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IMPROVED ALTERNATING-DIRECTION IMPLICIT 
METHOD FOR SOLVING TRANSIENT THREE- 
DIMENSIONAL HEAT DIFFUSION PROBLEMS 

M. J .  Chang and L. C. Chow 
Mechanical Engineering Department. Universify of Kentucky, 

Lexington. Kentucky 40506 

W. S. Chang 
Aero Propulsion and Power Laboratory, Wright Research and Development 
Center, Wright-Pa~erson A i r  Force Base. Ohio 45433 

The conventionrrl three-dimensional alterm'ng-direcrian implicit (AIM) method is m o w e d  
by introducing an f factor (0 < f < I ) .  This rnodifieation allows the lime step limit to be 
increased by a factor of Ilf with the solutions remaining srablc and high accuracy being 
retained. This new method is tested for two different boundary condirians: a constnnt heat 
flur and a sudden healing of the su#face to a constant temperature. I n  addifion, il is 
compared with the popular B M ~  and D o u g h  methods, the resub showing that the new 
AD1 method has higher accumcy and requires less computer storage than those methods. 

INTRODUCTION 

The diffusion of heat in solids has numerous applications in various branches of 
science and engineering. Generally, there are two different approaches to deal with this 
type of problem: analytical and numerical. The analytical methods are usually only 
applicable to linear problems with simple geometries. On the contraly, the numerical 
methods are useful for handling practical problems involving nonlin~:arities, complex 
geometries, andlor complicated boundary conditions. 

Thibault [I] compared nine numerical schemes for the solution of the three-di- 
mensional heat diffusion equation. Considering the relative accuracy, the computation 
time, and the computer core storage requirement, he recommended alternating-direction 
implicit (ADI) finite difference methods as being among the most preferred methods. 
The conventional two-dimensional AD1 method was introduced by Peaceman and Rach- 
ford [2] in 1955. The advantage of the AD1 method is that only tridiagonal matrices need 
to be solved. However, when extended to three dimensions, the conventional AD1 method 
is conditionally stable, and very small time steps are required to ensure convergence and 
stability. Other forms of the AD1 method include the Douglas method 131 and the Brian 
method [4]. These two AD1 methods are unconditionally stable and possess the advantages 
of the implicit scheme with no limitation on size of the time step. However, Thibault [ l ]  
pointed out that these two unconditionally stable AD1 methods cannot retain accuracy if 
the time step is more than 2 times larger than the time step limit required for the 
conventional AD1 method. 
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70 M. J. CHANG ET AL. 

NOMENCLATURE 

truncation error function, defined in Eq, 
(27) 
number of nodal points in x ,  y, and r 
directions 
thermal conductivity 
half length of parallelepiped 
dimensionless half length of 
parallelepiped 
characteristic length 
surface heat flux 
dimensionless surface heat flux 
time 
temperature 
temperature at intermediate time steps 
space coordinates 
dimensionless space coordinates 
thermal diffusivity 
central difference operator 
averaee temoerature error 

e dimensionless temperature 
A stability parameter, defined in Eq. ( 8 )  
5 amplification factor of truncation error 

function 
T dimensionless time. or Fourier number 

Subscripts 

a analytical solution 
i, j, k mesh point indices in x, y, and z 

directions 
w wall surface of parallelepiped 
x, y. z indicate x ,  y, and z directions 
0 initial 
I ,  2, 3 indicate x ,  y, and r directions 

Superscript 

n time index 

In this paper, the conventional three-dimensional AD1 method is modified by an f 
factor (0 < f < I). A very important characteristic of this modification is that it is 
consistent with physical considerations and is not just based on mathematical manipu- 
lations. This modification allows the time step limit to be increased by approximately a . .. 

factor of Ilf without compromising significantly on the accuracy of the numerical solution. 
This new AD1 method is presented and compared with the Brian and Douglas AD1 methods - 
for two cases where analytical solutions are available. Compared with the Brian and 
Douglas methods, this new AD1 method has higher accuracy when large time steps are 
used. Also, the present method requires less computer storage. 

MATHEMATICAL FORMULATION 

First, we will look at the formulations of existing three-dimensional AD1 methods: 
the conventional, the Brian, and the Douglas methods. Then the proposed AD1 method 
designed to overcome the shortcomings of these existing AD1 methods will be introduced. 

The differential equations for the three-dimensional heat diffusion equation can be 
written as 

Introducing dimensionless parameters, 
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AD1 METHOD FOR 3-D DIFFUSION PROBLEMS 

Eq. ( I )  becomes 

Conventional AD1 Method  

In the conventional AD1 method, the heat diffusion equation is solved implicitly 
in turn in the three coordinate directions for 113 of the time increment each 151. The basic 
finite difference equations for each of the three 113 time steps can be expressed as 

For convenience of analysis, we let AX = AY = AZ. After rearranging, Eq. (3) 
becomes 

Similar equations can be easily derived from Eqs. (4) and (5:) for the y and z 
directions. Physically, an increase in the central nodal temperature or an increase in any 
one of the neighboring nodal temperatures at the old time step should, with other conditions 
remaining unchanged, lead to an increase in the central nodal temperature at the next - - 
113 time step. This implies that all the coefficients on the righthand side of Eq. (6) must 
have the same sign (positive) as the coefficient of U,,,,,. In other words, negative coef- 
ficients on the righthand side of Eq. (6) make the equations physically unrealistic and 
may lead to low accuracy [6]. Similar statements can be made regarding the equations 
for the y and z directions. 

On the righthand side of Eq. (6), only the coefficient for 02j,k could be negative if 
the time step AT is large. In order to have a positive coefficient for O;j,k, it is required 
that 

Since A X  = AY = AZ, the equations for the y and z directions require the same 
condition as in Eq. (7) to hold. The other important problem to consider is stability. We 
define the stability parameter A as 
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M. J. CHANG ET AL. 

The stability criterion for the conventional three-dimensional AD1 method is [5] 

A 5 1.5 (9) 

Equation (7) is the condition for the solution of the conventional three-dimensional 
AD1 method to be physically realistic and have good accuracy. Equation (9) is the criterion 
for the solution to be stable. The main disadvantage of the conventional AD1 method is 
that it is conditionally stable and a very small time step is required. 

Brian's AD1 Method 

The method proposed by Brian [4] is similar to the conventional AD1 method. 
However, the successive approximations of temperature are calculated at the half time 
step. The basic equations of Brian's AD1 method are given as 

Subtracting Eq. (LO) from Eq. (I I), we have 

Subtracting Eq. (I I) from Eq. (12), we have 

Equations (10). ( 1  l ' ) ,  and (12') are the simplified equations suggested by Brian. 
After rearranging, the following equations can be obtained: 
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AD1 METHOD FOR 3-D DIFFUSION PROBLEMS 

Brian showed that his scheme is unconditionally stable. However, there also exist 
negative coefficients on the righthand sides of the discretization equations, Eqs. (13)- 
(15). As we mentioned earlier, these negative coefficients are physically unrealistic. 

Douglas's AD1 Method 

Another unconditionally stable three-dimensional AD1 method was presented by 
Douglas (31. The algorithm is given by the following three equations: 

i , ,  - j I 
AT = 56!(ui.jr + 0;j.t) + 6:o;j.n + 6 X j . k  (16) 

Subtracting Eq. (16) from Eq. (17), we have 

Subtracting Eq. (17) from Eq. ( la) ,  we have 

Equations (16). (17') and (18') are the simplified equations and can be rearranged 
as 
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M. J. CHANG ET AL. 

The unconditional stability of this algorithm was proven by Douglas 131. However, 
as in Brian's AD1 method, Douglas's AD1 method has negative coefficients on the 
righthand sides of the discretization equations, Eqs. (19)-(21). 

New AD1 Method 

As we have seen above, the three existing AD1 methods all have shortcomings. 
The conventional AD1 method is conditionally stable, and very small time steps are 
required to satisfy the stability criterion. All three AD1 methods have a common problem: 
negative coefficients in their discretization equations that are physically unrealistic. 

In light of the above observation, an improved AD1 method is proposed. The 
conventional three-dimensional AD1 method is modified by introducing an f factor (0  < 
f < I). Consider a control volume as shown in Fig. 1 : the heat fluxes from the directions 
in which the equation is implicit are multiplied by a factor (3 - 2f) and the heat fluxes 
from the remaining four directions are multiplied by a factor f. As we can see, the total 
heat flux counted in each direction through a full time step remains unchanged. The finite 
difference equations, Eqs. (3)-(5). of the conventional AD1 method are modified by an 
f factor and become 
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AD1 METHOD FOR 3-D DIFFUSION PROBLEMS 

First  S t e ~  

n+1/3 
(3-2f) Q i - , , j , k  

Second Step 

n+ 1 / 3  
(f) Qi-l,j,k --b 

Third SteD 

Fig. I The f factor modified AD1 method 
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M. J. CHANG ET AL. 

After rearranging Eq. (22), the following discretization equation can be obtained: 

Similar equations can be easily derived from Eqs. (23) and (24) for the y and z 
directions. On the righthand side of Eq. (25), only the coefficient for central nodal 
temperatures at a previous time step could be negative. To avoid a negative coefficient, 
we require 

The stability criterion can be determined by von Neumann's method. Assuming 
that there exists an error function E,,,,,,, at each nodal point in the following form [7], 

where the parameter 5 is the amplification factor and n = 7/87,  the error will be bounded, 
provided that 

This is the condition for the solution to be stable. It can be shown for these linear 
problems with constant coefficients that the error function E,,,.,, also satisfies the finite 
difference equation, Eq. (25), and two similar equations for they and z directions. With 
AX = AY = AZ, substitution of E,,,,,,, from Eq. (27) into these equations gives 

where g = 3 - 2f. 
Here, t,, C2, and 5, are the amplification factors for the finite difference equations 

for the x, y ,  and z directions, respectively. Since these equations are used alternately, 
the stability condition should be 
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AD1 METHOD FOR 3-D DIFFUSION PROBLEMS 

Rearranging [1[2[3 as follows, 

the stability condition can be written as 

The stability criterion can be obtained from either one of the following three con- 
ditions: 

For the condition la( 5 1, since the value of a is always less than unity, we need 
only consider the condition a 2 - 1. This leads to 

1.5 
A 5 

( f )  sin2 (P3AX12) - (g - f )  sin2 (P2AX/2) 

It should be mentioned here that the parameter A defined in Eq. (8) is always 
positive. The righthand side of the above equation has a minimum value when sin2 @,AX/ 
2) = I and sin2 (P2AX/2) = 0. So the stability criterion becomes 

Comparing Eqs. (26) and (31) with Eqs. (7) and (9), the time step limit for the 
conventional AD1 method can now be increased by a factor of Ilf by using this new AD1 
method. The computational results, which will be discussed later, show that this modi- 
fication allows the time step limit to be increased by 2 orders of magnitude with f = 
0.01, and the solutions still remain stable with high accuracy. 

Also, it should be mentioned, this new AD1 method only requires two-thirds of the 
computer storage compared with the Brian or Douglas methods. This is because only the 
temperatures at one intermediate time step need to be stored. 

RESULTS AND DISCUSSION 

To validate the new AD1 method, the finite difference solutions obtained are tested 
for a simple geometry with two different boundary conditions: a constant surface heat 
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78 M. 3. CHANG ET AL. 

flux and a sudden heating of the surface to a constant temperature. In addition, it is 
compared -- with the Brian and Douglas - methods. 

Consider a parallelepiped ( -  L, 5 x 5 L , ,  -L2 5 y 5 L,, -L, 5 z 5 L,), shown 
in Fig. 2, having constant thermophysical properties and initially at a uniform temperature 
0, = 1 .O.  At time T > 0, the parallelepiped is allowed to have heat flow through its 
boundaries. To obtain the temperature distribution within the parallelepiped, Eq. (2) must 
be solved with the following initial conditions: 

where L,  is chosen as the characteristic length LC, L; = L2/L,, and L; = L,/L,. 
Because of symmetry, only the regions 0 5 X 5 I, 0 5 Y 5 L;, and 0 5 Z 5 

L; need to be solved. The boundary conditions are 

J 
Fig. 2 Coordinate system: parallelpiped 
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AD1 METHOD FOR 3-D DIFFUSION PROBLEMS 79 

where y, = q,,,LllkTo is dimensionless surface heat flux. 
In this paper, each numerical method will be used to solve the three-dimensional 

heat diffusion equation for the two different boundary conditions. To evaluate the accuracy 
of the various methods, an average temperature error is used. Lt is defined as the square 
root of the average of the squares of the error between the predicted temperature and the 
analytical temperature. It is given by 

I J K  

C C C [Oij.t - O,l2/IJK 
i = l  j = l  "' 

where 0, is the analytical dimensionless temperature. 

Case 1: Constant Surface Heat Flux 

Consider a parallelepiped initially at a uniform temperature Oo = 1 .O.  At time T = 
0, all faces of the parallelepiped are exposed to a constant surface heat flux q,, = 0.5. 
For a parallelepiped exposed to a constant surface heat flux, the temperature distribution 
as a function of time can be represented by the summation of three one-dimensional 
solutions [I]: 

+ i erfc ( a m  :$ - x)] 

+ i erfc ( (2m +2Ei - Y 

+ i erfc ( (2m + 1 ) ~ ;  - z ) ] ]  
2 \ / i  
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80 M. J. CHANG ET AL. 

Presented in Fig. 3 are the results obtained for a cube exposed to a constant surface 
heat flux ij,. = 0.5 at time T = 2.0. Twenty nodal points are used in each direction for 
this calculation. According to Eq. (7). the time step limit required for the conventional 
AD1 method (f = l .O) is 0.001875. In Fig. 3 the solutions from the conventional AD1 
method show good accuracy with time step 0.002 but become unstable as the time step 
is increased. The Brian and Douglas methods are unconditionally stable, but the negative 
coefficients in the discretization equations cause their solutions to be physically unrealistic. 
The results show that their solutions have good accuracy if the time step is smaller than 
0.2 but become more and more inaccurate if the time step is increased. On the contrary, 
the proposed ADI method with f = 0.1 and f = 0.01 is accurate even when a time step 
of 2.0 is used. The average temperature error is less than 0.007. It can be seen from 
Eqs.. (26) and (3 I) that this f factor AD1 method has a much higher time step limit than 
the conventional AD1 method. 

Shown in Fig. 4 are the results at time T = 10.0 for a cube with the same boundary 
condition as a constant surface heat flux i j ,  = 0.5. For very small time steps, every 
method yields poor accuracy. This is due to the amount of calculating involved and the 
accumulation of round-off errors. For time steps greater than 0.01, the Brian and Douglas 
methods are always stable but yield poor accuracy with average temperature errors up to 
about 0.15. The new AD1 method with f = 0.01 predicts the results exceptionally well; 
the average temperature errors are always less than 0.02 for time steps larger than 0.01. 
However, the new AD[ method with f = 0. I only predicts well up to a time step of 0.5 
because of the lower time step limit compared with that using f = 0.01. 

0.6 

CONSTANT HEAT FLUX 

0.5 ., 0 1 - 0 . 0 1  

i A 1.0.1 

2 C o n v e n t i o n a l  AD1 Method 
0.4 n B r l s n  Melhod  e 

S * D o u g l a s  ~ s l h o d  
-4 
m 
k 0.3 r. 2 . 0  

I -J-K-  20 

C 
& 0.2 e 
P) 

4 
0.1 

0.0 

0.001 0.010 0.100 1.000 10.000 

Time Step. AT 

Fig. 3 Average temperature error for a cube with constant wall heat flux. T = 2. 
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AD1 METHOD FOR 3-D DIFFUSION PROBLEMS 81 

CONSTANT HEAT FLUX 

0 I = O . O l  

A 1 - 0 . 1  

C o n v e n t i o n a l  AD1 M e t h o d  

B r i a n  Method 

# Douglas  Method 

7. 1 0 . 0  

1.J.K- 2 0  

0.00 1 0.010 0.100 1.000 10.000 

Time Step. AT 

Fig. 4 Average temperature error for a cube with constant wall heat flux, s = 10. 

Figure 5 shows the variation of the average temperature error with the f factor at 
T = 10.0 for a cube with the same boundary condition as a constant surface heat flux 
?jw = 0.5. It can be seen, as long as the solutions do not diverge, that temperature errors 
remain almost the same with different values of the f factor. In other words, the value 
off we chose does not influence the numerical results as long as the solutions remain 
stable. The results for a very small time step, AT = 0.001, always have larger errors 
due to the accumulation of round-off errors mentioned earlier. Also, we can see that the 
solutions are more stable with smaller values of the f factor in the sense that much larger 
AT can be used. 

C a s e  2: Cons tan t  Wall Tempera ture  

In this case, the parallelepiped, initially at a uniform temperature 0, = 1.0, has 
its surface temperatures suddenly increased and maintained at a constant temperature 
0, = 2.0. The analytical temperature can be easily obtained by using the method of 
separation of variables [S]: 
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CONSTANT HEAT FLUX 

0.5 - . 
u 0 AT- 0.001 
i A AT- 0.01 0 
L. 

t AT' 0.1 0.4 - 
P) t 67' 1.0 
2 
d 7. 10 .0  m 
& 0.3- I.J.K. 20  
P 

L;.L;. 1 . o  !2 
B 

& 0.2 - - e V 

k' 
4 

0.1 - 

l-factor 
Fig. 5 Variation of average temperature error with f factor for a cube with constant wall heat flux, T = 
10. 

where 

6 ~ ,  - e,.) (2m - I)T . (2n - I)T . (21 - I )T 
am"/ = sin 2 

sln 
2 

sln 
TJ (2m - 1)(2n - 1)(21 - 1) 2 

Presented in Fig. 6 are the results obtained for a cube at time T = 0.2. At this 
time, the temperature field is still undergoing transient development. Similar to case I 
with constant surface heat flux, the conventional AD1 method becomes unstable if the 
time step is greater than 0.002. The Brian and Douglas methods predict the temperature 
field accurately only with a time step less than 0.02 and become inaccurate if the time 
step is increased beyond 0.02. The new AD1 method with both f = 0.1 and f = 0.01 
always yields better accuracy than the other methods; the average temperature error 
increases only slightly with the time step and is about 0.03 with a time step of 0.1. 

Shown in Fig. 7 are the results for a cube at time T = 1.0. At this time, the 
temperature field has already reached steady state. The Brian and Douglas methods predict 
the steady state temperature field rather poorly if the time step is greater than 0.1. The 
average temperature error is about 0.5 with a time step of 1 .O. On the contrary, the new 
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AD1 METHOD FOR 3-D DIFFUSION PROBLEMS 83 

Time Step. A r  
Fig. 6 Average temperature error for a cube with constant wall temperature, T = 0.2, 

0.00 1 0.010 0.100 1.000 

Time Step. AT 
Fig. 7 Average lemperature error for a cube with constant wall temperature, 7 = 1 .  
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84 M. J. CHANC ET AL. 

AD1 method predicts the steady state results very well. With a time step of 1.0, the new 
AD1 method yields solutions with an average temperature error about 0.024 for f = 0.1 
and about 0.016 for f = 0.01. 

CONCLUSIONS 

In this paper, an f factor AD1 method for solving transient three-dimensional heat 
diffusion problems is introduced. An important characteristic of this new AD1 method is 
that the resulting finite difference equations are consistent with physical considerations. 
Compared with the conventional AD1 method, this modification allows the time step to 
be increased by about a factor of Ilf without compromising the accuracy of the numerical 
solution. Compared with the conventional AD1 method and the Brian and Douglas AD1 
methods, this new ADI method yields higher accuracy and requires less computer storage. 
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