughput analysis of the effect of multiple antibiotics on the human fecal microbiota showed
that the number of damaged cells increased whereas the number of active cells stayed the same
(96), suggesting that there could be a relative increase in the turnover of microbial-derived small
molecules and cellular subunits in the large intestine. Firmicutes were more severely affected by an-
tibiotics than were other bacterial phyla, suggesting that the primary fermenters of polysaccharides
(Bacteroidetes) remain functional in the bacterial food chain of the large intestine. In addition to the
potential direct effect of antibiotics on interbacterial nutrient exchange, the antibiotic induction
of prophages indirectly contributes to microbial nutrient cycling and merits further investigation.
Improved understanding of gut microbial ecology, and in turn of AGE mechanisms, will lead to
the design of efficacious alternatives. Discussions found elsewhere in this issue provide data from
other fields that could further inform these ideas (38, 71 97, 156).

Perhaps the greatest limitation to understanding and controlling the ecology of the intestinal
microbiome to improve food animal health is our currently limited knowledge of the impor-
tant players and their contributions. But how much has been learned in the last several decades!
Traditional culture-based isolations and characterizations of individual gut bacteria (21, 59, 64,
78) provided the foundation for modern, high-throughput census taking (e.g., 16S rRNA gene
surveys) and functional analyses (e.g., metagenomics). Molecular technologies revealed gaps and
limitations of culture-based approaches by detecting diverse, yet-to-be cultured microbial taxa
in animal and human intestinal tracts (107, 122, 149). A recent strategy combining the benefits
of both culture and molecular techniques revealed 174 new bacterial species in the human gut
(79). Bacterial culturing continues to be required to assign functions to unknown bacteria and
genes (82, 89). Combining classical with modern techniques is a powerful strategy to fill gaps in
our knowledge of animal intestinal microbiomes, and further interdisciplinary approaches will be
essential as we proceed into a new era of antibiotic use in food animals.
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