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Pneumococcal polysaccharide vaccines have not
been promoted for use in young children because
many constituent serotypes are not immuno-
genic in children <2 years old. Conjugating
pneumococcal polysaccharide epitopes to a pro-
tein carrier would likely increase vaccine immu-
nogenicity in children. We reviewed published
and unpublished pneumococcal serotype and se-
rogroup data from 16 countries on 6 continents
to determine geographic and temporal differ-
ences in serotype and serogroup distribution of
sterile site pneumococcal isolates among chil-
dren and to estimate coverage of proposed and
potential pneumococcal conjugate vaccine for-
mulas. The most common pneumococcal sero-
types or groups from developed countries were,
in descending order, 14, 6, 19, 18,9, 23, 7,4, 1 and
15. In developing countries the order was 6, 14, 8,
5 1,19, 9, 23, 18, 15 and 7. Development of cus-
tomized heptavalent vaccine formulas, one for
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use in all developed countries and one for use in
all developing countries, would not provide sub-
stantially better coverage against invasive pneu-
mococcal disease than two currently proposed
heptavalent formulas. An optimal nanovalent
vaccine for global use would include serotypes 1,
5, 6B, 7F, 9V, 14, 18C, 19F and 23F. Geographic
and temporal variation in pneumeococcal sero-
types demonstrates the need for a species-wide
pneumococcal vaccine.

INTRODUCTION

Streptococcus pneumoniae 1s the leading cause of
fatal bacterial pneumonia in developing countries.'™
Pneumonia accounts for up to 30% of all deaths in
children <5 years old from developing countries,” and
75% of all pneumonia deaths in children <5 years old
occur in infants.” Case management, when optimally
applied, has been effective in reducing childhood pneu-
momia-related mortality by 50% and overall child mor-
tality by 25%.% However, the spread of drug-resistant
pneumococcal strains” '’ may reduce the usefulness of
case management. Immunization with an effective
pneumococcal vaccine is the optimal approach to reduc-
tion of mortality caused by S. pneumoniae.

Antigenic differences among pneumococcal capsular
polysaccharides are the basis for typing S. pneumoniae.
Thus far 84 pneumococcal serotypes have been identi-
fied. The basis for the current 23-valent pneumococcal
polysaccharide vaccine is that antibodies against spe-
cific pneumococcal capsular polysaccharide antigens
provide protection against infection with that sero-
type.'! However, many polysaccharide antigens are not
immunogenic in children <2 years old because, as T
cell-independent antigens, they are not efficiently pro-
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cessed In immune systems that are not fully ma-
ture.' ' Hence available pneumococcal polysaccha-
ride vaccines have not been promoted for use among
young children in whom the incidence of pneumonia-
related death is highest. To overcome this problem new
vaccines are being developed in which pneumococcal
capsular polysaccharides are conjugated to protein
carriers. Two formulas have been proposed which are
targeted against common pediatric serotypes. Formula
A includes serotypes 4, 6B, 9V, 14, 18C, 19F and 23F;
Formula B includes serotypes 1, 5, 6B, 14, 18C, 19F
and 23F.

The effectiveness of potential pneumococecal conju-
gate vaccine formulas to prevent pneumococcal disease
in children depends in part on the proportion of infec-
tions caused by serotypes included in the vaccine. We
reviewed published and unpublished pneumococcal se-
rotype and serogroup data from 16 countries on 6
continents'® *" to identify potential geographic and
temporal variations in pneumococcal serotype and
group distribution in children, estimate the serogroup
coverage of proposed and other potential conjugate
vaccines and determine an optimal conjugate vaccine
formula.

METHODS

Published and unpublished pneumococcal serotype
or serogroup data were obtained from 19 studies in 16
countries (Table 1) in which isolates from blood, cere-
brospinal fluid (CSF), transtracheal aspirate, lung as-
pirate and pleural fluid were collected from children.
Unpublished data were collected from 9 of the 19
studies. Fourteen studies included only data from chil-
dren <5 years old; the other 5 studies included data
from some children between 5 and 15 years of age.

TABLE 1. Contributors to the pneumococeal serotype and serogroup prevalence survey

Site Author

United States Butler

Mexico Echaniz?

Brazil Taunay et al.'?
Urugnay Mogdusy et al.'”
Spain Fenoll

Belgium Vandepitte
Finland Eskola
Denmark Henrichsen

South Africa
Rwanda
Gambia

Klugman
Bogaerts et al !
Lloyd-Evans

Egypt Guirguis et al.®*; Khallaf
Israel Dagan
Pakistan Mastro et al =

Gratten et al 7=
Hansman®?

Papua New Guinea
Australia
* Unpublished materials.

P AN sterile sites excluding middle ear fluid

Age

(Yours) Yeurs Sample Source
- h 1977 1994 3h23 B.C.P
5 1992--1993 120 B.C
2 1977-198% 308 «
5 1987 1989 48 B
5 1979 1993 167 B.C.P.T
- H 1991 77 B.C
<2 1985-- 1989 235 ¥
14 1991-1992 164 B.C
- b 1987-1991 1138 B.C
- 15 1984-1990 130 B.C
- h 1991 54 B.CLAP
-6 1977-1978; HY ¢
1992 27 B
5 198K- 1991 133 Jews
91 Arabs B.C
5 1986-1989 87 B
1989-1990 81 B
-5 1980-- 19871 151 B.C
Children 19701979 219 B.C

i PNG data submitted by De. Lehmann were obtuined from two studies published by Gratten et ol #40
B. blood; ', cercbrospinal fluid: P pleural fluid; T, transtracheal aspirate: A, lung aspirate
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Isolates from vaccinated children (known only for the
United States) were excluded from analysis.

The primary level of analysis of these data was of
pneumococcal serotypes or serogroups that are identi-
fied by pneumococcal antisera. Pneumococcal sero-
groups include several antigenically similar serotypes
that cannot be distinguished by routinely available
antisera (e.g. serogroup 6 includes serotypes 6A and
6B), whereas serotypes include a single antigen (e.g.
serotypes 1, 5 and 14). An additional set of antisera,
factoring sera, is required further to type isolates
belonging to a serogroup. Because the majority of
studies did not use factoring serum for differentiation
of serotypes among serogroups, data were analyzed for
serotype or serogroup prevalence rather than serotype
prevalence alone.

The possibility that age or specimen type might
influence serotype or serogroup distribution was eval-
uated when individual studies reported appropriate
data. The prevalence of individual serotypes or groups
was determined by age (<2 years vs. 2 to 4 years) in
five countries and by specimen source (blood vs. CSF)
in six countries.

To determine whether serotype or group prevalence
of sterile site isolates are stable over time, annual
changes in serotype or group distribution were ana-
lyzed in two countries, the United States and South
Africa, which collected data for at least 5 consecutive
years.

To obtain estimates of serotype or group prevalence
in developed and developing countries, we determined
25% trimmed means for each serotype or group in each
country group and then corrected to 100%. This process
calculates mean values from the middle 50% of the
data, “trimming” the upper and lower 25% of data
points, thereby reducing the impact of outlying data.
We refer to the prevalence thus obtained as the cor-
rected trimmed mean prevalence (CTMP). The devel-
oped country group included the United States, Bel-
gium, Denmark, Finland and Spain. The developing
country group included Brazil, Uruguay, Rwanda, The
Gambia, Egypt, Pakistan and Papua New Guinea
(PNG). Data from South Africa, Israel and Australia
were excluded from either group because studies from
these countries included sizable populations with char-
acteristics of developed and developing countries. Data
from more than one study within a country (i.e. Paki-
stan, Egypt and PNG) were combined when similar
enrollment criteria were used.

On the basis of country group CTMPs we determined
several potential heptavalent and nanovalent pneumo-
coccal conjugate vaccine formulas that would provide
the greatest serogroup coverage in developed and de-
veloping countries. Global CTMPs were used to deter-
mine an optimal vaccine formula for global use. For
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each potential vaccine formula, the most commonly
occurring serotype within a serogroup was selected for
inclusion. Potential formulas included: (1) a combina-
tion of the nine serotypes included in the two currently
proposed vaccine formulas (Formula A + B vaccine): (2)
vaccines incorporating the seven and nine most com-
mon serotypes in developed or developing country
groups (Developed and Developing Custom 7 and Cus-
tom 9 vaccines; (3) the nine most common serotypes
globally (Global 9 vaccine).

Serogroup coverage in developed and developing
country groups was determined for proposed and po-
tential vaccine formulas by summing the CTMPs of
serotypes and groups corresponding to the constituent
serotypes of the respective vaccine. Thus determina-
tion of serogroup coverage assumes that all serotypes
within any serogroup confer serogroup-wide protection.
In fact this is likely to be true only for serogroup 6, in
which the antigenic similarities between serotypes 6A
and 6B are such that serogroup-wide protection occurs
after immunization with serotype 6B antigen.!! For
other serogroups cross-protection appears to be very
limited.

To determine the extent to which serogroup coverage
overestimates true coverage, we compared serogroup
coverage with serotype-related coverage of the poten-
tial vaccine formulas using data from countries in
which factoring sera were used to identify serotypes
within groups. In determining serotype-related cover-
age we assumed that of all serotypes contained in the
two formulas, only 6B had cross-reactivity with an-
other serotype (i.e. 6A).

The statistical significance of differences in sero-
group prevalence between age groups and specimen
types within countries was determined using Yates’
corrected chi square on Epi-Info* software. Fisher’s
exact test was used when the expected number of
isolates of a particular category from children was <5.
The significance of differences in the prevalence of
serotypes or groups by year within the United States
and South Africa was determined with a chi square test
of independence. If either country exhibited significant
variation of serotype or group distribution by year,
additional chi square tests for independence were per-
formed for each year. The significance of differences in
coverage of potential vaccine formulas within countries
was determined using McNemar’s test. All P values are
two tailed.

RESULTS

Serotype or group prevalence by country
group. The 10 most common serotypes or groups
associated with invasive pneumococcal disease in chil-
dren from developed countries are, in descending order,
14, 6, 19, 18, 9, 23, 7, 4, 1 and 15 (Table 2). The most
common serotypes or groups among children in devel-
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TABLE 2. Serotype and serogroup prevalence by country and CTMP by country group

Country

1 { 3] 6 i3} 11 18
Developed
United States 1.1 6.7 [SRCR i ) 27.3 9.4
Spuin 3.0 24 720170 4R 2.6 1.8
Belgium he 26 1.3 7.8 9.0 28.6 9.1
Denmark 6.7 1.8 18 2001 6.7 134 165
Finland 0.0 6.0 0.0 184 60 215 7.6
Trimmed meuan 3.1 3.7 1.1 176 66 2007 8.7
CTMP 31 3.7 1.1 179 6.7 21.0 8.8
Developing
Mexico 0.8 08 08 175 6.7 9.2 2.5
Brazil 6.4 26 103 181 5.1 10.7 105
Uruguay 6.3 21 16 4.2 105 39.6 0.0
The Gambia 10.2 0.0 8h 153 6l 322 1.7
Fgvpt 314023 4T R1o93 7.0 15
Pakistan 0.6 0.0 420 107 6.5 1.2 2.4
PNG 26 0.7 106 6.6 2.0 6.6 0.7
Rwanda 223 0.0 146 100 - 2.3 14.6 3.1
tadjustedy 0.75
Trimmed mean 6.1 09 8hH 1100 59 10.4 2.4
C'T™MP S L1 108 1o 7 1:3.2 3.1
Intermediate
South Africa 1.5 3.5 1.7 280 18 19.2 3.9
Israel 134 2.7 165 107 6.3 14.7 6.7
Australia 1.6 9.1 05 105 6.4 224 119
Trimmed mean 100 13 400 1360 66 19.0 7.1
T™MP 109 4.7 14 B8 61 20.7 7.7

oping countries are, in descending order, 14, 6, 1, 5, 19,
9,23, 18, 15and 7.

Serotype 14 and serogroups 6 and 19 are consistently
among the most frequent sterile site isolates from sick
children regardless of country. Among the five devel-
oped countries, serotype 14 and groups 6 and 19 have
CTMPs of 22.0, 17.9 and 16.0, respectively. Among the
eight developing countries, serotype 14 and groups 6
and 19 have CTMPs of 13.2, 14.0 and 7.7%, respec-
tively.

Serotypes 1 and 5 rank 4th and 3rd among the
developing countries, with CTMPs of 8.1 and 10.8%,
respectively. Among developed countries, however, se-
rotypes 1 and 5 rank 9th and 11th with CTMPs of 3.1
and 1.1%, respectively.

Serogroup 18 is i1solated more frequently in devel-
oped then in developing countries, ranking 4th with a
CTMP of 8.8%. In developing countries it ranks 8th
with a CTMP of 3.2% .

Serotype 4, which is included in the proposed hep-
tavalent vaccine Formula A, is not one of the seven
serotypes or groups most commonly i1solated from chil-
dren in either developed or developing countries. It has
a CTMP of 3.7% and 1.1% and ranks 8th and 14th in
developed and developing countries, respectively.

A wider range of serotypes or groups causc a sub-
stantially greater proportion of disease among children
in developing compared with developed countries. In
developed countries the leading 10 serotypes or groups
comprise 72.8% of all isolates, whereas in developing
countries the leading 10 serotypes or groups comprise
74.9% of all isolates. In addition the prevalence of some

R Ao
x N1 —

Scrogroup Prevalence 0

19

23 2 7 12 15 16 31 45 46 Other
7.1 0.0 1.6 0.6 1.1 0.3 0.0 0.0 0.1 6.0
15.0 0.6 3.0 0.0 1.8 0.6 0.0 0.6 0.0 8.8
H.2 0.0 6.5 0.0 (1.0 0.0 1.3 0.0 0.0 7.8
2.4 0.0 6.7 0.6 2. 0.6 0.0 0.0 0.0 4.9
7.3 0.0 8.5 0.3 (L9 0.0 0.0 0.0 0.0 6.1
6.5 0.0 H.d 0.3 1.3 0.3 0.0 0.0 0.0 7.6
6.6 0.0 n.h 0.3 1.3 0.3 0.0 0.0 .0 7.7
20.8 2.5 0.8 0.8 H.0 1.7 0.0 0.0 0.0 5.8
o 1.9 1.9 1.6 2.5 0.3 0.0 0.0 .0 14.7
2.1 0.0 4.2 0.0 2.1 21 0.0 0.0 0.0 12.2
0.0 0.0 0.0 8.0 1.7 0.0 1.7 0.0 6.8 3.2
1.2 2.3 3.5 hs 0.0 (.0 0.0 2.3 4.7 11.6
4.2 0.0 (.6 0.0 3.6 7.1 (.0 0.0 0.0 20.2
7.3 7.3 1:3.2 2.6 0.7 2.0 0.7 6.0 6.0 17.1
2.3 2.3 2.3 2.4 2.3 2.4 23 23 23 31.6
075 095 LTh 076 075 075 075 0760 075 (24 1)
3.2 1.2 1.7 1.4 1.5 1.2 0.2 0.2 1.4 15.0
4.1 1.6 2.2 (B 2.2 2.5 0.2 0.2 1.7 29.0
3.2 1.1 28 1.1 4.5 0.0 0.2 0.0 0.0 5.5
4.6 (L0 hot 3.1 0.4 1.3 0.0 0.4 0.0 1.9
7.8 (L0 2.3 |} 0.4 0.5 0.0 [§X0) 0.0 11.7
4.2 0.2 3.2 1.6 1.5 0.6 0.0 0.1 0.0 G4
4.6 0.2 3.4 1.7 1.6 0.6 0.0 0.1 0.0 7.0

serotypes or groups varies widely between developing
countries. For example serotype 46 is commonly iso-
lated in The Gambia (6.8, Rank 5), PNG (6.0%, Rank
8) and Egypt (4.7%, Rank 5) but is rarely isolated in
other developing countries.

Serotype and group prevalence by age group
and specimen type. In most studies in which age-
stratified data were available (the United States, Bel-
gium, Isracl, PNG and South Africa), serotype or group
prevalence did not differ for children <2 years vs.
children 2 to 4 years old. In Finland, however, serotype
14 infections were identified more often in children <2
than in children 2 to 15 years old."

In two of six studies reporting serotype or group
prevalence by specimen type, prevalence differed sig-
nificantly for blood vs. CSF isolates. In the United
States serotypes 4 (231/3336 (6.9%) vs. 6/324 (1.9%),
RR = 3.7, (P ~0.001) and 11 (925/3336 (27.7%) vs.
72/324 (22.2%), RR = 1.3, (P = 0.04) and serogroup 9
(247/3336 (7.4% ) vs. 13/324 (4.0%), RR = 1.9, (P =0.03)
were significantly more likely to be isolated from blood
than from CSF. Serogroups 6 (85/324) (26.2%) vs.
555/3336 (16.6%), RR = 1.6, (P < 0.001) and 7 (12/324
(3.7%) vs. 49/3336 (1.5%), RR = 2.5, P = 0.006 were
more likely to be isolated from CSF. In PNG serogroup
19 (10/56 (17.9% ) vs. 1/95 (1.1%), RR = 17.0, P =0.001)
and serotype 14 (7/56 (12.5% ) vs. 3/95 (3.2%), RR = 4.0,
P = 0.04) were isolated more frequently from blood
than from CSF, whereas serotypes 2 (10/95 (10.5%) vs.
1/56 (1.8%), RR = 5.9, P = 0.055 and 5 (14/95 (14.7%)
vs. 2/56 (3.6%), RR = 4.1, P = 0.06) were more likely to
be isolated from CSF.
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Serotype or group prevalence over time. Among
the two studies reporting annual serotype or group
prevalence, overall distribution varied significantly by
year for South Africa (P = 0.03) but not for the United
States (P = 0.18). Blood and CSF specimens collected
from children <5 years old at several sites throughout
South Africa from 1987 to 1991 showed significant
variation in serotype or group distribution in 1987 (P =
0.02) and in 1991 (P = 0.05) compared with other
years. Serogroup 23 was the fifth most frequently
isolated serotype or group in 1989 and 1990 but ranked
12th in 1991. Similarly serogroup 18 ranked fifth in
1987 and 1988 but was not among the top seven
serotypes or groups from 1989 through 1991.

Variation in serogroup coverage over time.
Temporal variation in serotype or group prevalence in
South Africa resulted in variation of serogroup cover-
age over a 5-year period for Formula A between 69.1
and 75.5%; Formula B coverage varied between 76.5
and 83.2%. No annual differences in coverage were
statistically significant.

Serogroup coverage of potential vaccine for-
mulas by country group. Table 3 lists the 8 vaccine
formulas for which serogroup coverage was deter-
mined. Table 4 lists the serogroup coverage for each of
the 8 formulas by country group. In developed coun-
tries serogroup coverage for Formula A is greater than
that for Formula B (80.7% vs. 74.5%). Formula A
coverage by country ranges from 71 to 89% (Table 5)
and is significantly greater than that of Formula B in 2
of 5 countries (the United States and Finland). In
developing countries Formula B serogroup coverage is
greater than that of Formula A (60.9% vs. 50.6%).
Formula B coverage by country ranges from 42 to 73%
and is significantly greater than that of Formula A in 4
of 8 countries (Brazil, Rwanda, Egypt and PNG).
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The Developed Country Custom 7 vaccine (which
includes the seven most common serotypes or groups
from developed countries) provides slightly better se-
rogroup coverage than Formula A (82.5% vs. 80.7% for
the developed country group. The Developed Country
Custom 9 vaccine increases coverage to 89.3% and
gives significantly better coverage than Formula A in
each of the 5 countries.

The Developing Country Custom 7 vaccine increases
serogroup coverage slightly compared with Formula B
for the developing country group (65.3% vs. 60.9% ). The
Developing Country Custom 9 vaccine increases cover-
age to 70.6% and provides significantly better coverage
than Formula B in 5 of the 8 countries (Mexico, Brazil,
Uruguay, Egypt and Pakistan).

Among the four nanovalent formulas the Developed
and Developing Custom 9 formulas by definition pro-
vide the best coverage for their respective country
groups. However, serogroup coverage of the Global 9
formula approximates that of the Developed Country
Custom 9 vaccine (86.7% vs. 89.3%) and equals that of
the Developing Country Custom 9 vaccine {70.6% ) for
developed and developing country groups. Formula A
+ B vaccine, which combines all serotypes of Formulas
A and B (1, 4, 5, 6B, 9V, 14, 18C, 19F, 23F), provides
the lowest coverage for developed and developing coun-
try groups (85.0 and 69.5%, respectively) among the
four nanovalent formulas.

Serogroup coverage vs. true vaccine coverage.
Serotype-specific data were available from seven coun-
tries (United States, Mexico, Brazil, Uruguay, Den-
mark, Egypt and Pakistan). Serogroup coverage ex-
ceeded serotype-related coverage for Formula A by a
median of 9.1% (interquartile range, 6.2 to 12.8%) and
for Formula B by a median of 4.8% (interquartile
range, 2.1 to 10.0% ).

TABLE 3. Serotype antigens included in proposed and potential heptavalent and nanovalent pneumococcal conjugate vaccine
formulations

Vaccine

Formula A 4 6B
Formula B 1 6B
Formula A + BB 1 4 6B
Developed Country Custom 7 6B
Developed Country Custom 9 4 6B
Developing Country Custom 7 6B
Developing Country Custom 9 6B
Global 9 6B

v

o1 o

[N

7

Serotype Antigens

9V 14 18C 19F 23K

14 18C 19F 23K
AY 14 18C 19F 231K
EAY 14 18C 19F 23F
9V 14 18C 19F 23K
Y 11 19F 23K
9V 14 158 18C 19F 23k
9V 14 18C 19F 231

TABLE 4. Serogroup coverage of proposed and potential pneumococcal conjugate vaccine formulas, by country group

Formula Formula
A B

(

74.5

6.9

Developed countries
Developing countries

oox

[
B o~

Serotype Coverage (0)

Custom Formula Global Custom
7 A+ B Y 49

827 85.0
65

69.5

86.7
70.6

89.3
72.6

w
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TABLE 5. Serogroup coverage for proposed pneumococcal
conjugate vaccine formulas A and B, by country

Country N Formula A Formula B P
Developed
United States 3523 884 THN 0.001
Spiin 167 611 67.2 0.16
Belgium n TTY T2N 0.13
Denmark 164 713 713 0.93
Finland 235 812 T2 0.001
Developing
Mexico 120 71T 65.8 0.06
Brazil 308 (! 6.1 0.002
Uruguay 48 A85 66.8 045
Rwanda 130 330 681 0.001
The Gambia HY H9.1 3.0 0.06
Evpt 86 3.7 HR.2 0.002
Pakistan 168 637 62.0 0.5H0
Papua New 151 312 417 0.002
Guinea
Intermediate
South Africa 1138 T2.6 THH 0.001
[sracl 224 H1l 7H0 0.001
Australia 219 TS 67.1 0.001
DISCUSSION

This review reveals important limitations in avail-
able serotype and group data from sterile site isolates
in children. Data that are available from only a small
number of countries may not be representative of all
children in the developed or developing world. For
example data from India and China, countries that
include the majority of the world's children, were not
available for our analysis. Also particular study meth-
ods make generalizability of serotype and group data
difficult: (1) the small sample size of many studies
limits the precision of serotype or group prevalence and
vaceine coverage estimates; (2) studies of short dura-
tion may not accurately portray serotype or group
prevalence because of annual fluctuations in serotype-
specific infection; (3) obtaining isolates from children
who are brought to one or several study hospitals is

likely to result in a greater degree of concordance of

serotypes or groups than actually exists nationwide
because children from the same cachement area are
likely to have been exposed to the same pneumaococeal
strains; finally (4) if serotype or group distribution is
different for lung and blood vs. CSF isolates, vaceine
coverage estimates to prevent invasive disease second-
ary to pneumonia, which 1s more common than menin-
gitis, may be inaccurate when isolates from CSF have
been included in determining serotype or group preva-
lence.

The limitations and variation of study methods pre-
clude statistical comparisons of serotype and group
prevalence between countries or regions. Comparative
analysis of results of prospective seroprevalence stud-
ies would be facilitated by the use of similar enrollment
criteria (i.c. including only children -5 years old who
have not received anti-pneumococcal antibiotics and
who have pneumococeal isolates from lung tissue, pleu-
ral fluid, blood and/or CSF) and by collection of a
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sufficient number of isolates from representative pop-
ulations to provide adequate precision in serotype and
group prevalence estimates. Potential biases intro-
duced by temporal variation could be reduced by col-
lecting isolates during 3 to 5 consecutive years. Appar-
ent differences in serogroup prevalence by country and
region could then be systematically evaluated to guide
more confidently vacceine design and strategy.

Despite these limitations our analysis has clarified
certain issues concerning the design and use of vac-
cines to reduce the burden of pneumococcal disease
among children in developed and developing countries:
serotype 14 and serogroups 6 and 19 predominate
worldwide; serotypes 1 and 5 are common in most
developing countries; and serogroup 18 is common in
developed but not in developing countries.

Data from developing countries indicate that many
serotypes or groups that do not frequently cause dis-
ease in children from developed countries are fre-
quently but inconsistently isolated from children in
developing countries. This difference may reflect in-
creased susceptibility of children from developing coun-
tries to a greater variety of pneumococcal strains
because of malnutrition, coincident diseases (e.g. ma-
laria) and indoor smoke. Also household crowding and
lack of personal hygiene ti.e. hand-washing) among
numerous baby and child caregivers may facilitate
greater transmission of respiratory pathogens in devel-
oping as opposed to developed countries.

The greater number of serotypes and groups causing
disease in developing countries implies that optimal
coverage for individual countries would be obtained by
customizing vaccine formulas for national use accord-
ing to national serotype and group data. However, such
a vaccine strategy would be expensive, requiring na-
tional pneumococcal surveillance for several consecu-
tive years to determine which serotypes to include in a
nationally designed vaccine formula. Production of a
standardized vaccine based on the leading serotypes
and groups causing discase globally would likely be a
less expensive option. A single nanovalent formula
including serotypes 1, 5, 6B, 7F, 9V, 14, 18C, 19F and
23F may provide the greatest vaccine coverage in
preventing life-threatening pneumococcal infections in
children worldwide.

It is important to note, however, that no single
vaceine formula of limited valency will provide compre-
hensive coverage for children in all developing coun-
tries. The variety of serotypes and groups causing
disease among children from developing countries re-
sult in wide variations of vaccine coverage even with a
customized nanovalent formulation. Although the De-
veloping Country Custom 9 formula by definition pro-
vides the best coverage of all potential vaccine candi-
dates evaluated in this study for developing countries,
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individual developing country serogroup coverage for
this formula ranges from 44 to 90%. Increasing the
number of serotypes included in a customized formula
beyond nine might benefit individual countries in a
particular year. However, such an increase cannot
substantially improve coverage overall because incre-
mental gains in coverage decrease with each successive
serotype added to the vaccine.

Factors other than serotype or group coverage, such
as immunogenicity (or a different immunologic corre-
late of protection) and clinical efficacy, are important
determinants of the effectiveness of proposed pneumo-
coccal conjugate vaccines to reduce the morbidity and
mortality from pneumococcal disease. Most Phase 11
(immunogenicity) studies that have been published
have generally included a small number of vaccine
serotypes.”” * More importantly because antibody con-
centrations corresponding to protection are not known,
the potential impact of possible conjugate vaccine for-
mulas cannot be determined until Phase III tefficacy)
study results are known.

Future hopes of reducing childhood mortality by
vaccinating against pneumococcus do not lie solely in
the pneumococcal conjugate vaccine formulas men-
tioned here.”’ Although global use of a conjugate vac-
cine may reduce the high rates of childhood mortality
in developing countries, the geographic and temporal
variation of pneumococcal strains isolated from sick
children suggests that a species-wide, protein-based
vaccine may be needed to provide more widespread
protection against death and disease caused by pneu-
mococcus. One such vaccine might conjugate pneumo-
coccal capsular polysaccharides to an immunogenic
pneumococcal protein. Additional research concerning
such proteins, including pneumolysin toxoid, pncumo-
coccal surface protein A (Psp-A) and a 37-kDa protein
unique to S. pneumoniae,''™ may be the key to
developing a vaccine that provides optimal protection
against pneumococcal disease in children worldwide.
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Comparison of 10% povidone-iodine and 0.5%
chlorhexidine gluconate for the prevention of
peripheral intravenous catheter colonization in
neonates: a prospective trial

JEFFERY S. GARLAND, MD, SM," ROSANNE K. BUCK, MSN, CNNP, PATRICIA MALONEY, MSN,
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The purpose of the study was to compare the
efficacy of 109 povidone-iodine with that of 0.5%
chlorhexidine gluconate in 709 isopropyl alcohol
for the prevention of peripheral intravenous
catheter colonization in neonates. This was a
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multicenter, nonrandomized prospective study
in a tertiary neonatal intensive care setting in
which povidone-iodine and chlorhexidine glu-
conate were each used as antiseptic skin prepa-
rations over sequential 6-month periods. During
the first 6 months of the study when povidone-
iodine was in use 9.3% (38 of 408) of catheters
were colonized. During the second 6 months of
the study when chlorhexidine gluconate was in
use, catheter colonization occurred in 4.7% (20 of
418, P = 0.01). Catheter-related bacteremia oc-
curred during only 0.2% (2 of 826) of all catheter-
izations. Heavy skin colonization before catheter
insertion (relative risk, 3.6; 95% confidence inter-
val, 1.9, 7.0), catheterization =72 hours (relative
risk. 2.0; 95% confidence interval, 1.01, 3.8) and
gestational age =32 weeks (relative risk, 1.8; 95%
confidence interval, 1.02, 3.3) increased coloniza-



