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■ Abstract The design of cancer chemotherapy has become increasingly sophis-
ticated, yet there is no cancer treatment that is 100% effective against disseminated
cancer. Resistance to treatment with anticancer drugs results from a variety of factors
including individual variations in patients and somatic cell genetic differences in tu-
mors, even those from the same tissue of origin. Frequently resistance is intrinsic to the
cancer, but as therapy becomes more and more effective, acquired resistance has also
become common. The most common reason for acquisition of resistance to a broad
range of anticancer drugs is expression of one or more energy-dependent transporters
that detect and eject anticancer drugs from cells, but other mechanisms of resistance
including insensitivity to drug-induced apoptosis and induction of drug-detoxifying
mechanisms probably play an important role in acquired anticancer drug resistance.
Studies on mechanisms of cancer drug resistance have yielded important information
about how to circumvent this resistance to improve cancer chemotherapy and have
implications for pharmacokinetics of many commonly used drugs.

INTRODUCTION

The treatment of disseminated cancer has become increasingly aimed at molecular
targets derived from studies of the oncogenes and tumor suppressors known to be
involved in the development of human cancers (1). This increase in specificity
of cancer treatment, from the use of general cytotoxic agents such as nitrogen
mustard in the 1940s, to the development of natural-product anticancer drugs in
the 1960s such asVincaalkaloids and anthracyclines, which are more cytotoxic
to cancer cells than normal cells, to the use of specific monoclonal antibodies (2)
and immunotoxins (3) targeted to cell surface receptors and specific agents that
inactivate kinases in growth-promoting pathways (4), has improved the response
rate in cancer and reduced side effects of anticancer treatment but has not yet
resulted in cure of the majority of patients with metastatic disease. A study of the
mechanisms by which cancers elude treatment has yielded a wealth of information
about why these therapies fail and is beginning to yield valuable information about
how to circumvent drug resistance in cancer cells and/or design agents that are not
subject to the usual means of resistance.
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HOW DO CANCER CELLS ELUDE CHEMOTHERAPY?

Failure of a patient’s cancer to respond to a specific therapy can result from one
of two general causes: host factors and specific genetic or epigenetic alterations
in the cancer cells. Host factors include poor absorption or rapid metabolism or
excretion of a drug, resulting in low serum levels; poor tolerance to effects of
a drug, especially in elderly patients, resulting in a need to reduce doses below
optimal levels; inability to deliver a drug to the site of a tumor, as could occur with
bulky tumors or with biological agents of high molecular weight and low tissue
penetration such as monoclonal antibodies and immunotoxins (5); and various al-
terations in the host-tumor environment that affect response of the tumor including
local metabolism of a drug by nontumor cells, unusual features of the tumor blood
supply that may affect transit time of drugs within tumors and the way in which
cells in a cancer interact with each other and with interstitial cells from the host
(6).

To paraphrase Tolstoy in the opening lines ofAnna Karenina, normal cells are
all alike in their response to drugs, but cancer cells each respond in their own way.
Each cancer cell from a given patient has a different genetic make-up depending
not only on the tissue of origin but also on the pattern of activation of oncogenes and
inactivation of tumor suppressors as well as random variations in gene expression
resulting from the “mutator” phenotype of most cancers. As a result, every cancer
expresses a different array of drug-resistance genes, and cells within a cancer,
even though clonally derived, exhibit an enormous amount of heterogeneity with
respect to drug resistance. In addition, even if tumors are not intrinsically resistant
to a specific anticancer treatment, this genetic and epigenetic heterogeneity in
the face of the powerful selection imposed by potent anticancer drugs results in
overgrowth of drug-resistant variants and the rapid acquisition of drug resistance
by many cancers.

For the past 40 years, researchers have been tabulating the various mechanisms
by which cancer cells grown in tissue culture become resistant to anticancer drugs
(Figure 1). Some of these mechanisms, such as loss of a cell surface receptor or
transporter for a drug, specific metabolism of a drug, or alteration by mutation of
the specific target of a drug, all of which occur for antifolates such as methotrexate
(7), result in resistance to only a small number of related drugs. In such cases, use of
multiple drugs with different mechanisms of entry into cells and different cellular
targets allows for effective chemotherapy and high cure rates. All too often, how-
ever, cells express mechanisms of resistance that confer simultaneous resistance
to many different structurally and functionally unrelated drugs. This phenomenon,
known as multidrug resistance (8), can result from changes that limit accumulation
of drugs within cells by limiting uptake, enhancing efflux, or affecting membrane
lipids such as ceramide (9). These changes block (a) the programmed cell death
(apoptosis) that is activated by most anticancer drugs (10), (b) activation of gen-
eral response mechanisms that detoxify drugs and repair damage to DNA (11), and
(c) alterations in the cell cycle and checkpoints that render cells relatively
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Figure 1 This cartoon summarizes many of the ways in which cultured cancer cells have
been shown to become resistant to cytotoxic anticancer drugs. The efflux pumps shown
schematically at the plasma membrane include MDR1, MRP family members, and MXR
(ABC G2), which is presumed to function as a dimer.

resistant to the cytotoxic effects of drugs on cancer cells. Expression of a major
vault protein, termed lung resistance-related protein (LRP), which may regulate
nuclear entry of drugs, has also been described in multidrug resistance (11a).

Among these mechanisms, we know the most about those that alter accumu-
lation of drugs within cells (for reviews, see 12, 13). This accumulation results
from a balance between drug entry and exit mechanisms. Drugs enter cells in var-
ious ways (Figure 2). Each of these mechanisms of entry has been determined to
have physiological significance based on detailed uptake studies and on the exis-
tence of resistant mutants in which defects in these pathways have been observed.
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Figure 2 Ways in which drugs can get into cells. Examples are given for the three major
routes: diffusion across the plasma membrane, piggy-backing onto a receptor or transporter,
and endocytosis.

The remainder of this review focuses on the mechanisms of multidrug resistance
resulting from alterations in the pathways of drug uptake or efflux from the cell.

MECHANISMS OF DRUG RESISTANCE THAT INCREASE
DRUG EFFLUX FROM CANCER CELLS

It came as something of a surprise that the major mechanism of multidrug re-
sistance in cultured cancer cells was the expression of an energy-dependent drug
efflux pump, known alternatively as P-glycoprotein (P-gp) or the multidrug trans-
porter (14, 15). This efflux pump, the product of theMDR1 gene in the human
(16) and the product of two different related genes,mdr1a andmdr1b in the mouse
(17, 18), was one of the first members described of a large family of ATP-dependent
transporters known as the ATP-binding cassette (ABC) family (19). Every living
organism has encoded within its genome many members of this family, and they
appear to be involved not only in efflux of drugs but in moving nutrients and
other biologically important molecules into, out of, and across plasma membranes
and intracellular membranes in cells. P-gp is widely expressed in many human
cancers, including cancers of the gastrointestinal (GI) tract (small and large in-
testine, liver cancer, and pancreatic cancer), cancers of the hematopoietic system
(myeloma, lymphoma, leukemia), cancers of the genitourinary system (kidney,
ovary, testicle), and childhood cancers (neuroblastoma, fibrosarcoma) (20). The
human gene most closely related toMDR1 is MDR2, a phosphatidylcholine
transporter expressed in liver whose defect results in inability to form bile and
progressive cirrhosis (21).

P-gp, the humanMDR1 gene product and one of 48 known ABC transporters
in the human, is a 170,000-dalton–molecular weight phosphoglycoprotein
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Figure 3 ABC transporters with known drug substrates. Curved lines represent transmem-
brane domains, and the ATP in the ovals represents the ATP-binding cassettes in these ABC
transporters. GS-X represents glutathione conjugates of drugs.

consisting of two ATP binding cassettes and two transmembrane regions, each
of which contains six transmembrane domains (16) (Figure 3). P-gp can detect
and bind a large variety of hydrophobic natural-product drugs as they enter the
plasma membrane. These drugs include many of the commonly used natural-
product anticancer drugs such as doxorubicin and daunorubicin, vinblastine and
vincristine, and taxol, as well as many commonly used pharmaceuticals ranging
from antiarrhythmics and antihistamines to cholesterol-lowering statins (22) and
HIV protease inhibitors (23). Binding of these drugs results in activation of one
of the ATP-binding domains, and the hydrolysis of ATP causes a major change
in the shape of P-gp, which results in release of the drug into the extracellu-
lar space (24). Hydrolysis of a second molecule of ATP is needed to restore the
transporter to its original state so that it can repeat the cycle of drug binding
and release (25, 26). Although the detailed mechanism of action of other ABC
transporters is not known, it is presumed that the ATP binding cassette acts as
the engine for the transport mediated by members of this large family of trans-
porters.
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Because of the promiscuity with which P-gp binds electrically neutral and
positively charged hydrophobic drugs within the plasma membrane, many different
anticancer drugs and other drugs in common use are substrates for this transport
system. Any drug that interacts with the substrate-binding region of P-gp is likely
to be a competitive inhibitor of the binding of other drugs. Because of the large size
and complex structure of P-gp drug-binding region(s), not all inhibitors have equal
potency against all substrates. Active development of potent, specific inhibitors of
P-gp is underway as a means to reverse multidrug resistance in cancers, and some
have shown activity in sensitizing drug-resistant cancers in patients (see below).

After the discovery of P-gp and the demonstration of its widespread expres-
sion in many human cancers, it was found that many multidrug-resistant cancers,
such as lung cancers, rarely express P-gp. Using a multidrug-resistant lung cancer
cell line as a model system, Deeley and Cole and colleagues cloned another ABC
family member, known asMRP1 (for multidrug resistance associated protein 1)
and showed that it had a broad spectrum of anticancer drug transport activity (27)
(Figure 3). MRP1, unlike MDR1, transports negatively charged natural-product
drugs and drugs that have been modified by glutathione, conjugation, glucosy-
lation, sulfation, and glucuronylation. In some cases cotransport of glutathione
with positively charged drugs such as vinblastine can occur. MRP1 is also widely
expressed in many human tissues and cancers (12).

The discovery of MRP1 led to a search for other members of this family,
resulting in the discovery of a total of 9 or 10 MRP genes, at least 6 of which
have been characterized enough to indicate that they transport anticancer and
antiviral compounds (12, 28–32) (Figure 3). Many of these appear to transport
drugs potentially important for the treatment of cancer, and their role in conferring
drug resistance on cancer cells is under active investigation.

A third ABC transporter for anticancer drugs has been called MXR, BCRP, or
ABC-P (33–35) (Figure 3). It was found to be overexpressed in cells selected for
resistance to mitoxantrone or anthracyclines. Unlike MDR1 and the MRP family
members, it only has one region with six transmembrane domains and a single
ATP-binding cassette (see Figure 1) but is presumed to function as a dimer. Recent
evidence suggests that the wild-type form of MXR shows a narrower range of
substrates for drug transport than a mutant form of the protein in which the amino
acid threonine or glycine is substituted for arginine at position 482, which was
isolated in the early studies (36). The role of MXR in clinical drug resistance
remains to be determined.

Three additional ABC transporters have been implicated in drug transport of
potential significance to cancer, including theMDR2 gene product (37), a protein
named SPGP (sister of P-gp) (38), and ABC A2 (39), but these data are too
preliminary to include in our figure. It is also possible that other members of the
ABC transporter family in addition to the MDR, MRP, and MXR family members
are involved in clinical cancer drug resistance or in drug transport in the human.
Based on the known DNA sequences of these genes, efforts to explore their patterns
of expression and determine their function are under way. One approach is to
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examine intrinsically resistant cancers and those that have acquired resistance to
anticancer drugs and determine whether expression of other ABC transporters
occurs commonly.

DRUG RESISTANCE DUE TO REDUCED
UPTAKE OF DRUGS

As illustrated in Figure 2, specific and nonspecific uptake of water-soluble drugs
can occur across the plasma membrane based on piggy-backing of these drugs
on known transporters involved in uptake of nutrients and other essential low
molecular weight molecules and by the process of endocytosis, either receptor-
mediated or nonspecific. The latter process has been termed pinocytosis and refers
to the general means by which cells “drink” extracellular fluids and internalize the
variety of compounds that may be dissolved in the extracellular fluid.

Selection of cells for resistance to drugs that enter cells via receptors or trans-
porters can result in mutations that eliminate or modify these cell surface molecules.
For example, resistance to toxic folate analogs such as methotrexate commonly
occurs by mutation of one or both of the folate transporters (folate binding protein,
and/or the reduced folate transporter) (7). Resistance to nucleoside analogs has
been described as a result of mutation of specific nucleoside transporters, etc. In
general, these mechanisms of resistance are specific for these nutrient analogs and
structurally related compounds.

Very few drugs enter cells by endocytosis. However, some of the newer anti-
cancer agents, such as immunotoxins that bind to cell surface receptors, cannot kill
cells unless they are internalized (3). They are generally internalized via receptor-
mediated endocytosis. Cancer cell mutants that have defective endocytosis are
resistant to both toxins and immunotoxins (40).

Cisplatin is commonly used to treat cancers such as head and neck cancer,
testicular cancer, ovarian cancer, and other solid tumors. It is not known with cer-
tainty how cisplatin, a water-soluble compound, enters cells (41). Many different
cisplatin-resistant cancer cell lines have been isolated in the laboratory. These ex-
hibit a variety of mechanisms of resistance, but reduced accumulation of the drug is
commonly seen, as is cross-resistance to methotrexate, heavy metals such as arsen-
ite and arsenate, cadmium and mercury, and resistance to some nucleoside analogs.
We have recently shown that cisplatin-resistant cells demonstrating this pattern of
cross-resistance and reduced accumulation of the drug have a pleiotropic defect
resulting in reduced plasma membrane receptors and transporters and reduced en-
docytosis (42). In these cells there is no evidence for an energy-dependent efflux
pump for cisplatin (43), which has been described by other researchers in different
cell lines. These results suggest that cisplatin may enter cells via receptors and/or
via endocytosis. Whether clinical resistance to cisplatin by this mechanism also
occurs, with attendant cross-resistance to methotrexate and nucleoside analogs,
remains to be determined.
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CLINICAL RELEVANCE OF LABORATORY STUDIES
ON CANCER DRUG RESISTANCE

As noted, it is possible to demonstrate the presence of several different drug efflux
pumps in human cancers. Evidence that ABC transporters, especially P-gp, play a
significant role in clinical drug resistance has been reviewed extensively and can be
summarized as follows: (a) Levels of expression of P-gp in many different tumors
are high enough to confer significant drug resistance, and the presence of P-gp
correlates with drug resistance in several different cancers (20); (b) acquisition of
drug resistance after chemotherapy is associated with increased P-gp levels (20),
and this increased expression occurs via specific molecular mechanisms, such
as gene rearrangement and selection of cells showing these rearrangements (44),
which argues that the P-gp-expressing cells have a selective advantage; (c) acute
induction of P-gp has been observed in human tumors following exposure in vivo
to doxorubicin (45); (d) in early clinical trials testing P-gp modulation in acute
leukemia, cells that survived chemotherapy in the presence of modulators, resulting
in clinical relapse, had reduced expression of P-gp (46, 47); and (e) expression of
P-gp in some tumors predicts poor response to chemotherapy with drugs that are
transported by P-gp (48).

This evidence has been used to support the introduction of various P-gp in-
hibitors into the clinic, and many studies using such inhibitors have been reported,
with more in progress. The first studies were performed with modulators approved
for clinical uses other than inhibition of P-gp. Subsequent studies were performed
with “second generation” modulators, compounds with somewhat increased po-
tency but still limited by toxicity. Recently, a new generation of inhibitors has
reached clinical testing. These “third generation” inhibitors promise to be non-
toxic, more specific, and more potent than the earlier inhibitors used in trials of P-
gp modulation. These compounds include XR9576, R101933, Biricodar (VX710),
and LY335979.

In studies reported to date, with first generation modulators and with dexvera-
pamil, dexniguldipine, and the cyclosporin D analogue Valspodar (PSC833), there
have been no dramatic changes in response rates in a variety of human tumors
(49). Cancers such as acute myelocytic leukemia and myeloma, which commonly
express P-gp at a low level at presentation and with increasing frequency following
chemotherapy, may give higher response rates when a P-gp inhibitor is included in
the chemotherapy regimen (49a). Solid tumors, such as renal cell cancer and colon
cancer, do not respond significantly despite relatively high levels of expression
of P-gp, suggesting that other mechanisms of drug resistance also contribute to
the resistance of these solid tumors to many forms of chemotherapy (20). Recent
knowledge about other ABC transporters such as MRP transporters and MXR that
might contribute to drug resistance has caused clinicians to reconsider what the
best inhibitors might be: a nonspecific inhibitor of ABC transporters that might
have the broadest spectrum, but a higher likelihood of side effects, or a cocktail
of specific inhibitors designed for each individual tumor. Also, there is a strong
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need to be able to “image” activity of drug transporters in vivo using imaging
agents, such as99mTc-sestamibi, which are substrates for ABC transporters such
as P-glycoprotein (50).

One consequence of enumerating the various transporters that handle anticancer
drugs was the discovery that these transporters are also involved in pharmacokinet-
ics of many different drugs in common clinical use. For example, P-gp is normally
expressed at high levels in the mucosa of the GI tract, in biliary epithelial cells of
the liver, in proximal tubule cells of the kidney, in the adrenal cortex, in capillary
endothelial cells of the brain, testes and ovary, and in the placenta. These locations
argue for a role of P-gp in excretion of drugs from intestine, liver, and kidney into
stool, bile and urine; in blocking absorption of drugs from the GI tract; and as a
barrier to transport into brain, testes, ovary, and the fetus (23).

The generation of a mouse lackingmdr1a andmdr1b by insertional mutagene-
sis demonstrated that loss of P-gp was not lethal to the animals, but they were very
susceptible to toxic effects of many different drugs because of increased absorp-
tion and neurotoxicity (51). Studies with mice deficient in mdr1a/mdr1b and mrp1
and cell lines derived from these triple knockout [mdr1a/1b(−/−), mrp1(−/−)]
mice indicate that P-gp and MRP1 transporters contribute significantly to the de-
velopment of resistance to paclitaxel (taxol), anthracyclines, andVincaalkaloids
(52). In addition, exposure of these triple knockout mice to therapeutic doses of
vincristine resulted in severe damage to bone marrow and gastrointestinal mucosa,
indicating that both P-gp and MRP1 are compensatory transporters forVincaalka-
loids in these tissues (53). These results suggest that P-gp and MRP1 are important
determinants of the pharmacokinetics of many different drugs, and further, that
inhibitors of P-gp and possibly MRP1 can be used to enhance uptake of these drugs
that are given orally and perhaps to influence their penetration into the central ner-
vous system. Evidence that P-gp serves a normal role in the physiological transport
of opioid compounds out of the central nervous system into the bloodstream has
also recently been reported (54). Recent data also suggest that a noncoding poly-
morphism in the P-gp gene is closely linked to levels of expression of P-gp in the
GI tract, which results in alterations in absorption of commonly used drugs such
as digoxin (55). It is assumed that pharmacogenomic analysis of other ABC trans-
porters, such as the MRP family, will reveal similarly important roles in handling
many different drugs.

The knowledge that expression of a drug-resistance gene, such asMDR1, can re-
sult in clinically significant drug resistance, has led to the idea that drug-resistance
genes can be used as selectable markers in gene therapy (56). One of the barriers
to successful gene therapy is the inefficiency of transfer of therapeutic genes into
target cells. Use of cancer drug–resistance genes as linked markers to allow selec-
tion of cells to which therapeutic genes have been transferred has been suggested
as a means to improve efficiency of gene therapy. Many different vectors have
been developed usingMDR1 and other drug-resistance genes for gene therapy
(57). Clinically, attempts have been made to introduce P-gp into bone marrow
cells to protect them from the cytotoxic effects of anticancer drugs. In the mouse
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this works reasonably well because efficiency of transfer of genes into mouse
bone marrow stem cells is relatively high (58). In the human transfer efficiencies
are low. Whereas expression of P-gp might have a small selective advantage after
taxol treatment of patients undergoing bone marrow transplants in association with
breast cancer treatment, the effect is not dramatic or therapeutic (59). In addition,
some studies in the mouse suggest that high levels of P-gp in hematopoietic cells
may be associated under some circumstances with a myeloproliferative disorder,
and more data are needed before additional clinical trials can be attempted (60).

CONCLUSIONS

A great deal is now known about mechanisms of drug resistance in cancer cells.
Despite the development of new targeted anticancer therapies, mechanisms that
have evolved in mammals to protect cells against cytotoxic compounds in the
environment will continue to act as obstacles to successful treatment of cancer.
Additional knowledge about these mechanisms of cancer drug resistance may help
to design strategies to circumvent resistance and new drugs that are less susceptible
to known resistance mechanisms. Some of the knowledge about drug resistance
has revealed new mechanisms relevant to normal handling of drugs by the body,
and this information will be important in improving drug delivery and distribution
in patients.
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