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■ Abstract Until the 1990s,Amblyomma americanumwas regarded primarily as
a nuisance species, but a tick of minor importance as a vector of zoonotic pathogens
affecting humans. With the recent discoveries ofEhrlichia chaffeensis, Ehrlichia
ewingii, and “Borrelia lonestari,” the public health relevance of lone star ticks is
no longer in question. During the next 25 years, the number of cases of human dis-
ease caused byA. americanum-associated pathogens will probably increase. Based on
current trajectories and historic precedents, the increase will be primarily driven by
biological and environmental factors that alter the geographic distribution and intensity
of transmission of zoonotic pathogens. Sociologic and demographic changes that influ-
ence the likelihood of highly susceptible humans coming into contact with infected lone
star ticks, in addition to advances in diagnostic capabilities and national surveillance eff-
orts, will also contribute to the anticipated increase in the number of recognized cases
of disease.
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INTRODUCTION

Until relatively recently, the lone star tick,Amblyomma americanum(L.), was
regarded as the pathogen-poor relative of the other common species of human-
biting ixodid ticks inhabiting North America (125). Despite its distinction as the
first tick to be described in the United States in 1754 and its reputation as a major
pest to humans and livestock (62), the lone star tick’s position as principal vector
for any human disease was not convincingly demonstrated until the early 1990s.

Dermacentor variabilisin the eastern United States andDermacentor andersoni
in the western United States held principal claim for the transmission ofRickettsia
rickettsii (20), the etiologic agent of Rocky Mountain spotted fever (RMSF), the
most commonly fatal tick-borne disease in the Western Hemisphere. Similarly,
Ixodes scapularisin the eastern and north-central United States andIxodes pacifi-
cusin the western United States were firmly established as the principal vectors of
Borrelia burgdorferi(78), the etiologic agent of Lyme disease, the most frequently
reported vector-borne disease in the United States. In contrast, the primary human
and veterinary health concerns regardingA. americanumwere founded upon its
aggressive and nondiscriminatory biting habits at all life stages, resulting in its
notorious reputation as a nuisance species (13, 62).

There have been several occasions whenA. americanumappeared to be the natu-
ral suspect in situations involving outbreaks or sporadic occurrences of human dis-
ease in which other tick vectors could be effectively eliminated. The most famous
of these outbreaks was the mysterious “Bullis fever” that swept through a com-
pany of soldiers, stationed at Fort Sam Houston, who had participated in maneuvers
at Camp Bullis, Texas, during the spring of 1942. Over 1000 cases of an acute febrile
illness, accompanied by severe headache, marked lymphadenopathy, weakness,

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

00
3.

48
:3

07
-3

37
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 F

or
dh

am
 U

ni
ve

rs
ity

 o
n 

12
/2

2/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



7 Nov 2002 7:54 AR AR175-EN48-14.tex AR175-EN48-14.SGM LaTeX2e(2002/01/18)P1: FHD

A. AMERICANUM-TRANSMITTED ZOONOSES 309

nausea, and vomiting, developed among the soldiers, all of who had received
multiple tick bites during the days preceding their illness (148). At the time of
hospitalization, several of the ill soldiers still had ticks attached to them that were
identified as lone star ticks. James M. Brennan, a medical entomologist who inves-
tigated the site, commented about the innumerable abundance of lone star ticks:
“The writer could find no records in literature, through correspondence, or from
verbal information, of a greater concentration of this species elsewhere in the
United States” (17). Brennan noted that on July 24, 1943, four men collected 4086
adultAmblyommafrom a single location without moving (17). Serologic and ani-
mal inoculation tests ruled outCoxiella burnetii(the agent of Q fever),R. rickettsii,
andRickettsia typhi(the agent of murine typhus) as causes of Bullis fever (148).
Rickettsiae were reported to have been isolated from the blood and lymph nodes of
patients with Bullis fever and from emulsions ofA. americanum(4). The putative
agent of Bullis fever was named “Rickettsia texiana” (4), although no isolate exists
today. Bullis fever apparently vanished after 1943; however, speculation about the
nature of the causative agent continues (58). The lone star tick would have to wait
another 50 years to unequivocally obtain principal vector status for an infectious
agent of humans.

In this review we focus on the accumulating data that incriminateA. americanum
as an important vector of zoonotic pathogens of humans, in particular, concentrat-
ing on theAmblyomma-associated ehrlichioses. We summarize information on the
population dynamics of this tick and how its geographic distribution and popu-
lation density have been influenced by corresponding changes occurring among
its principal vertebrate hosts. Last, we describe a variety of additional factors that
have contributed to the increasing recognition of the public health significance
of human diseases associated with this tick and speculate on future trends in the
incidence of disease.

NATURAL HISTORY OF AMBLYOMMA AMERICANUM

A. americanumis a three-host, non-nidicolous tick distributed from west-central
Texas, north to Iowa, and eastward in a broad belt spanning the southeastern
United States. Along the Atlantic Coast, the range of this species extends through
coastal areas of New England as far north as Maine (71). Sustainable lone star
tick populations may also occur or exist transiently in foci well outside their well-
established range. Historical records (64) and isolated reports of lone star ticks
from western and upper-midwestern states (95) could reflect established regional
populations or ticks unintentionally transported on humans with a recent history
of travel.

A. americanumis found predominantly in woodland habitats, particularly young
second-growth forests with dense underbrush (62). The abundance of lone star tick
populations is influenced largely by the availability of suitable animal hosts for the
life stages of the tick and by the availability of habitats with physiographic features
that offer protection for hosts and guard against desiccation of the tick. In this con-
text, white-tailed deer represent a preeminent host forA. americanumbecause they
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provide blood meal sources for all three stages ofA. americanumand generally de-
posit engorged ticks in wooded habitats that maximize tick survival (99). Lone star
ticks are aggressive nonspecific feeders and bite humans at all three stages. Sim-
ilarly, few mammals or birds are exempt as potential hosts for one or more stages
of this tick. AdultA. americanumfeed on medium- and large-sized mammals, and
larvae and nymphs infest various ground-feeding birds, medium- and large-sized
mammals, and, on occasion, small mammals (76). Although the host range for
lone star ticks is vast,A. americanumexhibits considerable dependence on larger
wildlife species as hosts. A parameter to quantify the relative qualities of a host
for A. americanumticks seeking a blood meal was developed by Mount et al. (99)
as the base- or intrinsic host-finding rate. These rates were derived from published
values and varied with the size, habits, attractiveness, and suitability of a particular
host for tick feeding and as rates specific to tick stage. Estimates of the intrinsic
host-finding rates for larval ticks are estimated to be>20-fold higher for white-
tailed deer than for small mammals and birds and>5-fold higher for white-tailed
deer than for medium-sized mammals (99). Intrinsic host-finding rates for adult
lone star ticks are even more disparate and are estimated to be>400-fold higher for
white-tailed deer than for medium-sized mammals (99). These data suggest that
in the absence of large mammalian hosts,A. americanumpopulations will decline
and densities of ticks on medium-sized mammals and birds will also diminish (99).

Within their geographic range, lone star ticks are often the most common tick
submitted for identification or reported by humans parasitized by a tick. When
newspaper advertisements and public awareness posters in Georgia and South
Carolina from 1990 through 1995 solicited tick submissions, 83% (N = 913) of
the submitted ticks wereA. americanum, including 231 adults, 262 nymphs, and
265 larvae (52). In an investigation that provided an epidemiologic link between
A. americanumand an erythema migrans-like rash illness in North Carolina, 97%
(N = 588) of the ticks collected from vegetation and 95% (N = 197) of the ticks
attached to humans were lone star ticks (72).

Adult and nymphal lone star ticks are generally most active during April
through June and decline markedly in abundance and activity as summer progresses
(36, 62). The early-season activity of adult and nymphal ticks, which precedes that
of larvae, increases the probability of acquisition of a pathogen by larval ticks at
the first blood meal.A. americanumoverwinters as replete larvae, unfed or replete
nymphs, or unfed adults (62).

BACTERIA (OTHER THAN EHRLICHIAE) ASSOCIATED
WITH AMBLYOMMA AMERICANUM

Various bacteria have been isolated or detected fromA. americanum(Table 1). At
least five are agents of disease in humans. Some of the bacteria listed in Table 1
have been isolated only from ticks (e.g., WB-8-2 and MOAa agents) and are of
unknown pathogenicity in humans. Others are believed to cause human infection
on the basis of serologic reactivity to their specific antigens [e.g., 85-1034, “R.
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TABLE 1 Bacteria isolated or identified fromAmblyomma americanum

Bacterial Disease
agent in humans Comments Reference

Ehrlichia Human monocytic The most severe of the three ehrlichioses (2, 53)
chaffeensis ehrlichiosis of humans in the United States.

(HME) Underreported and probably as common
as Rocky Mountain spotted fever.

Ehrlichia E. ewingii Most commonly diagnosed in (19, 108)
ewingii ehrlichiosis immunosuppressed persons. Less than 20

cases documented.

Rickettsia Rocky Mountain Role of lone star ticks in transmission is (59, 113)
rickettsii spotted fever uncertain, as recent surveys have not

identifiedR. rickettsiiin ticks.

Coxiella Q fever Tick transmission is not thought to play a (32, 113)
burnetii significant role in human disease, although

many species of ticks are naturally infected.

Francisella Tularemia Tick transmission remains important in (66, 136)
tularensis endemic occurrence. Other routes of

transmission, such as direct contact with
wild rabbits, are also significant.

“Borrelia Probable cause of Likely to become recognized as a common (9, 70)
lonestari” southern tick- disease where lone star ticks exist in high

associated rash numbers. Agent as yet uncultivable.
illness

85-1034 Possible mild Association with human disease based on (33)
(“Rickettsia spotted fever serologic reactivity only.
amblyommii”) rickettsiosis

Rickettsia None described Originally isolated fromAmblyomma (59, 112)
parkeri maculatumin Texas.

WB-8-2 None described Nonpathogenic or mildly pathogenic in (22, 146)
guinea pigs and meadow voles. Most
closely related to MOAa and
Rickettsia montana.

MOAa None described Most closely related to WB-8-2 and (146)
Rickettsia montana.

amblyommii” (33)] or on the basis of identification of presumed pathogen DNA
in samples from clinically ill persons [e.g.,Borrelia lonestari(70)].

Francisella tularensis

The potential link between a tick vector and the transmission ofFrancisella tularen-
siswas first recognized in the late 1940s in Arkansas where it became apparent that
most tularemia cases were occurring from April through September, when rabbit
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hunting and direct contact with rabbits was rare but tick bites were common (145).
In the early 1950s,F. tularensiswas isolated from lone star ticks collected from
Arkansas (66). Although the prevalence ofF. tularensisamong field-collected
A. americanumticks was low, estimated at 0.04% among ticks from Arkansas
(1.9% of 576 pools of lone star ticks composed of 28,661 individuals were positive),
investigations suggested that ticks were involved in the transmission of tularemia
to dogs and potentially to cattle (23). Transstadial transmission ofF. tularensis
was subsequently demonstrated by experimental infection ofA. americanum(65).
Tick bite continues to be strongly associated with the occurrence of tularemia in
the United States. In a series of 1026 cases of tularemia reported from 1981 to
1987 from Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas, 63% of
cases reported an attached tick, while only 23% had exposure to rabbits (136).

Rickettsia rickettsii

Data linkingA. americanumto the transmission ofRickettsia rickettsiiand this
tick’s involvement in the epidemiology of RMSF in humans are largely circum-
stantial (57). The first guinea pig isolations of a spotted fever group rickettsiae
(SFGR) believed to beR. rickettsiiwere made in Texas in 1942 from samples
collected from two fatal cases of spotted fever occurring at a location heavily
infested by lone star ticks, specimens of which were submitted by the family of
the decedents (5). The esteemed rickettsiologist R.R. Parker recovered rickettsiae
he identified asR. rickettsii from unfedA. americanumnymphs collected from
Oklahoma in 1942 (113). Other investigators reported that emulsions produced
from lone star ticks collected in Texas were highly virulent when inoculated into
guinea pigs and presumptively identifiedR. rickettsii(6). However, more recent
attempts to associateA. americanumas a potential vector ofR. rickettsiihave been
unsuccessful. Burgdorfer et al. (22) failed to identifyR. rickettsiiamong 1700 lone
star ticks collected in Arkansas, South Carolina, and Tennessee, including ticks
collected at sites where RMSF was endemic, although they did identify a high
prevalence of a rickettsiae they designated as the WB-8-2 agent (Table 1). Simi-
larly, Goddard & Norment (59) tested 3067 adultA. americanumcollected from
Mississippi, Kentucky, Oklahoma, and Texas between 1983 and 1984. Although
a variety of tests yielded evidence of infection by different SFGR, no ticks were
found infected withR. rickettsii(Table 1). Definitive contemporary evidence in-
criminatingA. americanumin the epidemiology of RMSF is lacking, and if natural
infection withR. rickettsiioccurs in this species, it is likely at a low prevalence.

Other Spotted Fever Group Rickettsiae

Several SFGR have been isolated fromA. americanumcollected in various regions
of the United States (Table 1), although whether these various agents cause hu-
man disease requires more investigation. Some of these SFGR, such asRickettsia
parkeri, are known to cause mild illness when inoculated into guinea pigs (112),
and others [isolate 85–1034 (“R. amblyommii”)] possess specific antigens that are
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recognized by convalescent-phase serum obtained from humans recovering from
illnesses temporally associated with tick bite (33). SFGR transmitted byA. amer-
icanumwill eventually be isolated from sick humans, as has been reported in the
past (5). Attack rates of illnesses of presumed tick origin yet of unproven etiology
can be substantial in settings in which lone star ticks are the principal or only tick
vector present (92).

Coxiella burnetii

Coxiella burnetiihas been isolated or identified from many species of ticks around
the world (118).C. burnetiihas been isolated from nymphal and adultA. ameri-
canumcollected in eastern Texas (111) and Mississippi (115). However, the role
of ticks in transmission ofC. burnetii to humans is believed to be minimal and
largely confined to maintenance of natural transmission cycles among wildlife.

“Borrelia lonestari”

The occurrence of Lyme borreliosis in the southern United States has been a con-
troversial topic. AlthoughI. scapularisticks and small rodents infected withB.
burgdorferican be found in southern states (104), naturally occurring human in-
fection has never been demonstrated through isolation of the spirochete. However,
beginning in the 1980s, an illness accompanied by a rash resembling erythema mi-
grans (sometimes referred to as southern tick-associated rash illness or Masters’
disease) was reported with increasing frequency among patients from Missouri
(90), North Carolina (73, 79), and Maryland (9). The tick incriminated in these
disease occurrences wasA. americanum; although in experimental settings, it has
not been demonstrated to act as a competent vector forB. burgdorferi(105). It is
now known thatA. americanumharbors a spirochete distinct fromB. burgdorferi,
provisionally named “Borrelia lonestari,” that has not yet been cultivated (12).
The DNA ofB. lonestarihas been identified from a skin biopsy obtained from an
erythematous lesion where an attachedA. americanumwas present on a patient
(70). Although the public health significance ofB. lonestariis currently under
investigation, it appears likely that this species is a cause of Lyme-like disease in
the southern United States (9).

AMBLYOMMA AMERICANUM-ASSOCIATED
EHRLICHIOSES

Historical Perspectives

Until the mid-1980s, bacteria in the genusEhrlichia were not considered to cause
human disease in the United States (92a), and studies of ehrlichioses were relegated
predominantly to investigators and clinicians in veterinary sciences. Considerable
literature existed onEhrlichia canisandAnaplasma(formerlyEhrlichia) phagocy-
tophila (45) tick-borne bacteria with cosmopolitan distributions causing moderate
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to severe febrile disease in dogs and ruminants, respectively. However, in 1986 a
clinician viewing the peripheral blood smear of a critically ill man with an unex-
plained febrile illness noted unusual inclusions in several of the patient’s white
blood cells. These inclusions were subsequently identified as membrane-bound,
tightly packed clusters of bacteria called “morulae,” which are a characteristic fea-
ture of ehrlichiae. The patient had received multiple tick-bites while visiting north-
ern Arkansas two weeks earlier and had been diagnosed presumptively with RMSF
(87). Serologic studies later implicated anEhrlichia species as the cause of this
patient’s severe disease. Within several years, additional patients were diagnosed
with ehrlichiosis in the southeastern and south central United States; although these
illnesses were initially ascribed toE. canisinfection (87), the causative organism
was subsequently identified as a new species and namedEhrlichia chaffeensis
(2, 37). Disease caused byE. chaffeensisis most commonly referred to as human
monocytic ehrlichiosis (HME).

Within the next 13 years, two additionalEhrlichia species were reported as
agents of human disease in the United States, namelyAnaplasma phagocytophila
in 1994, the cause of human granulocytic ehrlichiosis (HGE) (11), andEhrlichia
ewingii in 1999, a second cause of granulocytic ehrlichiosis in humans (19).
Through 2001, approximately 1150 cases of HME and 1220 cases of HGE were
reported through national surveillance (26, 93) [Centers for Disease Control and
Prevention (CDC), unpublished data]. About 20 cases of ehrlichiosis caused byE.
ewingiihave been identified to date [(19, 107, 108); CDC, unpublished data].

Evidence for Transmission of E. chaffeensis and
E. ewingii by A. americanum

Within a few years of the initial description of human ehrlichiosis in the United
States, a geographic pattern of cases emerged that approximated the recognized
distribution ofA. americanum, implicating this tick as a potential vector forE.
chaffeensis(47). This hypothesis was strengthened whenE. chaffeensisDNA was
amplified from pools ofA. americanumadults collected from several states where
cases of disease had originated (3). Subsequent studies demonstrated experimen-
tal transmission ofE. chaffeensisamong white-tailed deer by adult and nymphal
lone star ticks (49), and retrospective ecologic and serologic surveys identified
temporal and spatial associations between lone star tick infestations and the pres-
ence and prevalence of antibodies reactive toE. chaffeensisin white-tailed deer
populations (82).

DNA of E. chaffeensishas been detected in lone star ticks collected in at
least 15 states in the southeastern, midwestern, and northeastern United States
(3, 67, 85, 131, 147). The prevalence of infection in adult ticks tested individually
by use of polymerase chain reaction (PCR) generally varies from about 5% to 15%
among specimens collected from areas where the agent is endemic (67, 85, 147);
however, these prevalence estimates are subject to variation due to different as-
says employed by different researchers and the intrinsic variability associated with
cross-sectional sampling. Crude minimum infection rates (MIRs) determined from
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pools of adult ticks have generally ranged from 1% to 5%; however, this method
often underestimates the true level of infection at a particular location (85, 131).

Infections have been reported in both adult male and female ticks. As expected,
the prevalence of infection appears to be lower in immature stages of ticks than in
adults. A sample composed of 81 pools of nymphalA. americanum(representing
2723 individual ticks) collected from Harford County, Maryland, showed an overall
MIR of 0.8%: The MIR of adult ticks collected at the same location was 3.5%
(132). Failure to detectE. chaffeensisin nymphs collected at sites with confirmed
infections in adultA. americanumhas also been described (3).

Little is known about the dynamics of infection ofE. chaffeensisin A. ameri-
canumpopulations; however, the prevalence of infection appears to be spatially and
temporally discontinuous. Surveys of ticks collected from nearby sampling sites
or among ticks collected at the same site during different years revealed marked
variability in infection prevalence. Similarly, infection may not always be evident
among ticks at a specific location at a particular time of sampling (130, 147).

More than one species ofEhrlichia may be present in the same tick or circulate
within the same population of ticks, and this may have consequences to host and
vector that remain unexplored. An as-yet-unnamedEhrlichia sp. infecting white-
tailed deer has been detected in lone star ticks (85), and the DNA ofE. ewingii
has been amplified from questing adult and nymphal lone star ticks collected in
North Carolina and Florida (133, 148a). Transstadial passage ofE. ewingiiwithin
A. americanumwith subsequent transmission to dogs provides further support for
the contention thatA. americanumis a key tick in the maintenance and transmission
of several ehrlichiae pathogenic for humans (8).

The replication, growth, and development cycles of ehrlichiae inA. ameri-
canumand the exact mechanism(s) by which these bacteria are transmitted to the
vertebrate host during feeding are unknown. Detection of ehrlichiae in questing
nymphal and adult ticks and successful transmission of the pathogen between deer
by nymphal and adult ticks infected during the previous life stage confirm thatE.
chaffeensisis passaged transstadially (49). Detection ofE. chaffeensisin larvalA.
americanumhas been described (131); however, there are no other data to suggest
that transovarial transmission occurs.

Reservoir Hosts for Amblyomma-Transmitted Ehrlichiae

E. chaffeensisand presumablyE. ewingii are maintained in nature as complex
zoonoses, potentially involving a wide variety of vertebrates that can serve as
competent reservoirs for the bacteria, as sources of blood for tick vectors, or as
both. The ability to infect a broad range of hosts is generally regarded as an
important factor in promoting the emergence of a zoonotic pathogen (43), and a
parallel argument can be applied to the feeding habits of a vector. The catholic
feeding proclivity ofA. americanumfor the blood of a wide range of mammalian
and avian species is well documented (13, 62). Considerably less is known about
which vertebrates can serve as competent reservoirs for ehrlichiae, although the
available data suggest thatE. chaffeensismay infect a wide host range.
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White-Tailed Deer

The white-tailed deer (Odocoileus virginianus) is the sole vertebrate species cur-
rently recognized as a complete and sufficient host for maintaining the transmission
cycle ofE. chaffeensis. White-tailed deer are an important source of blood for adult
and immature stages ofA. americanum(13, 62). Field surveys of white-tailed deer
from areas where lone star ticks occur have reported that 80%–100% of sampled
animals were infested with all three stages ofA. americanumticks; average tick
burdens (adults and nymphs) frequently exceed 300 per deer (16, 17). The num-
ber of larvae on white-tailed deer has been described as “. . . so numerous that
counting was impracticable” in certain circumstances (17). One detailed monthly
survey of white-tailed deer in Kentucky and Tennessee reported maximum monthly
half-body densities of 1493 larval lone star ticks on deer with corresponding val-
ues of 480 nymphal and>200 adult ticks during peak months (15) (Figure 1a).
Simulations modeling the density of adultA. americanumticks as a function of
white-tailed deer density indicate that this keystone species exerts a profound effect
on tick populations (99) (Figure 1b).

White-tailed deer are naturally infected withE. chaffeensisin the southeast-
ern United States, as determined on the basis of PCR detection (85) and iso-
lation of the organism (84). In addition, deer experimentally infected with
E. chaffeensisremain bacteremic for at least 24 days (40) and can infect laboratory-
reared larval and nymphalA. americanum, which maintain infections transstadially
(49).

The prevalence ofE. chaffeensisinfections among populations of white-tailed
deer in nature is difficult to determine. Antibody surveys have demonstrated a high
prevalence of antibody reactive toE. chaffeensisantigens among white-tailed deer
populations (frequently>50% of deer at sites where any antibody-positive ani-
mals were present) (39, 68, 85, 100), and field data have confirmed a site-specific
correlation between antibody prevalence and presence ofA. americanum(81).
However, deer can be infected singly or in combination with severalEhrlichia
species that are related antigenically to various degrees (41, 80, 148b). Studies
using only serologic testing cannot routinely distinguish between antibodies re-
sulting fromE. chaffeensisinfection from those resulting from infection with the
antigenically related white-tailed deer agent orE. ewingii.

Other Wildlife

Coyotes serve as hosts for all stages ofA. americanum(14, 31). In one of the
infrequent surveys to quantify tick loads on this canid, coyotes were identified as
the relatively most important host of adultA. americanumamong 13 species of
mammals infested with lone star ticks in Oklahoma: 4 of 6 coyotes were infested
with 182 adult, 115 nymphal, and 108 larval lone star ticks (75). Coyotes naturally
infected withE. chaffeensisin Oklahoma have been identified at a high prevalence
(15/21; 71%) by use of PCR, suggesting that these animals could be a significant
reservoir forE. chaffeensis(74a).
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Figure 1 (a) Seasonal activity and abundance of the three life stages ofA. amer-
icanum ticks infesting white-tailed deer in Kentucky and Tennessee, 1985–1986.
Figure drawn from data published in (15). (b) Simulated effect ofA. americanum
population density as a function of white-tailed deer density. Figure drawn from equa-
tions published in (99). The higher-density estimates were derived from data shown in
Figure 3b.

Red foxes (Vulpes vulpes) can serve as hosts for all stages ofA. americanum
(139), but counts ofA. americanumfrom red foxes are low relative to deer (128).
Red foxes were susceptible to infection with a white-tailed deer isolate ofE.
chaffeensis(15B-WTD-GA strain), and ehrlichiae could be reisolated from the
blood of experimentally infected animals for 14 days after infection (35). Antibody
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reactive toE. chaffeensishas been detected in field surveys among both red and
gray foxes (35), suggesting that these canids may play a role in the maintenance
of E. chaffeensis.

Other mammals have been implicated as potential reservoirs forE. chaffeensis
or antigenically relatedEhrlichia spp. only through antibody surveys. Raccoons
(Procyon lotor) are frequently parasitized by all life stages ofA. americanum(13)
and occur throughout much of North America. In addition, raccoons frequently
reach their highest population densities in suburban and urban-park locations, so
contact rates with humans and domestic pets are high (119). Average lone star
tick infestation counts for raccoons ranged between 0 and 1.5 adults, 0 and 80
nymphs, and 0 and 383 larvae per raccoon for surveys conducted in Georgia
(116), Kansas (18), Oklahoma (75), North Carolina (107), Tennessee (76, 149),
Texas (17), and Virginia (128). However, the results from tick surveys should
be interpreted cautiously, considering that the lowest and one of the highestA.
americanumcounts for raccoons came from two sites in different locations of
Tennessee (76, 149). Antibody reactive toE. chaffeensisantigens was found in
20% (N = 411) of raccoons sampled from eight states (30), although PCR failed
to amplify the causative species ofEhrlichia. A high prevalence of antibodies
(20%) was also found among raccoons sampled from anE. chaffeensis-enzootic
site in Georgia (85).

The Virginia opossum (Didelphis virginianus) can serve as a host for all stages
of A. americanumbut does not appear to be a preferred host. Average lone star
tick infestation counts for opossums are relatively low and ranged between 0
and 0.2 adults, 0 and 1.7 nymphs, and 0 and 9 larvae per opossum for surveys
conducted in Georgia (116), Kansas (18), Oklahoma (75), Tennessee (76, 149),
Texas (17), and Virginia (128). Antibodies reactive toE. chaffeensiswere identified
among 8% (N = 38) of opossums sampled at anE. chaffeensisenzootic site
(83).

The role of rodents in the maintenance ofE. chaffeensisis unknown, although
larval and nymphalA. americanumparasitize a number of rodent species (17, 62).
Antibodies reactive toE. chaffeensisat reciprocal titers>80 were identified in 31
of 294 white-footed mice sampled from Connecticut (88); however, the causative
agent was not identified. In contrast, no antibodies were detected among 281
rodents of eight species sampled from anE. chaffeensisenzootic site in the southern
United States (83).

The role of birds as a natural reservoir forE. chaffeensisor E. ewingiihas yet
to be defined, although many ground-feeding species serve as important sources
of blood for immature stages ofA. americanum(62). An important example is the
wild turkey (Meleagris gallopavo); A. americanumis called the “turkey tick” in
some regions of the midwestern United States because of this close association
(42). Average lone star tick infestation counts for turkeys ranged between 15 and
39 nymphs, and 0 and 46 larvae among surveys conducted in Oklahoma (75)
and Texas (17), and studies from Kansas also indicate that the wild turkey is an
important host for nymphal and larvalA. americanum(96).
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In Russia, ehrlichiae, including an organism identified asE. chaffeensis, have
been identified by PCR fromI. ricinus ticks recovered from several species of
migratory passerine birds (1). Should it be established that birds do not serve as
competent reservoir host for ehrlichiae, their importance as hosts and dispersal
agents for ticks potentially infected with these pathogens will not be diminished.
As an example, 10 of 46 bird species sampled from a Georgia barrier island were
parasitized by nymphal or larvalA. americanumat prevalences that frequently
exceeded 50% from June to August (46).

Domestic Animals

When serving as a core component in the maintenance cycle of a zoonotic pathogen,
perhaps no other animal demands as much public health attention as does the do-
mestic dog. Their popularity as companion animals (>61,500,000 owned dogs in
the United States as of March 1999; American Pet Association, http://www.apapets.
com/) and their access to both tick-infested habitats and to human habitations make
them a priority in investigations into the natural history of the human ehrlichioses.
Dogs serve as hosts for all stages ofA. americanum(13, 62) and can serve as a
competent reservoir host forE. chaffeensisandE. ewingii(50).

Ehrlichial infections among dogs are common in many regions of the United
States. In southeastern Virginia, 38% of sampled dogs (N = 74) had antibody
reactive toE. chaffeensisantigens, and 8 of 19 had ehrlichial DNA in whole-blood
samples tested by a nested PCR (38). A survey conducted in Oklahoma found
similar results: 7 of 65 dogs had antibody reactive toE. chaffeensisantigens and 4
animals hadE. chaffeensisDNA in whole-blood samples tested by a nested PCR
(101). Caution is warranted when interpreting the results of surveys based solely on
serologic testing because dogs may be concurrently infected with multiple species
of Ehrlichia that are antigenically related (77).

Domestic goats (Capra hircus) serve as hosts for all life stages ofA. americanum
(13, 62). Although knowledge of goats as a reservoir species forE. chaffeensisin
the United States is limited to a single report, a high prevalence of reactive antibody
(28/38 animals; 74%) and presence of ehrlichial DNA in whole blood (6/38; 16%),
as determined by PCR, suggest a potential reservoir role for this common animal
(44). Of special interest was the isolation ofE. chaffeensisfrom a single goat
sampled at time points 40 days apart, suggesting a persistent bacteremia.

In summary, it appears certain thatE. chaffeensishas a broad range of vertebrate
hosts that can act as competent reservoir hosts for transmission of the bacterium to
various stages of the lone star tick. At least three species of mammals in the order
Carnivora (all in the family Canidae) and two in the order Artiodactyla (families
Bovidae and Cervidae) have been infected byE. chaffeensisin natural or experi-
mental settings. The white-tailed deer is a competent reservoir host forE. chaffeen-
sisand a critical or even keystone host forA. americanum. Little is known about
potential reservoirs forE. ewingiiother than domestic dogs, although it is likely
that one or more species of wildlife are involved in the maintenance of this agent.

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

00
3.

48
:3

07
-3

37
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 F

or
dh

am
 U

ni
ve

rs
ity

 o
n 

12
/2

2/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



21 Nov 2002 11:56 AR AR175-EN48-14.tex AR175-EN48-14.SGM LaTeX2e(2002/01/18)P1: FHD

320 CHILDS ¥ PADDOCK

EPIDEMIOLOGY OF AMBLYOMMA-ASSOCIATED
HUMAN EHRLICHIOSES

Although E. chaffeensiswas the firstEhrlichia identified as a human pathogen
in the United States, our knowledge of the biology ofA. phagocytophila, which
was isolated several years later, is already more substantial. Epidemiologists and
biologists have utilized the public health infrastructure and research findings ac-
cumulated over nearly two decades of study of Lyme borreliosis andI. scapularis
in the northeastern and northcentral United States toward understanding the epi-
demiology of HGE.

In contrast to cases of HGE, most cases of HME and all cases ofE. ewingiiehrli-
chiosis (EWE) have been reported from the southcentral and southeastern United
States (53, 93, 108), whereA. americanumreaches its greatest population densi-
ties (Figure 2a). Mandated national surveillance and reporting of the ehrlichioses
has been in effect only since 1999. Although reporting by individual states has
been incomplete, these data indicate a region of highest risk ranging from central
Texas through Oklahoma and Missouri east to Virginia and all states to the south
(Figure 2b). Cases of HME are reported sporadically along the East Coast, most
notably on the Atlantic coastal plain. DNA fromE. chaffeensishas been recov-
ered fromA. americanumfrom as far north as Connecticut and Rhode Island
(Figure 2a). Many human cases of ehrlichiosis are diagnosed by serologic testing,
and antibodies resulting from infection withE. ewingiior A. phagocytophilacan
cross-react withE. chaffeensisantigen (19). In addition, the travel histories of per-
sons suspected of having ehrlichiosis are usually not provided when serum samples
are submitted for diagnostic evaluation to reference laboratories, such as CDC, so
that some cases of ehrlichiosis relegated to a specific state in summary reports may
have been imported (93). Finally, lone star ticks can be accidentally transported
to or may exist in foci within states not considered within the range ofA. ameri-
canum(Figure 2a). An analysis based on tick specimens parasitizing humans ac-
cessioned into the U.S. National Tick Collection identified lone star ticks attached
to persons from Michigan, Nebraska, New Mexico, Wisconsin, and Wyoming
(95).

Although E. chaffeensishas been isolated only from the United States and
EWE is only documented from this country, there are data indicating that human
infections with antigenically related ehrlichiae occur in Europe (102), Asia (63),
South America (120), and Africa (142). Because the only proven tick vector of
E. chaffeensis(i.e.,A. americanum) is restricted to the New World, these findings
suggest involvement of other tick species in the transmission of HME, the cos-
mopolitan distribution of ehrlichiae antigenically related toE. chaffeensis, or both.
Ehrlichiae that are closely related or identical toE. chaffeensishave been identified
from a variety of ticks collected in Asia (1, 127), although the significance of these
findings for human disease is unclear.

Reliable incidence data on theAmblyomma-transmitted ehrlichioses derived
from active, population-based surveillance are restricted to a few localities and do
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not exist for EWE. The estimated incidence for hospitalized cases of HME was 5.5
per 100,000 persons in southeastern Georgia, which was higher than that for RMSF
during the same period (54). Estimates of 8 and 14 cases of HME per 100,000
persons during 1997 and 1998, respectively, were obtained by active surveillance
for HME in southeast Missouri (103). The frequencies of occurrence of HME in
cohorts of patients presenting with fever and a history of tick bite in Tennessee
(7/38 patients) (129a) and central North Carolina (10/35) were nearly identical
(24) and similar to the number of RMSF diagnoses. From these observations we
conclude that where endemic, HME occurs at an incidence similar to that of RMSF,
a well-known tick-borne disease considered uncommon but not rare.

HME is a highly seasonal disease. Although cases have been reported during
March through November, about 70% of cases occur during May through July
(53, 129). This seasonality corresponds to the peak feeding-activity periods of
nymphal and adultA. americanumthroughout much of their range (Figure 1a).
Reports of HME into the late fall and winter are unusual but may be more common
in the South (117).

HME is predominantly a disease of adults; most patients are>40 years of age,
and in all age groups men are diagnosed with the disease more frequently than
women (53). Of particular note is that HME in children is relatively rare: Among
the first 250 reported cases of ehrlichiosis,<10% were in individuals 2 to 13 years
of age (53). The reasons for this age distribution remain unclear, although the
severity of HME correlates with immune function, which becomes increasingly
impaired with age.

Most HME cases occur as sporadic infections. Recreational or occupational
activities that place individuals in tick-infested habitats are well-documented risk
factors for infection. A recollection of recent tick bite was reported by 68% of
ehrlichiosis cases in a national survey (53), but that figure can exceed 80% in
specific investigations (103, 129). Rare outbreaks of HME have occurred among
golfers living in a retirement community in Tennessee (129) and among military
personnel participating in field training exercises (92).

Because lone star ticks transmit several bacterial pathogens, coinfections may
occur. In North Carolina, a concurrent infection withE. chaffeensisand SFGR
has been diagnosed (126), and several seroepidemiologic studies have demon-
strated simultaneous seroconversions toE. chaffeensisand SFGR among military
personnel exposed toA. americanum-infested habitats (92).

FACTORS IN THE EMERGENCE OF
AMBLYOMMA-ASSOCIATED EHRLICHIOSES

Recent Clinical Recognition or New Diseases?

It is likely that the observation of morulae in white blood cells of a patient with
an unexplained febrile illness was noted long before the formal discovery of

A
nn

u.
 R

ev
. E

nt
om

ol
. 2

00
3.

48
:3

07
-3

37
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 F

or
dh

am
 U

ni
ve

rs
ity

 o
n 

12
/2

2/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



7 Nov 2002 7:54 AR AR175-EN48-14.tex AR175-EN48-14.SGM LaTeX2e(2002/01/18)P1: FHD

322 CHILDS ¥ PADDOCK

ehrlichiosis in 1986. Peripheral blood smear evaluation was the standard of hema-
tologic evaluation before widespread availability of automated cytometry, and
morulae would have probably been noted, but their connection to an ehrlichia was
either missed or left uninvestigated. In 2002, even experienced medical technol-
ogists have trouble differentiating true morulae from intraleukocytic inclusions
associated with unrelated infectious or noninfectious conditions.

Is there something unique about the clinical presentation of the ehrlichioses that
would have made these diseases stand out and led to their recognition as distinct and
novel human diseases? In fact, the early disease manifestations of HME and EWE
are relatively nonspecific and present a diagnostic challenge even to physicians
knowledgeable about tick-borne diseases (143). As disease progresses, involve-
ment of multiple organ systems may complicate the clinical course and result in
various life-threatening scenarios. However, the clinical course is often nondescript
when complicating underlying factors, such as immunosuppression, are lacking
(108), suggesting that the ehrlichioses, had they been occurring at appreciably
lower incidence than at the present time, would have been difficult to identify as
unique disease entities. The protean clinical presentations range from generalized
and relatively vague initial symptoms to more targeted complaints, and initial di-
agnoses have included “viral syndrome,” upper respiratory infection, pneumonia,
meningoencephalitis, cholecystitis, pharyngitis, urinary tract infection, epididymi-
tis, or prostatitis (48, 108, 109). Even the hematologic abnormalities associated
with HME (e.g., leukopenia and thrombocytopenia) are consistent with alternative
diagnoses, such as sepsis, thrombotic thrombocytopenic purpura, or hematologic
neoplasia (69, 89). The broad differential, coupled to a low incidence of disease,
would have made the ehrlichioses difficult to identify until a certain threshold
frequency of human disease was crossed. Although theAmblyomma-associated
ehrlichioses undoubtedly occurred in the past, we believe that factors affecting the
incidence and distribution of HME and EWE have made it increasingly likely that
these diseases would be documented.

The Concept of Emerging Disease

The term “emerging infection” has been overused; however, the designation as orig-
inally intended (i.e., to signify new diseases or preexisting diseases that are rapidly
increasing in incidence) still has relevance. Although changes in public health
surveillance practices and the availability of diagnostic assays play a major role in
determining disease incidence, there are also a number of factors independent of
human activities that can radically influence the emergence of a zoonotic disease
(Table 2). Zoonoses are diseases of animals that are transmissible to humans, and
the epidemiology of vector-borne zoonoses must be understood within the context
of natural maintenance cycles of pathogens that involve wildlife and arthropods.
Understanding the natural history of zoonotic agents is no academic luxury be-
cause effective control of the human diseases caused by these pathogens frequently
hinges on targeting the vector or reservoir populations. In addition, human disease
is an insensitive indicator of the magnitude of the zoonotic-pathogen reservoir and
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TABLE 2 Factors in the emergence ofAmblyomma-associated zoonoses with emphasis on the
ehrlichioses

Factor in
emergence Example Reference

Vector Increase inA. americanumpopulation density (56)
dynamics Increase in geographic distribution ofA. americanum (71, 94)

Reservoir Increase in population density and geographic distribution (91, 94)
host dynamics of vertebrate host populations (especially white-tailed deer,

turkeys) that serve as hosts forA. americanum
Increase in competent reservoir host (e.g., white-tailed deer) (91, 137,

populations forE. chaffeensisandE. ewingii 148b)

Human Increased human contact with natural foci of infection through (109, 129)
behavior recreation or occupation

Improved surveillance and reporting (93)
Habitat modification and climate change (60, 106)

Human Increasing size of human population>40 years of age (140)
demographics Increasing size and longevity of immunocompromised (25, 110, 122)

populations
Population shift to rural environments (86, 122)

the dynamics of transmission in nature cycles. These aspects of the maintenance
cycle are usually “silent” and cannot be appreciated without special study.

Several recent reviews have examined factors relevant to the emergence of
infectious diseases among wildlife (34, 43) and vector-borne diseases of humans
(144). We focus our discussion on the various factors influencing the maintenance
of ehrlichial pathogens in nature and consider how dynamic changes in these factors
could drive emergence by affecting the frequency and severity of the corresponding
human diseases and the geographic region affected by endemic disease. We first
consider the complex interactions of tick vectors and vertebrate hosts that are
sensitive to environmental influences that can drive epizootics. The emergence
and spread of Lyme disease in the eastern United States is a classic example of
how changes in environmental conditions have influenced patterns in vertebrate-
host and vector-tick distribution and population densities to affect the incidence of
a human disease (137). In addition, changes in the patterns of susceptibility within
a population can be a critical factor in disease emergence, both in increasing the
opportunity for sporadic transmission of pathogens to humans (98) and in the
dynamics of epizootics occurring among wildlife populations (43).

Dynamics of Reservoir Host and A. americanum Populations

The greatest influence on the emergence ofAmblyomma-associated ehrlichioses
has been the explosive growth of white-tailed deer populations in the United States.
Lone star ticks were identified as the most common species of tick (73.3% of 367
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attached ticks) parasitizing humans in a survey of tick attachment sites on humans
conducted in Georgia and South Carolina from 1995 to 1998 (51). However, a
similar study conducted in South Carolina during 1973–1974 found thatA. amer-
icanumcontributed only 7.7% (N = 220) of the sample of human-biting ticks
(21). Increases in white-tailed deer populations have been suggested as a primary
factor in driving this increase in lone star tick abundance (52).

The dramatic rise in white-tailed deer numbers was preceded by the reforestation
of extensive tracks of land originally abandoned by westward-bound emigrants in
the early 1800s (91). Recovery of deer populations was not an inevitable or mono-
tonic process, and a period of intense overharvesting kept populations at historic
lows until the early 1900s, when most deer herds in the southeastern United States
reached their nadir (Figure 3a). From these historic lows, the number of white-
tailed deer increased about 50-fold during the twentieth century, from an estimated
350,000 animals in 1900 to at least 17 million animals by the mid-1990s (91). This
remarkable increase in population has been matched by an equally impressive
range expansion throughout most suitable habitats in the eastern half of the United
States (Figure 3b) (Quality Deer Management Association, Watkinsville, Georgia,
http://www.qdma.com/). Similar links between white-tailed deer and increases in
the number and range ofI. scapularisand the emergence of Lyme disease, babesio-
sis, and HGE have been described (137).

Deer were nearly extirpated from northeastern states until the reintroduction
efforts of the 1930s (121). In the southeastern United States, where this mammal
is closely linked to increases in the abundance and expanded geographic range
of the lone star tick (52, 99), similar decline and resurgence occurred. As an ex-
ample, by 1920 native deer were considered extirpated from nearly all of western
Virginia, and in the Tidewater area remnant deer herds remained only in remote
areas inaccessible to humans (74). An intensive campaign of white-tailed deer
restoration resulted in repopulation of most of the state by 1970 (74). The deer
population of the southern United States achieved its current level and distribu-
tion only within the past few decades, and population numbers have continued
to increase as assessed by white-tailed deer harvest numbers (123) and counts of
deer-vehicle collisions (91). The impact of white-tailed deer on the dynamics of
lone star tick populations has been discussed (see also Figure 1b).

Other important vertebrate hosts forA. americanumand potential reservoirs
for E. chaffeensisand possiblyE. ewingiihave undergone similarly impressive in-
creases in population growth and geographic distribution. Coyotes have expanded
their range throughout North America since the 1800s, a time when they were re-
stricted to the Great Plains and the western United States (97). In the southeastern
United States, the number of coyotes has increased dramatically, as evidenced by
an increase in harvest of these animals in Mississippi from 500 in 1975 to 40,000 in
1988 (97). These carnivores exist in most habitats and have become established in
suburban and urban locations where contacts and attacks on humans and domestic
animals are increasingly reported (10). These developments increase the potential
for infected lone star ticks to be seeded into the peri-domestic environment.
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Other nonmammalian vertebrates that are considered important sources of blood
for lone star ticks but whose competence as reservoirs for ehrlichiae is unknown
have also experienced increases in geographic range and population numbers.
For example, the dynamical change in geographic distribution and abundance of
the wild turkey paralleled that described for white-tailed deer. By the early to
mid-1800s, populations were extirpated from New England, and by 1920 only 21
of the original 39 states with turkeys had remaining populations (72). Between
1959 and 1990, estimates of the turkey population of the United States increased
from 500,000 to 3.5 million (72), and as determined by the basis of hunter kills,
population numbers continue to increase at a high rate (94).

As wild turkey populations have increased throughout their historic geographic
range, they are credited with reintroducing and increasing population densities of
the lone star tick. Concurrent expansion and increases in turkey and lone star tick
populations have been reported at the extremes of their known range in New York to
the north (94) and Kansas to the west (Figure 2a) (96). Restoration programs have
introduced turkeys into every state except Alaska, including 10 states considered
outside of the ancestral range of this bird (72). It appears certain that the geographic
range ofA. americanumwill continue to expand with the success of this host. It is
also likely that in some of these newly colonized locations, infections in humans
with tick-transmitted ehrlichiae will occur.

Improved Diagnostics and Surveillance

The development and increasing availability of diagnostic reagents, changes in
surveillance activities, and requirements for national notification have had a major
impact on our understanding of the epidemiology and emergence of HME (27).
The number of cases of ehrlichiosis reported to state health departments and to
CDC increased from 69 in 1994 to 363 in 2000 [(93); CDC, unpublished data].
However, diagnostic tests based on serology alone are not sensitive indicators
of disease early in the clinical course (28), and reporting remains inconsistent
or nonexistent in several southern states where HME and EWE are of special
concern. Enhanced surveillance and education programs are required to raise the
level of diagnostic suspicion for HME and EWE in order to provide details as to
the full spectrum of disease, and this will undoubtedly lead to a better apprecia-
tion for the public health impact of HME and elucidation of the epidemiology of
EWE.

Expansion of Highly Susceptible Human Subpopulations

One fundamental factor contributing to the emergence of new pathogens and dis-
eases has been change in host susceptibility, operating at the population level
through immunosuppression. The various means by which large segments of the
human population may become immunosuppressed include aging, malignancy,
and infectious causes (98). Demographics indicate that the U.S. population is be-
coming increasingly weighted toward the older age groups, and the ehrlichioses
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Figure 4 (a) Human monocytic ehrlichiosis (HME) is predominantly a disease of
adults and the elderly (CDC, previously unpublished data). (b) Estimated changes in
the population structure of the United States between 2025 and (c) 2000 Data from
(141).

appear to be predominantly diseases of adults and especially severe in the elderly
(Figure 4a). In one of the first epidemiologic investigations of 149 patients with
HME, increasing age (>60 years) and delay (>8 days) in effective antibiotic
treatment were the only independent risk factors for severe or fatal illness (53).
Aging and the associated “immunosenescence” of the immune system are a well-
described but imperfectly understood phenomenon (114). The United States
Census estimates that the percentage of the population>45 years of age will
increase from 34.9% in 2000 to 41.3% in 2025 (Figure 4b,c) (141). Coupled with
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longer life expectancy is better general heath, which encourages many older per-
sons to enjoy outdoor activities that bring them into contact with ticks (129). This
combination of factors indicates that the number and severity, if not the overall
incidence, of HME and EWE cases will increase as the size of the most susceptible
sector of the population expands to unprecedented levels.

Because ehrlichiae are obligately intracellular pathogens, it is likely that intact
humoral and cell-mediated immunity are essential for successful clearance ofE.
chaffeensis. Severe and fatal HME have been described repeatedly in persons with
compromised immunity from human immunodeficiency virus (HIV) disease (108)
and immunosuppressive therapies (7, 124). Although the absolute prevalence of
HIV among persons in nonmetropolitan areas remains significantly lower than in
urban centers, the number of HIV-infected persons residing in nonmetropolitan
areas has increased most rapidly since the 1980s (55). The expansion of HIV into
rural populations is particularly evident in the southeastern United States (29),
where the risk of HME and EWE is greatest (93). New therapies for HIV have
braked the progression of HIV infection in many patients, permitting a level of
health that allows occupational and recreational activities not previously possible.
Many of these activities (e.g., hunting, hiking, camping, or working outdoors)
place these patients at increased risk for tick bites and have been directly linked
with acquisition ofE. chaffeensisin HIV-infected persons (108).

Other noninfectious causes of immunosuppression have also been identified as
increasing the risk of ehrlichiosis and the potential for severe disease. The number
of persons living with transplants and receiving potent immunosuppressive drugs
will approach 200,000 by the end of 2002 (United Network for Organ Sharing,
http://www.unos.org/framede??fault.asp). Given the relatively small number of
transplant recipients, it is even more remarkable that HME and EWE have been
diagnosed in transplant patients (19, 124).

Technology, Land Use, and Human Activities

Many factors contributing to the increasing size of the segment of our population
most susceptible to infectious diseases, such as HME and EWE, are the direct
result of technological advances in medicine, pharmacology, and public health
practice. Important examples already discussed include improvements to general
health (e.g., through better nutrition and childhood immunizations) that have led to
greater longevity and the aging of the U.S. population and increases in the number
of persons on potent immunosuppressive drugs as part of medical therapy (98).

The reforestation of the eastern United States and the emergence of zoonotic
pathogens associated with white-tailed deer and the ticks that feed on deer have
been discussed. However, the effect of these factors was magnified by a dramatic re-
versal of a demographic trend in the United States that first became noticeable in the
twentieth decennial census conducted in 1980. In contrast to historical and global
trends, the U.S. population between 1970 and 1980 grew faster in nonmetropolitan
regions (17.1%) than in metropolitan regions (10.0%), with much of the growth
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occurring in true rural environments rather than suburbia (86). From 1990 to
1999, the growth rate of nonmetropolitan areas, although still substantial, had
slowed to 7%, whereas metropolitan areas grew by 10% (141). The convergence
of population growth in rural environments, the increase in the numbers and ge-
ographic distribution of tick vectors and reservoir hosts, and the increase in the
proportion of the population considered to be highly prone to more severe disease
helped drive the emergence ofAmblyomma-associated zoonoses.

The local species diversity available to a pathogen can play a role in either
promoting or hindering its persistence and rate of geographic spread (135). The
impact of humans in altering the components of ecological communities has been
dramatic. For example, humans have reduced the numbers of large predators, such
as wolves (Canis lupus) and mountain lions (Felis concolor), throughout North
America. Removing predators from predator-prey cycles can have effects beyond
the direct effects on competitors and prey populations. The geographic spread and
increase in population densities of white-tailed deer and the white-footed mouse
(Peromyscus leucopus) have been facilitated by removal of predators, and this
diminished biodiversity may have contributed to the rapid emergence of a human
disease in the case of Lyme borreliosis (106).

Recreational opportunities associated with rural or suburban living frequently
have been implicated as risk factors for acquiring tick-borne diseases. In 1947,
Topping (138) identified golf as a potential risk factor for RMSF and postulated
that the incidence of the disease would be greatest among less skilled golfers, who
would spend more time in the rough. Nearly 50 years later, Standaert et al. (129)
demonstrated just such an association when an outbreak of HME occurred in a
retirement golf community in Tennessee. Golfers with average scores>100 had
2.4-fold-greater odds of having antibody toE. chaffeensisthan those with scores
<100 (129). In addition, individuals with a habit of retrieving a lost ball had
3.7-fold-greater odds of having antibody toE. chaffeensisthan those golfers who
simply used a new ball. Between 1970 and 2000, the number of persons playing
golf in the United States more than doubled from about 11 million to almost
27 million, and the number of golf courses increased from 10,848 to 17,108;
approximately 27% of golfers are age 50 or over (National Golf Association,
http://www.ngf.org/faq/#1/).

CONCLUSIONS AND FUTURE PROSPECTS

During the next 25 years, the number of cases of disease caused byA. americanum-
associated pathogens will likely continue to increase, partly because of biologic
factors that influence the likelihood of susceptible humans coming into contact with
infected lone star ticks and partly because of increasing physician awareness and
our ability to diagnose these diseases. However, the many biological, sociological,
and environmental factors that drive the distribution and intensity of transmission
of zoonotic pathogens are not static, and certainly other wildcards exist that may
change projections of the frequency of illness in the human population. One such
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factor is the contentious issue of climate change and its potential effect on vector-
borne diseases. The ecology of arthropod vectors and their hosts and the resulting
transmission dynamics of the pathogens they transmit are strongly influenced by
climatic factors (60). Although the impact of climate change on the ehrlichioses
is unknown, models suggest that another tick-borne disease, RMSF, which has
an incidence similar to HME, may decline if average summertime temperatures
increase in the southeastern United States, reducing survival ofD. variabilis ticks
(61). From a medical entomologic perspective, the impact ofA. americanumon
human health has changed dramatically in a relatively short span of time since
1986. Revisiting this topic in future years should be informative and instructive.

The Annual Review of Entomologyis online at http://ento.annualreviews.org
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Figure 2 (a) Approximate distribution ofA. americanumbased on published data or
maps (13, 71, 94). (b) Average annual incidence of HME, 1998–2000, based on states
reporting data to the level of county (ehrlichiosis is not notifiable in all states where
E. chaffeensisandE. ewingiiare endemic) (26, 93).
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Figure 3 (a) Estimated distribution of extant deer populations in the southeastern
United States circa 1950. Map was redrawn from maps produced by the Southeastern
Cooperative Wildlife Disease Study (SCWDS), Athens, Georgia, from data compiled
by State Game and Fish Biologists of the Southeastern Region. Maps may differ from
previously published maps (74) due to problems in resolution. (b) Estimated white-
tailed deer density, 1999. Map provided and published with permission of Quality Deer
Management Association, Watkinsville, Georgia, 30677 (http://www.qdma.com/).
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